Трансцендентан број

Из Википедије, слободне енциклопедије

Трансцендентан број је појам којим се у математици означава број (реалан или комплексан) који није решење ниједне алгебарске једначине са рационалним коефицијентима. Сви трансцендентни бројеви су ирационални, али нису сви ирационални бројеви трансцендентни. На пример, е и пи су трансцендентни (и ирационални) док је \sqrt{2} ирационалан али не и трансцендентан, јер је решење једначине x^2 - 2 = 0. Бројеви који нису трансцендентни се зову алгебарски.

Историја[уреди]

Термин „трансцендентан број“ је сковао 1682. Лајбниц када је установио да синус није алгебарска функција свог аргумента, а у данашњем смислу их је први дефинисао Ојлер.

Доказ да трансцендентни бројеви постоје дао је Жозеф Лијувил 1844, а 1851. је и конструисао такав број:

\sum_{k=1}^\infty 10^{-k!} = 0.110001000000000000000001000\ldots

тј., број код кога су децимале јединице ако је њихов редни број факторијел природног броја (1, 2, 6, 24,...), а у свим другим случајвима је нула.

Први број који није специјално конструисан, а за који је доказано да је трансцендентан је е, доказ је 1873. дао Шарл Ермит.

Следеће године је Георг Кантор доказао да алгебарских бројева има пребројиво бесконачно много, док је трансцендентних непребројиво бесконачно много. Кантор је 1878. доказао да трансцендентних бројева има исто колико и реалних, односно да су исте кардиналности.

Фердинанд фон Линдеман је 1882. доказао да је е на било који алгебарски степен који није нула трансцендентан број, одакле је као специјалан случај доказана трансцендентност броја π (јер је e^{i\pi;} = -1).

Давид Хилберт је 1900. у склопу својих чувених проблема, као 7. проблем поставио питање:

Ако је a алгебарски број који није нула нити један, а b ирационалан број, да ли је a^b (нпр. 2^{\sqrt{2}}) увек трансцендентан?

Потврдан одговор је стигао 1934. у виду Гелфонд-Шнајдерове теореме.

Примери[уреди]

Међутим, осим за Гелфондову константу, ни за једну другу комбинацију (збир, разлика, производ, количник, степен) е и π није познато да је трансцендентна: e+\pi, e-\pi,  e\pi,  \pi/e,  \pi^e,  e^e,  \pi^\pi

Види још[уреди]