Математичка анализа

Из Википедије, слободне енциклопедије

Математичка анализа (старогрчки ανάλυσις, análysis, решење) је област математике која између осталог проучава граничне вредности, интеграле, изводе и редове. Област се помиње и под именима виша математика, инфинитезимални рачун, а у енглеској литератури као „Калкулус“ (енгл. Calculus). То је веома широка област математике и предмет је вишегодишњих студија на факултетима.

У принципу, дели се на два дела: диференцијални и интегрални рачун. Проучавање бесконачних редова и аналитичких функција такође спада у домен аналитичке математике.

Историјски развој[уреди]

Диференцијални рачун[уреди]

Диференцијални рачун и диференцирање проучавају промене функција реалних променљивих при променама независне варијабле, тј. независне променљиве. Полази се од проблема налажења тангенте на криву, који је први објавио Исак Бароу (Isaac Barrow: Lectiones geometricae, 1670). Исак Њутн (Isaac Newton) је открио метод (1665-1666.) и сугерисао Исаку Бароу, свом професору математике, да методу укључи у уџбеник. У својој првобитној теорији, Њутн је посматрао функцију као променљиву, флуентну количину, и разлику, или износ промене, назвао флукс (fluxion). Дефинисао је нагиб криве у тачки као прираштај тангенте на ту криву у малој околини дате тачке. Данас веома познату биномну теорему Њутн је применио да нађе гранични случај, што значи да је диференцијални рачун Њутну био потребан за бесконачне низове. Употребио је ознаке икс, односно ипсилон са тачком изнад (\dot{x}, \dot{y}) за флукс, и исто са две тачке изнад (\ddot{x},\ddot{y}) за флукс флукса. Тако, ако је x=f(t), где је t време потребно телу да би се прешло пут х, тада је флукс икса тренутна брзина, а флукс флукса је тренутно убрзање. Лајбниц (Leibniz) је такође открио исту методу 1676. године, објавио је 1684. Њутн је није објавио све до 1687. (у Philosophiae Naturalis Principia Mathematica, Математички принципи природне филозофије). Зато се развила горка расправа око приоритета открића. Заправо, данас је познато, обојица су дошли до истог открића независно један од другог. Савремена нотација дугује Лајбицу dy/dx и издужено S (од „сума“) за интеграл.

Интегрални рачун[уреди]

Интегрални рачун и интеграција користе се за израчунавање површина, запремина тела, дужина криве, тежишта, момента инерције. Вуче корене још од Еудокса Книдског (Eudoxus of Cnidus, 408-347. п. н. е.), грчког астронома и математичара, и његове методе „исцрпљивања“ из периода око 360. п. н. е. Архимед је у свом делу „Метода“ развио начин налажења површина ограничених кривама, разматрајући их подељене многобројним паралелним линијама и проширио идеју на налажење запремина неких тела. Због тога га неки називају оцем интегралног рачуна.

Почетком 17. века, поново се појавио интерес за мерење запремина интегралном методом. Кеплер је користио процедуре налажења запремина тела узимајући их као композицију бесконачног скупа инфинитезимално (бесконачно) малих елемената (Stereometrija doliorum, Мерење запремина буради, 1615.). Ове идеје је поопштио Кавалијери (Cavalieri) у свом делу Geometria indivisibilibus continuorum nova (1635), у којем је употребио идеју да се површина састоји из недељивих линија, а запремина од недељивих површина. То је данас познати Кавалијеријев принцип, а такође то је био и концепт Архимедове методе. Џон Валис у свом делу Бесконачна аритметика (John Wallis, Arithmetica ifinitorum, 1655) је аритметизовао Кавалијерове идеје. У том раздобљу су инфинитезималне методе интензивно кориштене за тражење дужина кривих и површина.

Савремена математика[уреди]

Негде у данашње време, интеграција се почела тумачити једноставно као операција инверзна диференцирању. Коши (Cauchy) је 1820-их диференцијални и интегрални рачун поставио на сигурније основе заснивајући их на лимесу. Диференцирање је дефинисао као граничну вредност количника, а интегрирање као граничну вредност збира. Дефиницију интеграла помоћу граничне вредности уопштио је Риман (Riemann).

У двадесетом веку, схватање интеграла је проширено. У почетку, интегрирање се односило на елементарну идеју мерења (мерење дужина, површина, запремина) са непрекидним функцијама. Са појавом теорије скупова, функције су се почеле третирати као пресликавања, не обавезно непрекидна, и појавило се општије и апстрактније схватање мере. Лебег (Lebesgue) је објавио дефиницију интегрирања засновану на Лебеговој мери скупа. Појавио се Лебегов интеграл.

Теорије математичке анализе се обично проучавају у контексту реалних бројева, комплексних бројева, и реалних и комплексних функција. Међутим, оне се могу дефинисати и проучаватии у било ком другом простору математичких објеката, који има дефинисану близину (тополошки простор) или специфичније раздаљину (метрички простор).

Области[уреди]

Математичку анализу чине следеће области:

Литература[уреди]

  • Математичка анализа, (Проф. Др Светозар Курепа), први дио - диференцирање и интегрирање, Техничка књига, Загреб, 1975.
  • Виша математика I (академик Радивоје Кашанин), четврто издање, Завод за издавање уџбеника СРБиХ, Сарајево, 1969.