Еволуција (биологија)

Из Википедије, слободне енциклопедије

Еволуција подразумева промену наследних особина популације кроз генерације. Ове особине су експресија гена који се током размножавања преносе на потомство. Мутације и друге случајне промене у генима могу довести до појаве нових или промене већ постојећих особина, имајући за последицу разлике између ћелија, организама и генерација. Нове особине се у популацију могу унети и протоком гена - на пример, миграцијама. Еволуција постоји онда, када се промени учесталост старих и нових особина, било природном селекцијом или генетичким дрифтом.

структура ДНК[1]

Природна селекција је процес који описује опстајање током генерација наследних особина које се могу окарактерисати као „корисне“ за репродукију или само преживљавање, а губитак оних особина које се могу окарактерисати као „штетне“. Ова промена у учесталости гена се дешава јер организми носиоци „корисних“ особина преносе више копија ових особина у следећу генерацију [2][3][4].

Врста је група организама који могу ступати у репродуктивне односе. Међутим, ако је врста подељена у популације између којих постоји репродуктивна изолација, мутације и генетички дрифт, заједно са различитим срединским селекционим притисцима, резултују у акумулирању разлика у овим популацијама. Током низа генерација, ово повећавање разлика доводи до стварања нових врста - специјације. Сличности између организама упућују на заједничко порекло свих врста постепеним процесом специјације[2][5].

Наслеђивање[уреди]

Vista-xmag.png За више информација видети Генетика и Наслеђивање

Наслеђивање се код организама остварује кроз дискретне биолошке особине, које су карактеристичне за поједине групе организама (породице, популације, врсте). Наследне особине су контролисане генима, а целокупни сет гена организма назива се генотип[6]. Целокупни сет особина организма (морфолошке, анатомске, физиолошке, еколошке особине, особине понашања) назива се фенотип, и настаје у интеракцијама генотипа и средине [7]. Као резултат ових интеракција стоји појава, да нису све особине фенотипа наслеђене. Гени су региони молекула ДНК који поседују одређену генетичку информацију.[6] ДНК је дугачак молекул, изграђен од четири типа нуклеотида. Различити гени имају различите нуклеотидне секвенце, као основ кодирања наследних информација.

Варирање особина[уреди]

Vista-xmag.png За више информација погледајте чланак Популациона генетика
Мутација (дупликација) једног дела хромозома

Пошто је фенотип јединке резултат интеракција генотипа и средине, варирање фенотипова унутар популације осликава варирање генотипова.[8] Модерна еволуциона синтеза дефинише еволуцију као промене у генетичком варирању током времена[9]. Учесталост једног алела ће флуктуирати, он ће бити заступљенији или ређи у популацији у односу на други алел (друге алеле) истог гена. Еволуциони механизми делују на тај начин, да усмеравају промене учесталости алела у једном, или другом смеру. Варирање особине нестаје оног тренутка, када алели достигну тачку фиксације - када или потпуно нестану из популације, или потпуно замене предачки алел.[10]

Узроци варирања особуна су мутације у генетичком материјалу, миграције између популација, или прерасподела гена током полног размножавања. Варирање може бити узроковано и разменом гена међу различитим врстама (интерспецијски), кроз процесе хоризонталног трансфера гена код прокариота, или хибридизације код биљака и животиња[11][12]. Упркос постојању фактора који константно уводе варирање особина у популацију, већи део генома врсте остаје непромењен од свих јединки [13]. Понекад, међутим, и најмање промене у генотипу могу довести до драматичних промена фенотипа (нпр. разлика између генома шимпанзе и човека је у само 5% укупног броја нуклеотидних база)[14].

Мутације[уреди]

Vista-xmag.png За више информација видети Мутација и Молекуларна еволуција

Мутације су један од константних узрочника варирања генотипова, а тиме и фенотипских особина у популацији. Мутације се преносе наследним материјалом из генерације у генерацију, а могу бити изазване низом фактора (тзв. мутагенима). У мутагене између осталих убрајамо радиоактивно зрачење, вирусе, хемијска једињења[15][16][17]. Услед драстичних промена које мутације могу да изазову у ћелијама, организми поседују ДНК репер систем кој уклања мутације[15]. Отуда се може закључити да је постојећа (оптимална) стопа мутација која постоји у врсти својеврсни trade-off између краткотрајне штете (попут ризика од рака) и дугорочне користи (поједине мутације могу давати предност организмима у другачијој средини)[18].

Еволуциони механизми[уреди]

Природна селекција популације за особину тамна обојеност тела
Vista-xmag.png За више информација видети Природна селекција, Генетички дрифт, Проток гена и Адаптивна вредност

Постоје три основна механизма еволуционих промена: природна селекција, генетички дрифт и проток гена. Природна селекција мења учесталости гена који повећавају/смањују способност преживљавања и репродукције (остављања потомства). Под генетичким дрифтом се подразумевају случајне промене у учесталости алела, а под протоком гена сви трансфери гена унутар и између популације. Значајност појединачних еволуционих механизама зависи увелико од јачине природне селекције и ефективне величине популације[19]. Природна селекција преовлађује значајношћу у великим (бројним) популацијама, док је ефекат генетичког дрифта највећи у малим популацијама.


Теорија еволуције[уреди]

Претече теорије еволуције[уреди]

Карикатура Чарлса Дарвина као човеколиког мајмуна, која одражава одговор друштва 19. века на иновативност теорије еволуције

Еволуцијске мисли јавиле су се већ у старој Грчкој (Хераклит, Емпедокло, Аристотел). Средином XVIII века Карл Лине, проводећи у својем делу Састав природе (Systema naturale, 1735) категоризацију свих дотад познатих биљака и животиња, строго је заступао начело: »Врста има онолико колико их је од почетка створено« (Tot numeramus species, quot ab initio sunt creatae). Супротно том креационистичком схватању Џорџ Луис Леклер у делу Историја природе (Histoire naturelle, 1749–88) изражава мисао о промени врста. На темељу проучавања великог броја савремених биљака и животиња, као и опсежног палеонтолошког материјала, он закључује да су »све животиње произишле од једнога претка, који се током времена мењао и усавршавао те произвео све животињске родове«. Зоолог Лакапед, аутор поглавља о рибама у Буфоновој Историји природе, тумачи сличност организама поријеклом од заједничкога претка и сматра да су те промене у вези са променљивим утицајем околине, укрштавањем итд. Он говори и о преживљавању боље прилагођених врста и у томе се приближава бити дарвинизма, тј. теорији о природном одабиру, селекцији. На природословце XVIII век знатно је утицао и Лајбниц „закон континуитета“ или непрекидности, по којем природа не прави скокове, већ је у њој све повезано поступним прелазима, како у подручју физичких, тако и психичких појава.

Ламаркова теорија еволуције[уреди]

Жан Баптист Ламарк објавио је 1801. „Систем животиња без кичме“ (Système des animaux sans vertèbres), у којем је први пут изнео идеју о заједничком пореклу организама и њиховом поступном развоју, који је 1809. у познатом делу Филозофија зоологије (Philosophie zoologique) разрадио у прву целовиту еволуциону теорију. По Ламарку постоји у природи полаган, непрекидан процес преобразбе врста. Чиниоце који су условљавали тај процес Ламарк своди на промене околине по којима се мењају и потребе животиње, па тиме она стиче нове навике. У складу са новим навикама и потребама једни се органи више употребљавају и јаче развијају; обратно, неупотребљавање органа доводи до њиховог слабљења и ишчезавања у потомака. Те су промене по Ламарку увек адекватне условима средине, а родитељи их преносе на потомство. Тако су нпр. кртици умањене очи, јер их под земљом не употребљава. Та прилагођавања настају због воље животиње, напрегнуте жеље, тежње да задовољи своје потребе и навике. Ламарк је први обухватио у целини еволуцијски проблем, али се због мањкавих резултата тадашње науке заплео у телеолошке грешке.

Дарвинова теорија еволуције[уреди]

Средином XIX века природне науке су већ располагале многобројним чињеницама које су говориле у прилог еволуцији. Постигнути су важни успеси на подручју поредбене анатомије, ос. кичмењака, и поредбене ембриологије; Т. Шван открио је 1839. јединство ћелијске грађе свих живих бића (целуларна теорија) и основао наука о ћелији – цитологију.

Чарлс Лајел у делу „Начела геологије“ (Principles of Geology, 1831) поступне промене Земље тумачио је спорим и непрекидним деловањем природних појава: воде, ветра, сунца итд.

У пољопривреди се развијала техника селекције – енглески сточари и ратари узгајали су нове пасмине домаћих животиња и нове сорте културног биља. За обраду и документацију своје еволуционе теорије Чарлс Дарвин је, како се види, имао знатно повољнији научни терен. Уз све то он је дуго оклевао са издавањем свог главног дела „О пореклу врста посредством природне селекције“ и објавио га је тек 1859. када га је на то наговорио Валас.

Дарвинова теорија еволуције позива се најпре на природни одабир или селекцију која уништава јединке слабије прилагођене условима живота, а подупире оне боље прилагођене. Индивидуалне варијације које улазе у процес селекције могу, по Дарвиновом мишљењу, бити детерминисане спољашњим (околина) и унутрашњим (касније названи генетичким) факторима.

Дарвин је доказао да еволуција има адаптиван значај и да је орг. сврховитост релативно изражена у прилагођености организма на одређени историјско условљени комплекс спољашњих услова. Његова теорија је у науци позната као дарвинизам. Често се и сама наука о еволуцији поистовјећује са појмом дарвинизма.

Дарвиново научавање даље су разрадили, проширили и продубили Хули, Хеклер, имирјазев и др. Хекел се посебно истакао као ватрени присталица Дарвинове теорије. Он је научно разрадио проблем јединства живе и неживе природе, постанак живота хемијским путем из неживе природе, монофилетско порекло живих бића итд., и на крају формулисао >биогенетски закон (који у савременој еволуцији има само историјско значење). Филогенија је по Хекелу основна наука о променама облика кроз које пролазе организми током целог свог развоја. Хекел је тако први поставио теорију десценденције, коју је назвао трансформизмом, спојивши у њој уз дарвинизам и неке ламаркистичке мисли.

Види још[уреди]

Референце[уреди]

  1. ^ Edwards K, Brown D, Spink N, Skelly J, Neidle S (1992). „Molecular structure of the B-DNA dodecamer d(CGCAAATTTGCG)2. An examination of propeller twist and minor-groove water structure at 2.2 A resolution“. J. Mol. Biol. 226 (4): 1161-73. PMID 1518049. 
  2. ^ а б Futuyma, Douglas J. (2005). Evolution. Sunderland, Massachusetts: Sinauer Associates, Inc. ISBN 0-87893-187-2. 
  3. ^ Lande R, Arnold SJ (1983). „The measurement of selection on correlated characters“. Evolution 37: 1210-1226}. DOI:10.2307/2408842. 
  4. ^ Haldane, J.B.S. (1953). „The measurement of natural selection“. Proceedings of the 9th International Congress of Genetics 1: 480-487. 
  5. ^ Gould, Stephen J. (2002). The Structure of Evolutionary Theory. Belknap Press. ISBN 0-674-00613-5. 
    *Dawkins, Richard (1989). The Selfish Gene. Oxford University Press Press. ISBN 0-674-00613-5. 
  6. ^ а б Pearson H (2006). „Genetics: what is a gene?“. Nature 441 (7092): 398-401. PMID 16724031. 
  7. ^ Peaston AE, Whitelaw E (2006). „Epigenetics and phenotypic variation in mammals“. Mamm. Genome 17 (5): 365-74. PMID 16688527. 
  8. ^ Wu R, Lin M (2006). „Functional mapping - how to map and study the genetic architecture of dynamic complex traits“. Nat. Rev. Genet. 7 (3): 229-37. PMID 16485021. 
  9. ^ Stoltzfus A (2006). „Mutationism and the dual causation of evolutionary change“. Evol. Dev. 8 (3): 304-17. PMID 16686641. 
  10. ^ Harwood AJ (1998). „Factors affecting levels of genetic diversity in natural populations“. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 353 (1366): 177-86. PMID 9533122. 
  11. ^ Draghi J, Turner P (2006). „DNA secretion and gene-level selection in bacteria“. Microbiology (Reading, Engl.) 152 (Pt 9): 2683-8. PMID 16946263. 
  12. ^ Mallet J (2007). „Hybrid speciation“. Nature 446 (7133): 279-83. PMID 17361174. ,
  13. ^ Butlin RK, Tregenza T (1998). „Levels of genetic polymorphism: marker loci versus quantitative traits“. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 353 (1366): 187-98. PMID 9533123. 
  14. ^ Wetterbom A, Sevov M, Cavelier L, Bergström TF (2006). „Comparative genomic analysis of human and chimpanzee indicates a key role for indels in primate evolution“. J. Mol. Evol. 63 (5): 682-90. PMID 17075697. 
  15. ^ а б Bertram J (2000). „The molecular biology of cancer“. Mol. Aspects Med. 21 (6): 167-223. PMID 11173079. 
  16. ^ Aminetzach YT, Macpherson JM, Petrov DA (2005). „Pesticide resistance via transposition-mediated adaptive gene truncation in Drosophila“. Science 309 (5735): 764-7. DOI:10.1126/science.1112699. PMID 16051794. 
  17. ^ Burrus V, Waldor M (2004). „Shaping bacterial genomes with integrative and conjugative elements“. Res. Microbiol. 155 (5): 376-86. PMID 15207870. 
  18. ^ Sniegowski P, Gerrish P, Johnson T, Shaver A (2000). „The evolution of mutation rates: separating causes from consequences“. Bioessays 22 (12): 1057-66. PMID 11084621. 
  19. ^ Whitlock M (2003). „Fixation probability and time in subdivided populations“. Genetics 164 (2): 767-79. PMID 12807795. 

Литература[уреди]

Спољашње везе[уреди]