Тачка (геометрија)

Из Википедије, слободне енциклопедије

Тачка је један од основних појмова геометрије којим се означава бесконачно мали објекат без дужине или запремине. Да би се тачка дефинисала, потребно је знати само њено место у простору, а она сама се сматра основним елементом од кога је простор сачињен. Представља место пресека било које две линије у равни.Праве и дужи су непрекидни скупови тачака (сходно томе, место где се секу две праве је тачка), раван непрекидан скуп правих итд.

По конвенцији, имена тачака су велика слова латинице, а на цртежима се обележавају малим круговима поред којих се ова имена уписују.

Тачке у Еуклидовој геометрији[уреди]

Тачка у еуклидовој геометрији нема величину, правац, смер, нити било коју другу особину сем положаја. На почетку I књиге[1] Еуклидових Елемената стоје следеће дефиниције:

Дефиниција 1
Тачка је оно што нема делова.
Дефиниција 3
Крајеви линије су тачке.

У тражењу примата линије и тачке, Еуклид наводи да је тачка основна, а линија је оно што садржи тачке, док Аристотел радије узима линију за основу, а тачка је оно што је на крајевима линије.

Међутим постоје различити преводи и интерпретације Еуклидове дефиниције, међу којима и следеће: „Тачка је оно што нема пружање“ као најбољи превод, али недовољно јасан данашњем читаоцу оригиналне реченице

ά Σημετόν έστιν, οϋ μέρος ούθέν

Дефиниција „Тачка је оно што нема меру“ не би била добра јер тачка има свој положај, а то јесте некаква мера дужине (удаљеност од неке референтне тачке).

У данашњем језику је најприсутнија и терминологији најближа следећа дефиниција, у смислу интерпретације Еуклида

Тачка је оно што нема димензије“.

Тачке у Картезијанској геометрији[уреди]

Локација тачке у простору може бити описана са три реална броја који представљају координате у тродимензионалном простору. На пример:

P = (2,6,9).

На овај начин тачка се може описати и у вишедимензионалном простору. Опис тачке је сличан опису вектора који такође може да постоји у вишедимензионалном простору. Разлика између вектора и тачке је у томе што вектор има и правац и дужину, зато се подразумева да је почетна тачка вектора (0,0,0).

Тачка у простору димензије 2 или веће[уреди]

Свака тачка која припада простору димензије n се да представити са једном уређеном n-торком скалара, који припадају пољу скалара над којим је изграђен простор а представљају њене координате у том простору. Тако би на пример тачка P из En била представљена као P=(P1,P2,...,Pn) при чему су Pi из E, i=1,..,n.

Растојање између две тачке[уреди]

Растојање између две тачке из простора En се у еуклидовој геометрији дефинише као збир квадрата разлика њихових координата. На пример:

A = (A_1,\dots ,A_n), B = (B_1,\dots ,B_n) \in E^n
d(A,B) = \sqrt{{\sum_{k=1}^n {(A_i-B_i)}^2}} = \sqrt{(A_1-B_1)^2 + \dots + (A_n-B_n)^2}

Литература[уреди]

^ Антон Билимовић, Еуклидови Елементи, Прва књига, САНУ, 1949

Спољашње везе[уреди]

Викиостава
Викимедијина остава има још мултимедијалних датотека везаних за: Тачка (геометрија)