Laplasov operator

Iz Vikipedije, slobodne enciklopedije
Idi na navigaciju Idi na pretragu

Laplasov operator, u matematici, je eliptički diferencijalni operator drugog reda. Ima brojne primene širom matematike, te u fizici, elektrostatici, kvantnoj mehanici, obradi snimaka, itd. Nazvan je po francuskom matematičaru Pjeru Simonu Laplasu.

Imajući u vidu pojmove divergencije i gradijenta, za datu skalarnu funkciju , biće:

,

što se može napisati kao:

.

Desna strana poslednjeg izraza, bez oznake za funkciju , predstavlja Laplasov operator i obeležava se sa delta - Δ:

.

Koristeći operator nabla, taj izraz možemo zapisati kao:

Koordinatni izrazi[uredi]

U jednodimenzionalnom i dvodimenzionalnom Dekartovom koordinatnom sistemu Laplasov operator je:

U trodimenzionalnom Dekartovom koordinatnom sistemu je :

U trodimenzionalnom cilindričnom koordinatnom sistemu je:

U trodimenzionalnom sfernom koordinatnom sistemu je :

U Euklidskom prostoru Laplasov operator je dat u standardnim koordinatama kao

.

Laplasov operator u opštim krivolinijskim koordinatama dan je sa:

gde su Lameovi koeficijenti.

U slučaju Rimanovoga krivolinijskoga prostora definisanoga metričkim tenzorom Laplasijan je dan sa:

a metrika prostora definisana je sa:

.

Svojstva[uredi]

Laplasov operator je linearan:

Takođe važi :

Uopštenja[uredi]

Laplasov operator se može uopštiti na više načina. Dalamberov operator je definisan na prostoru Minkovskog. Laplas-Beltramijev operator je eliptički diferencijalni operator drugog reda definisan na svakoj Rimanovoj mnogostrukosti. Laplas-de Ramov operator dejstvuje na prostorima diferencijalnih formi na pseudo-Rimanovim površima.