Formula pertle

Из Википедије, слободне енциклопедије

Formula pertle, ili algoritam pretle, je matematicki algoritam koji se koristi za izračunavanje površine jednostavnog mnogougla čija temena su određena uređenim parom u ravni.[1] Ukrštenim množenjem odgovarajućih koordinata dobija se povrsina koja obuhvata mnogougao, i oduzme je od mnogougla koji ga okruzuje da bi se odredila površina mnogougla unutra. Zove se formula pertle zbog konstanog ukrštenog množenja za koordinate koje sastavljaju mnogougao, kao vezanje pertle.[1] Ponekad se zove i metod pertla. Takođe, poznata je i kao Gausova površinska formula, po Karl Fridrih Gausu. Koristi se u geometriji i šumarstvu,[2] između ostalih oblasti. Takođe je poznata i kao geometrova formula.[3]

Formula se moze prikazati na sledeći način:

 \begin{align} \mathbf{A} & = {1 \over 2} \Big | \sum_{i=1}^{n-1} x_iy_{i+1} + x_ny_1 - \sum_{i=1}^{n-1} x_{i+1}y_i - x_1y_n \Big | \\
 & = {1 \over 2}|x_1y_2 + x_2y_3 + \cdots + x_{n-1}y_n + x_ny_1 - x_2y_1 - x_3y_2 - \cdots - x_ny_{n-1} - x_1y_n| \\ \end{align}

gde

  • A je površina mnogougla,
  • n je broj stranica mnogougla, and
  • (xiyi), i = 1, 2,..., n su temena mnogougla.

Alternativno:[2][4][5]

\mathbf{A} = {1 \over 2} \Big | \sum_{i=1}^{n} x_i(y_{i+1}-y_{i-1}) \Big | = {1 \over 2} \Big | \sum_{i=1}^{n} y_i(x_{i+1}-x_{i-1}) \Big | = {1 \over 2} \Big | \sum_{i=1}^{n} x_iy_{i+1}-x_{i+1}y_i \Big | = {1 \over 2} \Big | \sum_{i=1}^{n} \det\begin{pmatrix} x_i & x_{i+1} \\ y_i & y_{i+1} \end{pmatrix} \Big |

gde xn+1 = x1 i x0 = xn, odnosno yn+1 = y1 i y0 = yn.

Ako su tačke označene suprotno od smera kazaljki na satu, onda iznad determinante su pozitivne i absolutne zagrade mogu biti izostavljene;[3] Ako su tačke označene u smeru kazaljki na satu, determinante će biti negativne. Ovo je zato što se formula može gledati kao poseban slučaj Grinove teoreme.

Primeri[уреди]

Moraju biti poznate tačke u Kartezijanovoj ravni. Na primer, gledamo trougao sa koordinatama {(2, 1), (4, 5), (7, 8)}. Uzmemo prvu x-vrednost i pomnozimo je sa drugom y-vrednošću, onda uzmemo drugu x-vrednost i pomnozimo je sa trecom y-vrednošću, i ponovimo, i opet ponovimo, dok ne uradimo to za svaku tačku. Ovo se može definisati formulom:[6]

 \mathbf{A}_\text{tri.} = {1 \over 2}|x_1y_2 + x_2y_3 + x_3y_1 - x_2y_1 - x_3y_2 - x_1y_3|

gde xi i yi predstavljaju vrednosti za respektivne koordinate. Ova formula je samo proširanje one koja je data gore za slučaj n = 3. Korišćenjem nje, može se videti da je površina trougla jednaka polovini apsolutne vrednosti od 10 + 32 + 7 − 4 − 35 − 16, što je jednako 3. Broj varijabla zavisi od broja strnica mnogougla. Na primer, petougao će biti definisan do x5 and y5:

 \mathbf{A}_\text{pent.} = {1 \over 2}|x_1y_2 + x_2y_3 + x_3y_4 + x_4y_5 + x_5y_1 - x_2y_1 - x_3y_2 - x_4y_3 - x_5y_4 - x_1y_5|

Četvorougao će biti definisan do x4 and y4:

 \mathbf{A}_\text{quad.} = {1 \over 2}|x_1y_2 + x_2y_3 +x_3y_4 + x_4y_1 - x_2y_1 - x_3y_2 - x_4y_3 - x_1y_4|

Kompleksniji primeri[уреди]

Posmatramo mnogougao definisan tačkama (3,4), (5,11), (12,8), (9,5), and (5,6), i ilustrovam u sledećem diagramu:

Figure of this example

Površina ovog mnogougla je:


\begin{align}
\mathbf{A} & = {1 \over 2}|3 \times 11 + 5 \times 8 + 12 \times 5 + 9 \times 6 + 5 \times 4 \\
& {} \qquad {} - 4 \times 5 - 11 \times 12 - 8 \times 9 - 5 \times 5 - 6 \times 3| \\[10pt]
& = {60 \over 2} = 30
\end{align}

Objašnjenje imena[уреди]

Razlog zašto se ova formula zove formula pertle je zbog čestog načina koji se koristi za njeno izračunavanje. Ovaj način koristi matrice. Kao primer, gledamo trougao sa temenima (2,4), (3,−8), and (1,2). Onda konstruišemo sledeću matricu tako što “hodamo oko” trougla i zavrćavamo sa početnom tačkom.[7]

 \begin{bmatrix} 2 & 4 \\ 3 & -8 \\ 1 & 2 \\ 2 & 4 \end{bmatrix}

Prvo, nacrtamo dijagonalno dole i ka desno (kao što je prikazano),

  ShoelaceMatrix2.GIF

i pomnožimo dva broja povezana dijagonalom, a onda dodamo sve proizvode: (2 × −8) + (3 × 2) + (1 × 4) = −6. Uradimo isto sa dijagonalama ka dole i levo (prikazano dole sa prethodnim dijagonalama):

  ShoelaceMatrix3.GIF

(4 × 3) + (−8 × 1) + (2 × 2) = 8. Onda, oduzmemo ova dva broja i uzmemo apsolutnu vrednost razlike: |−6 − 8| = 14. Kada podelimo ovo sa 2 dobijemo površinu: 7. Ovakvo organizovanje brojeva čini formulu lakšom za pamćenje i procenjivanje. Sa svim nacrtanim dijagonalama, matrica liči na cipelu sa pertlama, što je dovelo do ovakvog imena.

Reference[уреди]

  1. ^ а б Dahlke, Karl. „Shoelace Formula“ Приступљено 9. 6. 2008.. 
  2. ^ а б Pretzsch, Hans (2009). Forest Dynamics, Growth and Yield: From Measurement to Model. Springer Science & Business Media. стр. 232–. ISBN 978-3-540-88307-4. 
  3. ^ а б Braden, Bart (1986). „The Surveyor’s Area Formula“. The College Mathematics Journal 17 (4): 326–337. DOI:10.2307/2686282. Archived from the original on 5. 11. 2003.. 
  4. ^ Shoelace Theorem, Art of Problem Solving Wiki.
  5. ^ Weisstein, Eric W. „Polygon Area“. Wolfram MathWorld Приступљено 24. 7. 2012.. 
  6. ^ Rhoad, Richard; George Milauskas; Robert Whipple (1991). Geometry for Enjoyment and Challenge (new ed.). McDougal Littell. стр. 717–718. ISBN 0-86609-965-4. 
  7. ^ IMSA JHMC Guide, Page. 10 "Shoelace" by Cindy Xi