Veštački organ — разлика између измена
. |
(нема разлике)
|
Верзија на датум 28. јун 2020. у 20:00
Један корисник управо ради на овом чланку. Молимо остале кориснике да му допусте да заврши са радом. Ако имате коментаре и питања у вези са чланком, користите страницу за разговор.
Хвала на стрпљењу. Када радови буду завршени, овај шаблон ће бити уклоњен. Напомене
|
Veštački organ je a human made organ device or tissue that is implanted or integrated into a human — interfacing with living tissue — to replace a natural organ, to duplicate or augment a specific function or functions so the patient may return to a normal life as soon as possible.[1] The replaced function does not have to be related to life support, but it often is. For example, replacement bones and joints, such as those found in hip replacements, could also be considered artificial organs.[2][3]
Implied by definition, is that the device must not be continuously tethered to a stationary power supply or other stationary resources such as filters or chemical processing units. (Periodic rapid recharging of batteries, refilling of chemicals, and/or cleaning/replacing of filters would exclude a device from being called an artificial organ.)[4] Thus, a dialysis machine, while a very successful and critically important life support device that almost completely replaces the duties of a kidney, is not an artificial organ.
Svrha
Constructing and installing artificial organs, an extremely research-intensive and expensive process initially, may entail many years of ongoing maintenance services not needed by a natural organ.:[1][4][5][6]
- providing life support to prevent imminent death while awaiting a transplant (e.g. artificial heart);
- dramatically improving the patient's ability for self care (e.g. artificial limb);
- improving the patient's ability to interact socially (e.g. cochlear implant); or
- improving a patient's quality of life through cosmetic restoration after cancer surgery or an accident.
The use of any artificial organ by humans is almost always preceded by extensive experiments with animals.[7][8][9] Initial testing in humans is frequently limited to those either already facing death or who have exhausted every other treatment possibility.
Primeri
Veštački udovi
Artificial arms and legs, or prosthetics, are intended to restore a degree of normal function to amputees. Mechanical devices that allow amputees to walk again or continue to use two hands have probably been in use since ancient times,[10] the most notable one being the simple peg leg. Since then, the development of artificial limbs has progressed rapidly. New plastics and other materials, such as carbon fiber have allowed artificial limbs to become stronger and lighter, limiting the amount of extra energy necessary to operate the limb. Additional materials have allowed artificial limbs to look much more realistic.[11] Prostheses can roughly be categorized as upper- and lower-extremity and can take many shapes and sizes.
New advances in artificial limbs include additional levels of integration with the human body. Electrodes can be placed into nervous tissue, and the body can be trained to control the prosthesis. This technology has been used in both animals and humans.[12] The prosthetic can be controlled by the brain using a direct implant or implant into various muscles.[13]
Bešika
The two main methods for replacing bladder function involve either redirecting urine flow or replacing the bladder in situ.[14] Standard methods for replacing the bladder involve fashioning a bladder-like pouch from intestinal tissue.[14] As of 2017 methods to grow bladders using stem cells had been attempted in clinical research but this procedure was not part of medicine.[15][16]
Reference
- ^ а б Catapano, G.; Verkerke, G.J. (2012). „Chapter 2: Artificial Organs”. Ур.: Abu-Faraj, Z.O. Handbook of Research on Biomedical Engineering Education and Advanced Bioengineering Learning: Interdisciplinary Concepts - Volume 1. Hershey, PA: Medical Information Science Reference. стр. 60—95. ISBN 9781466601239. Приступљено 16. 3. 2016.
- ^ Gebelein, C.G. (1984). „Chapter 1: The Basics of Artificial Organs”. Ур.: Gebelein, C.G. Polymeric Materials and Artificial Organs. ACS Symposium Series. 256. Washington, DC: American Chemical Society. стр. 1—11. ISBN 9780841208544. doi:10.1021/bk-1984-0256.ch001.
- ^ „Artificial Organs”. Reference.MD. RES, Inc. 6. 6. 2012. Приступљено 16. 3. 2016.
- ^ а б Tang, Reginald (1998). „Artificial Organs”. Bios. 69 (3): 119—122. JSTOR 4608470.
- ^ Fountain, H. (15. 9. 2012). „A First: Organs Tailor-Made With Body's Own Cells”. The New York Times. The New York Times Company. Приступљено 16. 3. 2016.
- ^ Mussivand, T.; V. Kung, R. T.; McCarthy, P. M.; Poirier, V. L.; Arabia, F. A.; Portner, P.; Affeld, K. (мај 1997). „Cost Effectiveness of Artificial Organ Technologies Versus Conventional Therapy”. ASAIO Journal. 43 (3): 230—236. PMID 9152498. doi:10.1097/00002480-199743030-00021.
- ^ „Why are animals used for testing medical products?”. FDA.org. Food and Drug Administration. 4. 3. 2016. Приступљено 16. 3. 2016.
- ^ Giardino, R.; Fini, M.; Orienti, L. (1997). „Laboratory animals for artificial organ evaluation”. International Journal of Artificial Organs. 20 (2): 76—80. PMID 9093884. doi:10.1177/039139889702000205.
- ^ „A bioprosthetic ovary created using 3D printed microporous scaffolds restores ovarian function in sterilized mice.”. NIH. мај 2017. Приступљено 30. 1. 2018.
- ^ Finch, Jacqueline (фебруар 2011). „The ancient origins of prosthetic medicine”. The Lancet. 377 (9765): 548—549. PMID 21341402. doi:10.1016/s0140-6736(11)60190-6.
- ^ „Artificial Limb”. How Products Are Made. Advameg, Inc. Приступљено 16. 3. 2016.
- ^ „Motorlab - Multimedia”. Архивирано из оригинала 2019-08-01. г. Приступљено 2016-05-01.
- ^ „Archived copy”. Архивирано из оригинала 2017-01-14. г. Приступљено 2016-05-01.
- ^ а б „Urinary Diversion”. National Institute of Diabetes and Digestive and Kidney Diseases. септембар 2013.
- ^ Adamowicz, Jan; Pokrywczynska, Marta; Van Breda, Shane Vontelin; Kloskowski, Tomasz; Drewa, Tomasz (новембар 2017). „Concise Review: Tissue Engineering of Urinary Bladder; We Still Have a Long Way to Go?”. STEM CELLS Translational Medicine. 6 (11): 2033—2043. PMC 6430044 . PMID 29024555. doi:10.1002/sctm.17-0101.
- ^ Iannaccone, Philip M; Galat, Vasil; Bury, Matthew I; Ma, Yongchao C; Sharma, Arun K (8. 11. 2017). „The utility of stem cells in pediatric urinary bladder regeneration”. Pediatric Research. 83 (1–2): 258—266. PMID 28915233. doi:10.1038/pr.2017.229.
Literatura
- Tran, Jasper (2015). „To Bioprint or Not to Bioprint”. North Carolina Journal of Law and Technology. 17: 123—78. SSRN 2562952 .
- Liu, Yunying; Yang, Ru; He, Zuping; Gao, Wei-Qiang (2013). „Generation of functional organs from stem cells”. Cell Regeneration. 2 (1): 2:1. PMC 4230490 . PMID 25408873. doi:10.1186/2045-9769-2-1.
- Foster, Kenneth R.; Jaeger, Jan (23. 9. 2008). „Ethical Implications of Implantable Radiofrequency Identification (RFID) Tags in Humans”. The American Journal of Bioethics. 8 (8): 44—48. PMID 18802863. doi:10.1080/15265160802317966. 27093558.
- Chang, Thomas M. S. (2012). „From artificial red blood cells, oxygen carriers, and oxygen therapeutics to artificial cells, nanomedicine, and beyond”. Artificial Cells, Blood Substitutes, and Immobilization Biotechnology. 40 (3): 197—199. PMC 3566225 . PMID 22409281. doi:10.3109/10731199.2012.662408.
- Hafner B. J.; Sanders J. E.; Czerniecki J. M.; Ferguson J. (2002). „Transtibial energy-storage-and-return prosthetic devices: A review of energy concepts and a proposed nomenclature”. Journal of Rehabilitation Research and Development. 39 (1): 1—11. PMID 11926321.
- Maat, Bartjan; Smit, Gerwin; Plettenburg, Dick; Breedveld, Paul (1. 3. 2017). „Passive prosthetic hands and tools: A literature review”. Prosthetics and Orthotics International (на језику: енглески). 42 (1): 66—74. PMC 5810914 . PMID 28190380. doi:10.1177/0309364617691622.
- Highsmith, M. Jason; Andrews, Casey R.; Millman, Claire; Fuller, Ashley; Kahle, Jason T.; Klenow, Tyler D.; Lewis, Katherine L.; Bradley, Rachel C.; Orriola, John J. (2016-09-16). „Gait Training Interventions for Lower Extremity Amputees: A Systematic Literature Review”. Technology & Innovation. 18 (2–3): 99—113. PMC 5218520 . PMID 28066520. doi:10.21300/18.2-3.2016.99.
- Barr, Steven; Howe, Tracey E. (2018). „Prosthetic rehabilitation for older dysvascular people following a unilateral transfemoral amputation”. The Cochrane Database of Systematic Reviews. 10: CD005260. ISSN 1469-493X. PMC 6517199 . PMID 30350430. doi:10.1002/14651858.CD005260.pub4.
- Bowker, John H.; Michael, John W. (2002). Atlas of limb prosthetics : surgical, prosthetic, and rehabilitation principles. American Academy of Orthopaedic Surgeons (2nd изд.). St. Louis: Mosby Year Book. стр. 389, 413, 429, 479, 501, 535, 885. ISBN 978-0892032754. OCLC 54693136.
- Söderberg, Bengt (2001). Partial foot amputations (2nd изд.). Sweden: Centre for Partial Foot Amputees. стр. 21. ISBN 978-9163107566. OCLC 152577368.
- Pine, Keith R.; Sloan, Brian H.; Jacobs, Robert J. (2015). Clinical Ocular Prosthetics. Springer. ISBN 9783319190570.
- Vanderwerker, Earl E., Jr. (1976). „A Brief Review of the History of Amputations and Prostheses”. ICIB. 15 (5): 15—16. Архивирано из оригинала 2007-10-14. г.
- Rosenfeld, Amnon; Dvorachek, Michael; Rotstein, Ilan (јул 2000). „Bronze Single Crown-like Prosthetic Restorations of Teeth from the Late Roman Period”. Journal of Archaeological Science. 27 (7): 641—644. doi:10.1006/jasc.1999.0517.
Spoljašnje veze
- American Society for Artificial Internal Organs (ASAIO)
- Artificial Organ Experts
- 3d Petri Dish
- „Elon Musk wants to hook your brain up directly to computers — starting next year”. NBC News.
- „Artificial kidney development advances, thanks to collaboration by NIBIB Quantum grantees”. National Institute of Biomedical Imaging and Bioengineering.
- „Artificial thymus developed at UCLA can produce cancer-fighting T cells from blood stem cells”. UCLA.
- „Artificial Red Blood Cell Created”. Renal and Urology News. 27. 12. 2016.
- „Artificial Organs”. Wiley Online Library. doi:10.1111/(ISSN)1525-1594.
- Hardware Models of Hippocampus: Toward Brain Implants as Neural Prostheses for Memory Loss
- Adaptive Optoelectronic Eye: Hybrid Sensor/Processor Architecture
- Murdoch, George; Wilson, A. Bennett, Jr. (1997). A Primer on Amputations and Artificial Limbs. United States of America: Charles C Thomas Publisher, Ltd. стр. 3—31. ISBN 978-0-398-06801-1.
- ‘Biomechanics of running: from faulty movement patterns come injury.' Sports Injury Bulletin.
- Edelstein, J. E. Prosthetic feet. State of the Art. Physical Therapy 68(12) Dec 1988: 1874–1881.
- Gailey, Robert. The Biomechanics of Amputee Running. October 2002.