Функција расподеле

Из Википедије, слободне енциклопедије

Функција расподеле или кумулативна расподела вероватноће је функција која се користи у теорији вероватноће. Означава се са Fx. То је функција која за сваки реалан број x, одређује вероватноћу да је случајна променљива X узела вредност мању од или једнаку x

x \to F_X(x) = \operatorname{P}(X\leq x),

Вероватноћа да X лежи на интервалу (ab] је једнака F(b) − F(a) ако је a < b. Обично се користи велико латинично слово F за означавање функције расподеле, за разлику од малог латиничног слова f, које се користи за расподелу вероватноће.

Кумулативна расподела вероватноће се може изразити и преко расподеле вероватноће f на следећи начин:

F(x) = \int_{-\infty}^x f(t)\,dt

Својства[уреди]

Одозго на доле, функција расподеле дискретне случајне променљиве, непрекидне случајне променљиве, и случајне променљиве која има и непрекидне и дискретне делове.

Свака функција расподеле, F је монотоно неопадајућа, и непрекидна здесна. Осим тога, важи

\lim_{x\to -\infty}F(x)=0, \quad \lim_{x\to +\infty}F(x)=1.

Свака функција која задовољава ова четири својства је функција расподеле.

Ако је X дискретна случајна променљива, онда она има вредности x1, x2, ... са вероватноћама pi = P(xi), а њена функција расподеле ће имати прекиде у тачкама xi, и бити константна између њих:

F(x) = \operatorname{P}(X\leq x) = \sum_{x_i \leq x} \operatorname{P}(X = x_i) = \sum_{x_i \leq x} p(x_i)

Ако је функција расподеле F, случајне променљиве X, непрекидна, онда је X непрекидна случајна променљива; ако је осим тога, F апсолутно непрекидна, онда постоји Лебег-интеграбилна функција f(x), таква да

F(b)-F(a) = \operatorname{P}(a\leq X\leq b) = \int_a^b f(x)\,dx

за све реалне бројеве a и b. (Прва од горње две једнакости не би била тачна у општем случају ако не би било назначено да је расподела непрекидна. Непрекидност расподеле имплицира да је P(X = a) = P(X = b) = 0, па разлика између < и ≤ у том контексту нема значаја.) Функција f је једнака изводу од F скоро свуда, и назива се расподела вероватноће за случајну променљиву X.