Oksidaciono stanje

S Vikipedije, slobodne enciklopedije

Oksidacioni broj u hemiji predstavlja broj elektrona, koje je dati atom predao ili primio od drugih atoma dok je gradio hemijsko jedinjenje. Termin „predaja“ ili „primanje“ elektrona u ovom slučaju može da označava potpunu predaju elektrona drugom atomu (ili grupe njih), što dovodi do jonske veze, ili samo delimičnu predaju elektrona, što dovodi do polarne kovalentne veze. Ovo praktično znači da oksidacioni broj, u stvari, predstavlja broj elektrona koje bi atom primio ili otpustio kada bi sve veze koje je nagradio bile jonske.

Oksidacioni broj se računa kao balans svih predatih i primljenih elektrona u datom atomu. Prema tome, oksidacioni broj može biti pozitivan (ukoliko atom otpušta elektrone) ili negativan (ukoliko atom prima elektrone), kao i da ima vrednost nula (ukoliko se nalazi u elementarnom stanju ili su sve veze koje gradi nepolarne). Oksidacioni brojevi su uglavnom celi brojevi (mada postoje i jedinjenja u kojima pojedini elementi za vrednosti oksidacionih brojeva nemaju celobrojne vrednosti).

Definicija oksidacionog broja od strane IUPAC glasi:[1]

Oksidacioni broj ne treba mešati sa valencom. Na primer, u jedinjenju H2O2 kiseonik je dvovalentan (svaki atom kiseonika gradi po dve kovalentne veze), ali oksidacioni broj kiseonika je -1 (jer je jedna od tih kovalentnih veza između dva atoma kiseonika, što je čini nepolarnom).

U nazivima hemijskih jedinjenja, kad element može imati više vrednosti oksidacionog broja, oksidacioni broj se piše rimskim ciframa u zagradi, npr. sumpor(IV)-oksid.

Spisak oksidacionih stanja elemenata[uredi | uredi izvor]

Ovo je lista poznatih oksidacionih stanja hemijskih elemenata, isključujući neintegralne vrednosti. Najčešće prisutna stanja su podebljana. Tabela se zasniva na radu Grinvuda i Irnšava[2] sa manjim proširenjem. Svaki element postoji u oksidacionom stanju 0 kada je čist nejonizovani element u bilo kojoj fazi, bilo da je monatomski ili poliatomski alotrop. Kolona za oksidaciono stanje 0 prikazuje samo elemente za koje se zna da postoje u oksidacionom stanju 0 u jedinjenjima.

  Plemeniti gas
+1 Zadebljane vrednosti su glavna oksidaciona stanja
Element Negativna stanja Pozitivna stanja Grupa Napomene
−5 −4 −3 −2 −1 0 +1 +2 +3 +4 +5 +6 +7 +8 +9
Z
1 vodonik H −1 +1 1
2 helijum He 18
3 litijum Li +1 1 [3]
4 berilijum Be 0 +1 +2 2 [4][5]
5 bor B −5 −1 0 +1 +2 +3 13 [6][7][8]
6 ugljenik C −4 −3 −2 −1 0 +1 +2 +3 +4 14
7 azot N −3 −2 −1 +1 +2 +3 +4 +5 15
8 kiseonik O −2 −1 0 +1 +2 16
9 fluor F −1 17
10 neon Ne 18
11 natrijum Na −1 +1 1 [3]
12 magnezijum Mg +1 +2 2 [9]
13 aluminijum Al −2 −1 +1 +2 +3 13 [10][11][12]
14 silicijum Si −4 −3 −2 −1 0 +1 +2 +3 +4 14 [13]
15 fosfor P −3 −2 −1 0 +1 +2 +3 +4 +5 15 [14]
16 sumpor S −2 −1 0 +1 +2 +3 +4 +5 +6 16
17 hlor Cl −1 +1 +2 +3 +4 +5 +6 +7 17 [15]
18 argon Ar 0 18 [16]
19 kalijum K −1 +1 1 [3]
20 kalcijum Ca +1 +2 2 [17]
21 skandijum Sc 0 +1 +2 +3 3 [18][19][20]
22 titanijum Ti −2 −1 0 +1 +2 +3 +4 4 [21][22][23][24]
23 vanadijum V −3 −1 0 +1 +2 +3 +4 +5 5 [22]
24 hrom Cr −4 −2 −1 0 +1 +2 +3 +4 +5 +6 6 [22]
25 mangan Mn −3 −2 −1 0 +1 +2 +3 +4 +5 +6 +7 7
26 gvožđe Fe −4 −2 −1 0 +1 +2 +3 +4 +5 +6 +7 8 [25][26][27]
27 kobalt Co −3 −1 0 +1 +2 +3 +4 +5 9 [22]
28 nikl Ni −2 −1 0 +1 +2 +3 +4 10 [28]
29 bakar Cu −2 0 +1 +2 +3 +4 11 [27][29]
30 cink Zn −2 +1 +2 12 [27][30]
31 galijum Ga −5 −4 −3 −2 −1 +1 +2 +3 13 [11][31][32]
32 germanijum Ge −4 −3 −2 −1 0 +1 +2 +3 +4 14 [33][13]
33 arsen As −3 −2 −1 +1 +2 +3 +4 +5 15 [11][34][35]
34 selen Se −2 −1 +1 +2 +3 +4 +5 +6 16 [36][37][38][39]
35 brom Br −1 +1 +3 +4 +5 +7 17
36 kripton Kr +2 18
37 rubidijum Rb −1 +1 1 [3]
38 stroncijum Sr +1 +2 2 [40]
39 itrijum Y 0 +1 +2 +3 3 [41][42][43]
40 cirkonijum Zr −2 +1 +2 +3 +4 4 [22][44]
41 niobijum Nb −3 −1 +1 +2 +3 +4 +5 5 [22][45]
42 molibden Mo −4 −2 −1 0 +1 +2 +3 +4 +5 +6 6 [22]
43 tehnecijum Tc −3 −1 0 +1 +2 +3 +4 +5 +6 +7 7
44 rutenijum Ru −4 −2 0 +1 +2 +3 +4 +5 +6 +7 +8 8 [22][27]
45 rodijum Rh −3 −1 0 +1 +2 +3 +4 +5 +6 9 [22][46]
46 paladijum Pd 0 +1 +2 +3 +4 10 [47][48]
47 srebro Ag −2 −1 +1 +2 +3 11 [27][49]
48 kadmijum Cd −2 +1 +2 12 [27][50]
49 indijum In −5 −2 −1 +1 +2 +3 13 [11][51][52]
50 kalaj Sn −4 −3 −2 −1 0 +1 +2 +3 +4 14 [11][53][54][13]
51 antimon Sb −3 −2 −1 +1 +2 +3 +4 +5 15 [11][55][56][57]
52 telur Te −2 −1 +1 +2 +3 +4 +5 +6 16 [11][58][59][60]
53 jod I −1 +1 +3 +4 +5 +6 +7 17 [61][62]
54 ksenon Xe 0 +2 +4 +6 +8 18 [63][64]
55 cezijum Cs −1 +1 1 [3]
56 barijum Ba +1 +2 2 [65]
57 lantan La 0 +1 +2 +3 3 [41][66]
58 cerijum Ce +2 +3 +4 n/a
59 prazeodijum Pr 0 +1 +2 +3 +4 +5 n/a [41][67][68][69]
60 neodijum Nd 0 +2 +3 +4 n/a [41][70]
61 prometijum Pm +2 +3 n/a [71]
62 samarijum Sm 0 +2 +3 n/a [41]
63 evropijum Eu +2 +3 n/a
64 gadolinijum Gd 0 +1 +2 +3 n/a [41]
65 terbijum Tb 0 +1 +2 +3 +4 n/a [41][71]
66 disprozijum Dy 0 +2 +3 +4 n/a [41][72]
67 holmijum Ho 0 +2 +3 n/a [41][71]
68 erbijum Er 0 +2 +3 n/a [41][71]
69 tulijum Tm +2 +3 n/a
70 iterbijum Yb +2 +3 n/a
71 lutecijum Lu 0 +2 +3 n/a [41][71]
72 hafnijum Hf −2 +1 +2 +3 +4 4 [22][73]
73 tantal Ta −3 −1 +1 +2 +3 +4 +5 5 [22][45]
74 volfram W −4 −2 −1 0 +1 +2 +3 +4 +5 +6 6 [22]
75 renijum Re −3 −1 0 +1 +2 +3 +4 +5 +6 +7 7
76 osmijum Os −4 −2 −1 0 +1 +2 +3 +4 +5 +6 +7 +8 8 [27][74]
77 iridijum Ir −3 −1 0 +1 +2 +3 +4 +5 +6 +7 +8 +9 9 [75][76][77][78]
78 platina Pt −3 −2 −1 0 +1 +2 +3 +4 +5 +6 10 [27][79][80]
79 zlato Au −3 −2 −1 0 +1 +2 +3 +5 11 [27][81]
80 živa Hg −2 +1 +2 12 [27][82]
81 talijum Tl −5 −2 −1 +1 +2 +3 13 [11][83][84][85]
82 olovo Pb −4 −2 −1 +1 +2 +3 +4 14 [11][86][87]
83 bizmut Bi −3 −2 −1 +1 +2 +3 +4 +5 15 [88][89][90][91]
84 polonijum Po −2 +2 +4 +5 +6 16 [92]
85 astat At −1 +1 +3 +5 +7 17
86 radon Rn +2 +6 18 [93][94][95]
87 francijum Fr +1 1
88 radijum Ra +2 2
89 aktinijum Ac +3 3
90 torijum Th +1 +2 +3 +4 n/a [96][97]
91 protaktinijum Pa +3 +4 +5 n/a
92 uranijum U +1 +2 +3 +4 +5 +6 n/a [98][99]
93 neptunijum Np +2 +3 +4 +5 +6 +7 n/a [100]
94 plutonijum Pu +2 +3 +4 +5 +6 +7 n/a [101]
95 americijum Am +2 +3 +4 +5 +6 +7 n/a [102]
96 kirijum Cm +3 +4 +5 +6 n/a [103][104][105][106]
97 berklijum Bk +3 +4 +5 n/a [103][104]
98 kalifornijum Cf +2 +3 +4 +5 n/a [103][104]
99 ajnštajnijum Es +2 +3 +4 n/a [107]
100 fermijum Fm +2 +3 n/a
101 mendeljevijum Md +2 +3 n/a
102 nobelijum No +2 +3 n/a
103 lorencijum Lr +3 n/a
104 raderfordijum Rf +4 4
105 dubnijum Db +5 5 [108]
106 siborgijum Sg 0 +6 6 [109][110]
107 borijum Bh +7 7 [111]
108 hasijum Hs +8 8 [112]
109 majtnerijum Mt 9
110 darmštatijum Ds 10
111 rendgenijum Rg 11
112 kopernicijum Cn +2 12 [113]
113 nihonijum Nh 13
114 flerovijum Fl 14
115 moskovijum Mc 15
116 livermorijum Lv 16
117 tenesin Ts 17
118 oganeson Og 18

Rane forme (oktetno pravilo)[uredi | uredi izvor]

Sliku sličnog formata je koristio Irving Langmjur 1919. godine u jednom od ranih radova o oktetskom pravilu.[114] Periodičnost oksidacionih stanja bila je jedan od dokaza koji su naveli Langmjura da usvoji to pravilo.

Vidi još[uredi | uredi izvor]

Reference[uredi | uredi izvor]

  1. ^ IUPAC Gold Book Arhivirano na sajtu Wayback Machine (30. mart 2016) (jezik: engleski)
  2. ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (II izd.). Oxford: Butterworth-Heinemann. str. 27—28. ISBN 0080379419. 
  3. ^ a b v g d Na(−1), K(−1), Rb(−1), and Cs(−1) are known in alkalides; the table by Greenwood and Earnshaw shows −1 only for Na and also erroneously for Li; no lithides are described.
  4. ^ Be(0) has been observed; see „Beryllium(0) Complex Found”. ChemistryViews. 13. 6. 2016. 
  5. ^ Be(I) has been observed in beryllium monohydride (BeH); see Shayesteh, A.; Tereszchuk, K.; Bernath, P. F.; Colin, R. (2003). „Infrared Emission Spectra of BeH and BeD” (PDF). J. Chem. Phys. 118 (3): 1158. Bibcode:2003JChPh.118.1158S. doi:10.1063/1.1528606. Arhivirano iz originala (PDF) 2. 12. 2007. g. Pristupljeno 10. 12. 2007. 
  6. ^ B(−5) has been observed in Al3BC, see Schroeder, Melanie. „Eigenschaften von borreichen Boriden und Scandium-Aluminium-Oxid-Carbiden” (PDF) (na jeziku: nemački). str. 139. Arhivirano iz originala (PDF) 02. 04. 2015. g. Pristupljeno 14. 10. 2019. 
  7. ^ B(−1) has been observed in magnesium diboride (MgB2), see Keeler, James; Wothers, Peter (2014). Chemical Structure and Reactivity: An Integrated Approach. Oxford University Press. ISBN 9780199604135. 
  8. ^ B(0) has been observed in diborynes, see Braunschweig, H.; Dewhurst, R. D.; Hammond, K.; Mies, J.; Radacki, K.; Vargas, A. (2012). „Ambient-Temperature Isolation of a Compound with a Boron-Boron Triple Bond”. Science. 336 (6087): 1420—2. Bibcode:2012Sci...336.1420B. PMID 22700924. doi:10.1126/science.1221138. 
  9. ^ Low valent magnesium compounds with Mg(I) have been obtained using bulky ligands; see Green, S. P.; Jones C.; Stasch A. (decembar 2007). „Stable Magnesium(I) Compounds with Mg-Mg Bonds”. Science. 318 (5857): 1754—1757. Bibcode:2007Sci...318.1754G. PMID 17991827. doi:10.1126/science.1150856. 
  10. ^ Al(II) has been observed in aluminium(II) oxide (AlO); see Tyte, D.C. (1964). „Red (B2Π–A2σ) Band System of Aluminium Monoxide”. Nature. 202 (4930): 383—384. Bibcode:1964Natur.202..383T. doi:10.1038/202383a0 , and in dialanes (R2Al—AlR2); see Uhl, Werner (2004). „Organoelement Compounds Possessing Al—Al, Ga—Ga, In—In, and Tl—Tl Single Bonds”. Advances in Organometallic Chemistry. Volume 51: 53—108. doi:10.1016/S0065-3055(03)51002-4. 
  11. ^ a b v g d đ e ž z Negative oxidation states of p-block metals (Al, Ga, In, Sn, Tl, Pb, Bi, Po) and metalloids (Si, Ge, As, Sb, Te, At) may occur in Zintl phases, see: Riedel, Erwin, ur. (2007). Moderne Anorganische Chemie (na jeziku: nemački). str. 259 , and „Vorlesung Intermetallische Phasen § 6.2 Binäre Zintl-Phasen” (na jeziku: nemački). 
  12. ^ Al(−2) has been observed in Sr14[Al4]2[Ge]3, see Wemdorff, Marco; Röhr, Caroline (2007). „Sr14[Al4]2[Ge]3: Eine Zintl-Phase mit isolierten [Ge]4–- und [Al4]8–-Anionen / Sr14[Al4]2[Ge]3: A Zintl Phase with Isolated [Ge]4–- and [Al4]8– Anions”. Zeitschrift für Naturforschung B (na jeziku: nemački). 62 (10): 1227. doi:10.1515/znb-2007-1001. 
  13. ^ a b v „New Type of Zero-Valent Tin Compound”. ChemistryViews. 27. 8. 2016. 
  14. ^ P(0) has been observed, see Wang, Yuzhong; Xie, Yaoming; Wei, Pingrong; King, R. Bruce; Schaefer, Iii; Schleyer, Paul v. R.; Robinson, Gregory H. (2008). „Carbene-Stabilized Diphosphorus”. Journal of the American Chemical Society. 130 (45): 14970—1. PMID 18937460. doi:10.1021/ja807828t. 
  15. ^ The equilibrium Cl2O6⇌2ClO3 is mentioned by Greenwood and Earnshaw, but it has been refuted, see Lopez, Maria; Juan E. Sicre (1990). „Physicochemical properties of chlorine oxides. 1. Composition, ultraviolet spectrum, and kinetics of the thermolysis of gaseous dichlorine hexoxide”. J. Phys. Chem. 94 (9): 3860—3863. doi:10.1021/j100372a094. , and Cl2O6 is actually chlorine(V,VII) oxide. However, ClO3 has been observed, see Grothe, Hinrich; Willner, Helge (1994). „Chlorine Trioxide: Spectroscopic Properties, Molecular Structure, and Photochemical Behavior”. Angew. Chem. Int. Ed. 33 (14): 1482—1484. doi:10.1002/anie.199414821. 
  16. ^ Ar(0) has been observed in argon fluorohydride (HArF) and ArCF22+, see Lockyear, J.F.; Douglas, K.; Price, S.D.; Karwowska, M.; et al. (2010). „Generation of the ArCF22+ Dication”. Journal of Physical Chemistry Letters. 1: 358. doi:10.1021/jz900274p. 
  17. ^ Ca(I) has been observed; see Krieck, Sven; Görls, Helmar; Westerhausen, Matthias (2010). „Mechanistic Elucidation of the Formation of the Inverse Ca(I) Sandwich Complex [(thf)3Ca(μ-C6H3-1,3,5-Ph3)Ca(thf)3] and Stability of Aryl-Substituted Phenylcalcium Complexes”. Journal of the American Chemical Society. 132 (35): 12492—501. PMID 20718434. doi:10.1021/ja105534w. 
  18. ^ Sc(0) has been observed; see F. Geoffrey N. Cloke; Karl Khan & Robin N. Perutz (1991). „η-Arene complexes of scandium(0) and scandium(II)”. J. Chem. Soc., Chem. Commun. (19): 1372—1373. doi:10.1039/C39910001372. 
  19. ^ Sc(I) has been observed; see Polly L. Arnold; F. Geoffrey; N. Cloke; Peter B. Hitchcock & John F. Nixon (1996). „The First Example of a Formal Scandium(I) Complex: Synthesis and Molecular Structure of a 22-Electron Scandium Triple Decker Incorporating the Novel 1,3,5-Triphosphabenzene Ring”. J. Am. Chem. Soc. 118 (32): 7630—7631. doi:10.1021/ja961253o. 
  20. ^ Sc(II) has been observed; see Woen, David H.; Chen, Guo P.; Ziller, Joseph W.; Boyle, Timothy J.; Furche, Filipp; Evans, William J. (januar 2017). „Solution Synthesis, Structure, and CO Reduction Reactivity of a Scandium(II) Complex”. Angewandte Chemie International Edition. 56 (8): 2050—2053. PMID 28097771. doi:10.1002/anie.201611758. 
  21. ^ Ti(I) has been observed in [Ti(η6-1,3,5-C6H3iPr3)2][BAr4] (Ar = C6H5, p-C6H4F, 3,5-C6H3(CF3)2); see Calderazzo, Fausto; Ferri, Isabella; Pampaloni, Guido; Englert, Ulli; Green, Malcolm L. H. (1997). „Synthesis of [Ti(η6-1,3,5-C6H3iPr3)2][BAr4] (Ar = C6H5, p-C6H4F, 3,5-C6H3(CF3)2), the First Titanium(I) Derivatives”. Organometallics. 16 (14): 3100—3101. doi:10.1021/om970155o. 
  22. ^ a b v g d đ e ž z i j k Ti(−2), V(−3), Cr(−4), Co(−3), Zr(−2), Nb(−3), Mo(−4), Ru(−2), Rh(−3), Hf(−2), Ta(−3), and W(−4) occur in anionic binary metal carbonyls; see [1], p. 4 (in German); [2], pp. 97–100; [3], p. 239
  23. ^ Ti(−1) has been reported in [Ti(bipy)3], but was later shown to be Ti(+3); see Bowman, A. C.; England, J.; Sprouls, S.; Weihemüller, T.; Wieghardt, K. (2013). „Electronic structures of homoleptic [tris(2,2'-bipyridine)M]n complexes of the early transition metals (M = Sc, Y, Ti, Zr, Hf, V, Nb, Ta; n = 1+, 0, 1-, 2-, 3-): an experimental and density functional theoretical study”. Inorganic Chemistry. 52 (4): 2242—56. PMID 23387926. doi:10.1021/ic302799s.  However, Ti(−1) occurs in [Ti(η-C6H6] and [Ti(η-C6H5CH3)], see Bandy, J. A.; Berry, A.; Green, M. L. H.; Perutz, R. N.; Prout, K.; Verpeautz, J.-N. (1984). „Synthesis of anionic sandwich compounds: [Ti(η-C6H5R)2] and the crystal structure of [K(18-crown-6)(µ-H)Mo(η-C5H5)2]”. Inorganic Chemistry. 52 (4): 729—731. doi:10.1039/C39840000729. 
  24. ^ Jilek, Robert E.; Tripepi, Giovanna; Urnezius, Eugenijus; Brennessel, William W.; Young, Victor G., Jr.; Ellis, John E. (2007). „Zerovalent titanium–sulfur complexes. Novel dithiocarbamato derivatives of Ti(CO)6: [Ti(CO)4(S2CNR2)]”. Chem. Commun. (25): 2639—2641. PMID 17579764. doi:10.1039/B700808B. 
  25. ^ Fe(VII) has been observed in [FeO4]; see Lu, Jun-Bo; Jian, Jiwen; Huang, Wei; Lin, Hailu; Zhou, Mingfei (2016). „Experimental and theoretical identification of the Fe(VII) oxidation state in FeO4”. Physical Chemistry Chemical Physics. 18 (45): 31125—31131. Bibcode:2016PCCP...1831125L. PMID 27812577. doi:10.1039/C6CP06753K. 
  26. ^ Fe(VIII) has been reported; see Yurii D. Perfiliev; Virender K. Sharma (2008). „Higher Oxidation States of Iron in Solid State: Synthesis and Their Mössbauer Characterization – Ferrates – ACS Symposium Series (ACS Publications)”. Platinum Metals Review. 48 (4): 157—158. doi:10.1595/147106704X10801.  However, its existence has been disputed.
  27. ^ a b v g d đ e ž z i Fe(−4), Ru(−4), and Os(−4) have been observed in metal-rich compounds containing octahedral complexes [MIn6−xSnx]; Pt(−3) (as a dimeric anion [Pt–Pt]6−), Cu(−2), Zn(−2), Ag(−2), Cd(−2), Au(−2), and Hg(−2) have been observed (as dimeric and monomeric anions; dimeric ions were initially reported to be [T–T]2− for Zn, Cd, Hg, but later shown to be [T–T]4− for all these elements) in La2Pt2In, La2Cu2In, Ca5Au3, Ca5Ag3, Ca5Hg3, Sr5Cd3, Ca5Zn3(structure (AE2+)5(T–T)4−T2−⋅4e), Yb3Ag2, Ca5Au4, and Ca3Hg2; Au(–3) has been observed in ScAuSn and in other 18-electron half-Heusler compounds. See Changhoon Lee; Myung-Hwan Whangbo (2008). „Late transition metal anions acting as p-metal elements”. Solid State Sciences. 10 (4): 444—449. Bibcode:2008SSSci..10..444K. doi:10.1016/j.solidstatesciences.2007.12.001.  and Changhoon Lee; Myung-Hwan Whangbo; Jürgen Köhler (2010). „Analysis of Electronic Structures and Chemical Bonding of Metal-rich Compounds. 2. Presence of Dimer (T–T)4– and Isolated T2– Anions in the Polar Intermetallic Cr5B3-Type Compounds AE5T3 (AE = Ca, Sr; T = Au, Ag, Hg, Cd, Zn)”. Zeitschrift für Anorganische und Allgemeine Chemie. 636 (1): 36—40. doi:10.1002/zaac.200900421. 
  28. ^ Ni(−2) has been observed in Li2[Ni(1,5-COD)2], see Jonas, Klaus (1975). „Dilithium-Nickel-Olefin Complexes. Novel Bimetal Complexes Containing a Transition Metal and a Main Group Metal”. Angew. Chem. Int. Ed. 14 (11): 752—753. doi:10.1002/anie.197507521.  and Ellis, John E. (2006). „Adventures with Substances Containing Metals in Negative Oxidation States”. Inorganic Chemistry. 45 (8): 3167—86. PMID 16602773. doi:10.1021/ic052110i. 
  29. ^ Cu(0) has been observed in Cu(tris[2-(diisopropylphosphino)- phenyl]borane), see Moret, Marc-Etienne; Zhang, Limei; Peters, Jonas C. (2013). „A Polar Copper–Boron One-Electron σ-Bond”. J. Am. Chem. Soc. 135 (10): 3792—3795. PMID 23418750. doi:10.1021/ja4006578. 
  30. ^ Zn(I) has been observed in decamethyldizincocene (Zn25–C5Me5)2); see Resa, I.; Carmona, E.; Gutierrez-Puebla, E.; Monge, A. (2004). „Decamethyldizincocene, a Stable Compound of Zn(I) with a Zn-Zn Bond”. Science. 305 (5687): 1136—8. Bibcode:2004Sci...305.1136R. PMID 15326350. doi:10.1126/science.1101356. 
  31. ^ Ga(−2), Ga(−4), and Ga(−5) have been observed in the magnesium gallides MgGa, Mg2Ga, and Mg5Ga2, respectively; see Patrick Hofmann. „Colture. Ein Programm zur interaktiven Visualisierung von Festkörperstrukturen sowie Synthese, Struktur und Eigenschaften von binären und ternären Alkali- und Erdalkalimetallgalliden” (PDF) (na jeziku: nemački). str. 72. 
  32. ^ Ga(−3) has been observed in LaGa, see Dürr, Ines; Bauer, Britta; Röhr, Caroline (2011). „Lanthan-Triel/Tetrel-ide La(Al,Ga)x(Si,Ge)1-x. Experimentelle und theoretische Studien zur Stabilität intermetallischer 1:1-Phasen” (PDF). Z. Naturforsch. (na jeziku: nemački). 66b: 1107—1121. 
  33. ^ Ge(−1), Ge(−2), and Ge(−3) have been observed in germanides; see Holleman, Arnold F.; Wiberg, Egon; Wiberg, Nils (1995). „Germanium”. Lehrbuch der Anorganischen Chemie (na jeziku: German) (101 izd.). Walter de Gruyter. str. 953–959. ISBN 978-3-11-012641-9. 
  34. ^ As(I) has been observed in arsenic(I) iodide (AsI); see Ellis, Bobby D.; MacDonald, Charles L. B. (2004). „Stabilized Arsenic(I) Iodide: A Ready Source of Arsenic Iodide Fragments and a Useful Reagent for the Generation of Clusters”. Inorganic Chemistry. 43 (19): 5981—6. PMID 15360247. doi:10.1021/ic049281s. 
  35. ^ As(IV) has been observed in arsenic(IV) hydroxide (As(OH)4) and HAsO-; see Kläning, Ulrik K.; Bielski, Benon H. J.; Sehested, K. (1989). „Arsenic(IV). A pulse-radiolysis study”. Inorganic Chemistry. 28 (14): 2717—24. doi:10.1021/ic00313a007. 
  36. ^ Se(−1) has been observed in diselenides(2−) (Se22−).
  37. ^ Se(I) has been observed in selenium(I) chloride (Se2Cl2); see „Selenium: Selenium(I) chloride compound data”. WebElements.com. Pristupljeno 10. 12. 2007. 
  38. ^ Se(III) has been observed in Se2NBr3; see Lau, Carsten; Neumüller, Bernhard; Vyboishchikov, Sergei F.; Frenking, Gernot; Dehnicke, Kurt; Hiller, Wolfgang; Herker, Martin (1996). „Se2NBr3, Se2NCl5, Se2NCl6: New Nitride Halides of Selenium(III) and Selenium(IV)”. Chemistry: A European Journal. 2 (11): 1393—1396. doi:10.1002/chem.19960021108. 
  39. ^ Se(V) has been observed in SeO2- and HSeO2-; see Kläning, Ulrik K.; Sehested, K. (1986). „Selenium(V). A pulse radiolysis study”. Inorganic Chemistry. 90 (21): 5460—4. doi:10.1021/j100412a112. 
  40. ^ Sr(I) has been observed in strontium monofluoride (SrF); see P. Colarusso; Guo, B.; Zhang, K.-Q.; Bernath, P.F.; et al. (1996). „High-Resolution Infrared Emission Spectrum of Strontium Monofluoride” (PDF). Journal of Molecular Spectroscopy. 175 (1): 158—171. Bibcode:1996JMoSp.175..158C. doi:10.1006/jmsp.1996.0019. Arhivirano iz originala (PDF) 8. 3. 2012. g. 
  41. ^ a b v g d đ e ž z i j Yttrium and all lanthanides except Ce, Pm, Eu, Tm, Yb have been observed in the oxidation state 0 in bis(1,3,5-tri-t-butylbenzene) complexes, see Cloke, F. Geoffrey N. (1993). „Zero Oxidation State Compounds of Scandium, Yttrium, and the Lanthanides”. Chem. Soc. Rev. 22: 17—24. doi:10.1039/CS9932200017. 
  42. ^ Y(I) has been observed in yttrium(I) bromide (YBr); see „Yttrium: yttrium(I) bromide compound data”. OpenMOPAC.net. Arhivirano iz originala 23. 7. 2011. g. Pristupljeno 10. 12. 2007. 
  43. ^ Y(II) has been observed in [(18-crown-6)K][(C5H4SiMe3)3Y]; see MacDonald, M. R.; Ziller, J. W.; Evans, W. J. (2011). „Synthesis of a Crystalline Molecular Complex of Y2+, [(18-crown-6)K][(C5H4SiMe3)3Y]”. J. Am. Chem. Soc. 133 (40): 15914—17. PMID 21919538. doi:10.1021/ja207151y. 
  44. ^ Zr(−1) has been reported in [Zr(bipy)3] (see Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (II izd.). Oxford: Butterworth-Heinemann. str. 960. ISBN 0080379419.  and Holleman, Arnold F.; Wiberg, Egon; Wiberg, Nils (1995). „Zirconium”. Lehrbuch der Anorganischen Chemie (na jeziku: German) (101 izd.). Walter de Gruyter. str. 1413. ISBN 978-3-11-012641-9. ), but was later shown to be Zr(+4); see Bowman, A. C.; England, J.; Sprouls, S.; Weihemüller, T.; Wieghardt, K. (2013). „Electronic structures of homoleptic [tris(2,2'-bipyridine)M]n complexes of the early transition metals (M = Sc, Y, Ti, Zr, Hf, V, Nb, Ta; n = 1+, 0, 1-, 2-, 3-): an experimental and density functional theoretical study”. Inorganic Chemistry. 52 (4): 2242—56. PMID 23387926. doi:10.1021/ic302799s. 
  45. ^ a b Nb(I) and Ta(I) occur in CpNb(CO)4 and CpTa(CO)4, see Holleman, Arnold F.; Wiberg, Egon; Wiberg, Nils (1995). „Tantal”. Lehrbuch der Anorganischen Chemie (na jeziku: German) (101 izd.). Walter de Gruyter. str. 1430. ISBN 978-3-11-012641-9.  and King, R. Bruce (1969). Transition-Metal Organometallic Chemistry: An Introduction. Academic Press. str. 11. ISBN 978-0-32-315996-8. 
  46. ^ George, G.N.; Klein, S.I.; Nixon, J.F. (1984). „Electron paramagnetic resonance spectroscopic studies on the zero-valent rhodium complex [Rh(P(OPri)3)4] at X-and Q-band frequencies”. Chemical Physics Letters. 108 (6): 627—630. Bibcode:1984CPL...108..627G. doi:10.1016/0009-2614(84)85069-1. 
  47. ^ Pd(I) has been observed; see Crabtree, R. H. (2002). „CHEMISTRY: A New Oxidation State for Pd?”. Science. 295 (5553): 288—289. PMID 11786632. doi:10.1126/science.1067921. 
  48. ^ Pd(III) has been observed; see Powers, D. C.; Ritter, T. (2011). Palladium(III) in Synthesis and Catalysis (PDF). Top. Organomet. Chem. Topics in Organometallic Chemistry. 35. str. 129—156. Bibcode:2011hoso.book..129P. ISBN 978-3-642-17428-5. PMC 3066514Slobodan pristup. PMID 21461129. doi:10.1007/978-3-642-17429-2_6. Arhivirano iz originala 12. 6. 2013. g. 
  49. ^ The Ag ion has been observed in metal ammonia solutions: see Tran, N. E.; Lagowski, J. J. (2001). „Metal Ammonia Solutions: Solutions Containing Argentide Ions”. Inorganic Chemistry. 40 (5): 1067—68. doi:10.1021/ic000333x. 
  50. ^ Cd(I) has been observed in cadmium(I) tetrachloroaluminate (Cd2(AlCl4)2); see Holleman, Arnold F.; Wiberg, Egon; Wiberg, Nils (1985). „Cadmium”. Lehrbuch der Anorganischen Chemie (na jeziku: German) (91–100 izd.). Walter de Gruyter. str. 1056—1057. ISBN 978-3-11-007511-3. 
  51. ^ In(–5) has been observed in La3InGe, see Guloy, A. M.; Corbett, J. D. (1996). „Synthesis, Structure, and Bonding of Two Lanthanum Indium Germanides with Novel Structures and Properties”. Inorganic Chemistry. 35 (9): 2616—22. doi:10.1021/ic951378e. 
  52. ^ In(−2) has been observed in Na2In, see [4], p. 69.
  53. ^ Sn(−3) has been observed in [Sn2]6−, e.g. in (Ba2)4+(Mg4)8+Sn4−(Sn2)6−Sn2− (with square (Sn2−)n sheets), see Papoian, Garegin A.; Hoffmann, Roald (2000). „Hypervalent Bonding in One, Two, and Three Dimensions: Extending the Zintl–Klemm Concept to Nonclassical Electron-Rich Networks”. Angew. Chem. Int. Ed. 2000 (39): 2408—2448. doi:10.1002/1521-3773(20000717)39:14<2408::aid-anie2408>3.0.co;2-u. Pristupljeno 23. 2. 2015. 
  54. ^ Sn(I) and Sn(III) have been observed in organotin compounds
  55. ^ Sb(−2) has been observed in [Sb2]4−, e.g. in RbBa4[Sb2][Sb][O], see Boss, Michael; Petri, Denis; Pickhard, Frank; Zönnchen, Peter; Röhr, Caroline (2005). „Neue Barium-Antimonid-Oxide mit den Zintl-Ionen [Sb]3−, [Sb2]4− und 1[Sbn]n− / New Barium Antimonide Oxides containing Zintl Ions [Sb]3−, [Sb2]4− and 1[Sbn]n−”. Zeitschrift für Anorganische und Allgemeine Chemie (na jeziku: nemački). 631 (6–7): 1181—1190. doi:10.1002/zaac.200400546. 
  56. ^ Sb(I) and Sb(II) have been observed in organoantimony compounds; for Sb(I), see Šimon, Petr; de Proft, Frank; Jambor, Roman; Růžička, Aleš; Dostál, Libor (2010). „Monomeric Organoantimony(I) and Organobismuth(I) Compounds Stabilized by an NCN Chelating Ligand: Syntheses and Structures”. Angewandte Chemie International Edition. 49 (32): 5468—5471. PMID 20602393. doi:10.1002/anie.201002209. 
  57. ^ Sb(IV) has been observed in [SbCl]2−
    , see Nobuyoshi Shinohara; Masaaki Ohsima (2000). „Production of Sb(IV) Chloro Complex by Flash Photolysis of the Corresponding Sb(III) and Sb(V) Complexes in CH3CN and CHCl3”. Bulletin of the Chemical Society of Japan. 73 (7): 1599—1604. doi:10.1246/bcsj.73.1599. 
  58. ^ Te(I) has been observed in tellurium iodide (TeI), see „Tellurium: tellurium iodide”. WebElements.com. Pristupljeno 23. 2. 2015. 
  59. ^ Te(III) has been observed in [Te(N(SiMe3)2)2]+, see Heinze, Thorsten; Roesky, Herbert W.; Pauer, Frank; Stalke, Dietmar; Sheldrick, George M. (1991). „Synthesis and Structure of the First Tellurium(III) Radical Cation”. Angewandte Chemie International Edition. 30 (12): 1678. doi:10.1002/anie.199116771. Pristupljeno 23. 2. 2015. 
  60. ^ Te(V) is mentioned by Greenwood and Earnshaw, but they do not give any example of a Te(V) compound. What was long thought to be ditellurium decafluoride (Te2F10) is actually bis(pentafluorotelluryl) oxide, F5TeOTeF5: see Watkins, P. M. (1974). „Ditellurium decafluoride - A Continuing Myth”. Journal of Chemical Education. 51 (9): 520—521. Bibcode:1974JChEd..51..520W. doi:10.1021/ed051p520.  However, Te(V) has been observed in HTeO-, TeO-, HTeO2-, and TeO3-; see Kläning, Ulrik K.; Sehested, K. (2001). „Tellurium(V). A Pulse Radiolysis Study”. The Journal of Physical Chemistry A. 105 (27): 6637—45. Bibcode:2001JPCA..105.6637K. doi:10.1021/jp010577i. 
  61. ^ I(IV) has been observed in iodine dioxide (IO2); see Pauling, Linus (1988). „Oxygen Compounds of Nonmetallic Elements”. General Chemistry (3rd izd.). Dover Publications, Inc. str. 259. ISBN 978-0-486-65622-9. 
  62. ^ I(VI) has been observed in IO3, IO42−, H5IO6, H2IO52−, H4IO62−, and HIO53−; see Kläning, Ulrik K.; Sehested, Knud; Wolff, Thomas (1981). „Laser flash photolysis and pulse radiolysis of iodate and periodate in aqueous solution. Properties of iodine(VI)”. J. Chem. Soc., Faraday Trans. 1. 77 (7): 1707—18. doi:10.1039/F19817701707. 
  63. ^ Xe(0) has been observed in tetraxenonogold(II) (AuXe42+).
  64. ^ Xe(I) has been reported in xenon hexafluoroplatinate and xenon hexafluororhodate (see Pauling, Linus (1988). General Chemistry (3rd izd.). Dover Publications, Inc. str. 250. ISBN 978-0-486-65622-9. ), however these compounds were later found to contain Xe(II).
  65. ^ Ba(I) has been observed in barium monofluoride (BaF); see P. Colarusso; Guo, B.; Zhang, K.-Q.; Bernath, P.F.; et al. (1995). „High-Resolution Fourier Transform Infrared Emission Spectrum of Barium Monofluoride” (PDF). Journal of Molecular Spectroscopy. 170: 59. Bibcode:1996JMoSp.175..158C. doi:10.1006/jmsp.1996.0019. Arhivirano iz originala (PDF) 10. 3. 2005. g. 
  66. ^ La(I) has been observed in lanthanum monohydride (LaH); see Ram, R. S.; Bernath, P. F. (1996). „Fourier Transform Emission Spectroscopy of New Infrared Systems of LaH and LaD” (PDF). Journal of Molecular Spectroscopy. 104 (17): 6444. Bibcode:1996JChPh.104.6444R. doi:10.1063/1.471365. Arhivirano iz originala (PDF) 10. 3. 2005. g. 
  67. ^ Pr(I) has been observed in [PrB4]; see Chen, Xin; Chen, Teng-Teng; Li, Wang-Lu; Lu, Jun-Bo; Zhao, Li-Juan; Jian, Tian; Hu, Han-Shi; Wang, Lai-Sheng; Li, Jun (13. 12. 2018). „Lanthanides with Unusually Low Oxidation States in the PrB3 and PrB4 Boride Clusters”. Inorganic Chemistry. 58 (1): 411—418. PMID 30543295. doi:10.1021/acs.inorgchem.8b02572. 
  68. ^ Pr(V) has been observed in [PrO2]+; see Zhang, Qingnan; Hu, Shu-Xian; Qu, Hui; Su, Jing; Wang, Guanjun; Lu, Jun-Bo; Chen, Mohua; Zhou, Mingfei; Li, Jun (6. 6. 2016). „Pentavalent Lanthanide Compounds: Formation and Characterization of Praseodymium(V) Oxides”. Angewandte Chemie International Edition. 55 (24): 6896—6900. ISSN 1521-3773. PMID 27100273. doi:10.1002/anie.201602196. 
  69. ^ Hu, Shu-Xian; Jian, Jiwen; Su, Jing; Wu, Xuan; Li, Jun; Zhou, Mingfei (2017). „Pentavalent lanthanide nitride-oxides: NPrO and NPrO− complexes with N≡Pr triple bonds”. Chemical Science (na jeziku: engleski). 8 (5): 4035—4043. ISSN 2041-6520. PMC 5434915Slobodan pristup. PMID 28580119. doi:10.1039/C7SC00710H. 
  70. ^ Nd(IV) has been observed in unstable solid state compounds; see Holleman A. F.; Wiberg E. (2001). Inorganic Chemistry (1st izd.). San Diego: Academic Press. ISBN 0-12-352651-5. 
  71. ^ a b v g d All the lanthanides (La–Lu) in the +2 oxidation state have been observed (except La, Gd, Lu) in dilute, solid solutions of dihalides of these elements in alkaline earth dihalides (see Holleman A. F.; Wiberg E. (2001). Inorganic Chemistry (1st izd.). San Diego: Academic Press. ISBN 0-12-352651-5. ) and (except Pm) in organometallic molecular complexes, see Lanthanides Topple Assumptions and Meyer, G. (2014). „All the Lanthanides Do It and Even Uranium Does Oxidation State +2”. Angewandte Chemie International Edition. 53 (14): 3550—51. PMID 24616202. doi:10.1002/anie.201311325. . Additionally, all the lanthanides (La–Lu) form dihydrides (LnH2), dicarbides (LnC2), monosulfides (LnS), monoselenides (LnSe), and monotellurides (LnTe), but for most elements these compounds have Ln3+ ions with electrons delocalized into conduction bands, e. g. Ln3+(H)2(e).
  72. ^ Dy(IV) has been observed in unstable solid state compounds; see Holleman A. F.; Wiberg E. (2001). Inorganic Chemistry (1st izd.). San Diego: Academic Press. ISBN 0-12-352651-5. 
  73. ^ Hf(I) has been observed in hafnium monobromide (HfBr), see Marek, G.S.; Troyanov, S.I.; Tsirel'nikov, V.I. (1979). „Kristalličeskoe stroenie i termodinamičeskie harakteristiki monobromidov cirkoniя i gafniя / Crystal structure and thermodynamic characteristics of monobromides of zirconium and hafnium”. Žurnal neorganičeskoй himii / Russian Journal of Inorganic Chemistry (na jeziku: ruski). 24 (4): 890—893. 
  74. ^ Os(−1) has been observed in Na[Os(CO)
    13
    ]
    ; see Krause, J.; Siriwardane, Upali; Salupo, Terese A.; Wermer, Joseph R.; Knoeppel, David W.; Shore, Sheldon G. (1993). „Preparation of [Os3(CO)11]2− and its reactions with Os3(CO)12; structures of [Et4N] [HOs3(CO)11] and H2OsS4(CO)”. Journal of Organometallic Chemistry. 454: 263—271. doi:10.1016/0022-328X(93)83250-Y.  and Carter, Willie J.; Kelland, John W.; Okrasinski, Stanley J.; Warner, Keith E.; Norton, Jack R. (1982). „Mononuclear hydrido alkyl carbonyl complexes of osmium and their polynuclear derivatives”. Inorganic Chemistry. 21 (11): 3955—3960. doi:10.1021/ic00141a019. 
  75. ^ Ir(−3) has been observed in Ir(CO)33−; see Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (II izd.). Oxford: Butterworth-Heinemann. str. 1117. ISBN 0080379419. 
  76. ^ Ir(VII) has been observed in [(η2-O2)IrO2]+; see C&EN: Iridium dressed to the nines.
  77. ^ Ir(VIII) has been observed in iridium tetroxide (IrO4); see Gong, Yu; Zhou, Mingfei; Kaupp, Martin; Riedel, Sebastian (2009). „Formation and Characterization of the Iridium Tetroxide Molecule with Iridium in the Oxidation State +VIII”. Angewandte Chemie International Edition. 48 (42): 7879—7883. PMID 19593837. doi:10.1002/anie.200902733. 
  78. ^ Ir(IX) has been observed in IrO+; see Wang, Guanjun; Zhou, Mingfei; Goettel, James T.; Schrobilgen, Gary G.; Su, Jing; Li, Jun; Schlöder, Tobias; Riedel, Sebastian (21. 8. 2014). „Identification of an iridium-containing compound with a formal oxidation state of IX”. Nature. 514 (7523): 475—477. Bibcode:2014Natur.514..475W. PMID 25341786. doi:10.1038/nature13795. 
  79. ^ Pt(−1) and Pt(−2) have been observed in the barium platinides Ba2Pt and BaPt, respectively: see Karpov, Andrey; Konuma, Mitsuharu; Jansen, Martin (2006). „An experimental proof for negative oxidation states of platinum: ESCA-measurements on barium platinides”. Chemical Communications (8): 838—840. PMID 16479284. doi:10.1039/b514631c. 
  80. ^ Pt(I) and Pt(III) have been observed in bimetallic and polymetallic species; see Kauffman, George B.; Thurner, Joseph J.; Zatko, David A. (1967). Ammonium Hexachloroplatinate(IV). Inorganic Syntheses. 9. str. 182—185. ISBN 978-0-470-13240-1. doi:10.1002/9780470132401.ch51. 
  81. ^ Au(0) has been observed, see Mézaille, Nicolas; Avarvari, Narcis; Maigrot, Nicole; Ricard, Louis; Mathey, François; Le Floch, Pascal; Cataldo, Laurent; Berclaz, Théo; Geoffroy, Michel (1999). „Gold(I) and Gold(0) Complexes of Phosphinine‐Based Macrocycles”. Angewandte Chemie International Edition (21): 3194—3197. doi:10.1002/(SICI)1521-3773(19991102)38:21<3194::AID-ANIE3194>3.0.CO;2-O. 
  82. ^ Hg(IV) has been reported in mercury(IV) fluoride (HgF4); see Xuefang Wang; Lester Andrews; Sebastian Riedel; Martin Kaupp (2007). „Mercury Is a Transition Metal: The First Experimental Evidence for HgF4”. Angew. Chem. Int. Ed. 46 (44): 8371—8375. PMID 17899620. doi:10.1002/anie.200703710.  However, it could not be confirmed by later experiments; see Is mercury a transition metal? Arhivirano 2016-10-12 na sajtu Wayback Machine
  83. ^ Tl(−5) has been observed in Na23K9Tl15.3, see Dong, Z.-C.; Corbett, J. D. (1996). „Na23K9Tl15.3: An Unusual Zintl Compound Containing Apparent Tl57−, Tl48−, Tl37−, and Tl5− Anions”. Inorganic Chemistry. 35 (11): 3107—12. doi:10.1021/ic960014z. 
  84. ^ Tl(−1) has been observed in caesium thallide (CsTl); see King, R. B.; Schleyer, R. (2004). „Theory and concepts in main-group cluster chemistry”. Ur.: Driess, M.; Nöth, H. Molecular clusters of the main group elements. Wiley-VCH, Chichester. str. 19. ISBN 978-3-527-61437-0. 
  85. ^ Tl(+2) has been observed in tetrakis(hypersilyl)dithallium ([(Me3Si)Si]2Tl—Tl[Si(SiMe3)]2), see Sonja Henkel; Dr. Karl Wilhelm Klinkhammer; Dr. Wolfgang Schwarz (1994). „Tetrakis(hypersilyl)dithallium(Tl—Tl): A Divalent Thallium Compound”. Angew. Chem. Int. Ed. 33 (6): 681—683. doi:10.1002/anie.199406811. 
  86. ^ Pb(−2) has been observed in BaPb, see Ferro, Riccardo (2008). Nicholas C. Norman, ur. Intermetallic Chemistry. Elsevier. str. 505. ISBN 978-0-08-044099-6.  and Todorov, Iliya; Sevov, Slavi C. (2004). „Heavy-Metal Aromatic Rings: Cyclopentadienyl Anion Analogues Sn56− and Pb56− in the Zintl Phases Na8BaPb6, Na8BaSn6, and Na8EuSn6”. Inorganic Chemistry. 43 (20): 6490—94. doi:10.1021/ic000333x. 
  87. ^ Pb(+1) and Pb(+3) have been observed in organolead compounds, e.g. hexamethyldiplumbane Pb2(CH3)6; for Pb(I), see Siew-Peng Chia; Hong-Wei Xi; Yongxin Li; Kok Hwa Lim; Cheuk-Wai So (2013). „A Base-Stabilized Lead(I) Dimer and an Aromatic Plumbylidenide Anion”. Angew. Chem. Int. Ed. 52 (24): 6298—6301. PMID 23629949. doi:10.1002/anie.201301954. 
  88. ^ Bi(−2) and Bi(−1) occur in Zintl phases, e.g. (Ca2+)22[Bi4]4−([Bi2]4−)4[Bi3−]8; see Ponou, Siméon (2006). „Germanides, Germanide-Tungstate Double Salts and Substitution Effects in Zintl Phases”. Technische Universität München. Lehrstuhl für Anorganische Chemie mit Schwerpunkt Neue Materialien. str. 68. 
  89. ^ Bi(I) has been observed in bismuth monobromide (BiBr) and bismuth monoiodide (BiI); see Godfrey, S. M.; McAuliffe, C. A.; Mackie, A. G.; Pritchard, R. G. (1998). Nicholas C. Norman, ur. Chemistry of arsenic, antimony, and bismuth. Springer. str. 67—84. ISBN 978-0-7514-0389-3. 
  90. ^ Bi(+2) has been observed in dibismuthines (R2Bi—BiR2), see Arthur J. Ashe III (1990). Thermochromic Distibines and Dibismuthines. Advances in Organometallic Chemistry. 30. str. 77—97. ISBN 9780120311309. doi:10.1016/S0065-3055(08)60499-2. 
  91. ^ Bi(IV) has been observed; see A. I. Aleksandrov, I. E. Makarov (1987). „Formation of Bi(II) and Bi(IV) in aqueous hydrochloric solutions of Bi(III)”. Bulletin of the Academy of Sciences of the USSR, Division of Chemical Science. 36 (2): 217—220. doi:10.1007/BF00959349. 
  92. ^ Po(V) has been observed in dioxidopolonium(1+) (PoO+); see Thayer, John S. (2010). „Relativistic Effects and the Chemistry of the Heavier Main Group Elements”. Relativistic Methods for Chemists. str. 78. ISBN 978-1-4020-9974-8. doi:10.1007/978-1-4020-9975-5_2. 
  93. ^ Rn(II) has been observed in radon difluoride (RnF2); see Stein, L. (1970). „Ionic Radon Solution”. Science. 168 (3929): 362—4. Bibcode:1970Sci...168..362S. PMID 17809133. doi:10.1126/science.168.3929.362.  and Kenneth S. Pitzer (1975). „Fluorides of radon and element 118”. J. Chem. Soc., Chem. Commun. (18): 760b — 761. doi:10.1039/C3975000760b. 
  94. ^ Rn(IV) is reported by Greenwood and Earnshaw, but is not known to exist; see Sykes, A. G. (1998). „Recent Advances in Noble-Gas Chemistry”. Advances in Inorganic Chemistry. 46. Academic Press. str. 91—93. ISBN 978-0-12-023646-6. Pristupljeno 22. 11. 2012. 
  95. ^ Rn(VI) is known in radon trioxide (RnO3); see Sykes, A. G. (1998). „Recent Advances in Noble-Gas Chemistry”. Advances in Inorganic Chemistry. 46. Academic Press. str. 91—93. ISBN 978-0-12-023646-6. Pristupljeno 22. 11. 2012. 
  96. ^ Th(I) is known in thorium(I) bromide (ThBr); see Wickleder, Mathias S.; Fourest, Blandine; Dorhout, Peter K. (2006). „Thorium”. Ur.: Morss, Lester R.; Edelstein, Norman M.; Fuger, Jean. The Chemistry of the Actinide and Transactinide Elements (PDF). 3 (3rd izd.). Dordrecht, the Netherlands: Springer. str. 52—160. ISBN 978-1-4020-3555-5. doi:10.1007/1-4020-3598-5_3. Arhivirano iz originala (PDF) 7. 3. 2016. g. 
  97. ^ Th(II) and Th(III) are observed in [ThII{η5-C5H3(SiMe3)2}3] and [ThIII{η5-C5H3(SiMe3)2}3], see Langeslay, Ryan R.; Fieser, Megan E.; Ziller, Joseph W.; Furche, Philip; Evans, William J. (2015). „Synthesis, structure, and reactivity of crystalline molecular complexes of the {[C5H3(SiMe3)2]3Th}1− anion containing thorium in the formal +2 oxidation state”. Chem. Sci. 6 (1): 517—521. PMC 5811171Slobodan pristup. PMID 29560172. doi:10.1039/C4SC03033H. 
  98. ^ U(I) has been observed in uranium monofluoride (UF) and uranium monochloride (UCl), see Sykes, A. G. (1990). „Compounds of Thorium and Uranium”. Advances in Inorganic Chemistry. 34. Academic Press. str. 87—88. ISBN 978-0-12-023634-3. Pristupljeno 22. 3. 2015. 
  99. ^ U(II) has been observed in [K(2.2.2-Cryptand)][(C5H4SiMe3)3U], see MacDonald, Matthew R.; Fieser, Megan E.; Bates, Jefferson E.; Ziller, Joseph W.; Furche, Filipp; Evans, William J. (2013). „Identification of the +2 Oxidation State for Uranium in a Crystalline Molecular Complex, [K(2.2.2-Cryptand)][(C5H4SiMe3)3U]”. J. Am. Chem. Soc. 135 (36): 13310—13313. PMID 23984753. doi:10.1021/ja406791t. 
  100. ^ Np(II), (III) and (IV) have been observed, see Dutkiewicz, Michał S.; Apostolidis, Christos; Walter, Olaf; Arnold, Polly L (2017). „Reduction chemistry of neptunium cyclopentadienide complexes: from structure to understanding”. Chem. Sci. 8 (4): 2553—2561. PMC 5431675Slobodan pristup. PMID 28553487. doi:10.1039/C7SC00034K. 
  101. ^ Pu(II) has been observed in {Pu[C5H3(SiMe3)2]3}−; see Windorff, Cory J.; Chen, Guo P; Cross, Justin N; Evans, William J.; Furche, Filipp; Gaunt, Andrew J.; Janicke, Michael T.; Kozimor, Stosh A.; Scott, Brian L. (2017). „Identification of the Formal +2 Oxidation State of Plutonium: Synthesis and Characterization ofref name="curium5" {PuII[C5H3(SiMe3)2]3}−”. J. Am. Chem. Soc. 139 (11): 3970—3973. PMID 28235179. doi:10.1021/jacs.7b00706. 
  102. ^ Am(VII) has been observed in AmO5-; see Americium, Das Periodensystem der Elemente für den Schulgebrauch (The periodic table of elements for schools) chemie-master.de (in German), Retrieved 28 November 2010 and Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (II izd.). Oxford: Butterworth-Heinemann. str. 1265. ISBN 0080379419. 
  103. ^ a b v Cm(V), Bk(V), and Cf(V) have been observed in BkO2+, CfO2+, CmO2(NO3)2, BkO2(NO3)2, and CfO2(NO3)2; see Dau, Phuong Diem; Vasiliu, Monica; Peterson, Kirk A; Dixon, David A; Gibsoon, John K (oktobar 2017). „Remarkably High Stability of Late Actinide Dioxide Cations: Extending Chemistry to Pentavalent Berkelium and Californium”. Chemistry - A European Journal. 23 (68): 17369—17378. PMID 29024093. doi:10.1002/chem.201704193. 
  104. ^ a b v Kovács, Attila; Dau, Phuong D.; Marçalo, Joaquim; Gibson, John K. (2018). „Pentavalent Curium, Berkelium, and Californium in Nitrate Complexes: Extending Actinide Chemistry and Oxidation States”. Inorg. Chem. American Chemical Society. 57 (15): 9453—9467. PMID 30040397. doi:10.1021/acs.inorgchem.8b01450. 
  105. ^ Cm(VI) has been observed in curium trioxide (CmO3) and dioxidocurium(2+) (CmO2+); see Domanov, V. P.; Lobanov, Yu. V. (oktobar 2011). „Formation of volatile curium(VI) trioxide CmO3”. Radiochemistry. 53 (5): 453—6. doi:10.1134/S1066362211050018. 
  106. ^ Cm(VIII) has been reported to possibly occur in curium tetroxide (CmO4); see Domanov, V. P. (januar 2013). „Possibility of generation of octavalent curium in the gas phase in the form of volatile tetraoxide CmO4”. Radiochemistry. 55 (1): 46—51. doi:10.1134/S1066362213010098.  However, new experiments seem to indicate its nonexistence: Zaitsevskii, Andréi; Schwarz, W H Eugen (april 2014). „Structures and stability of AnO4 isomers, An = Pu, Am, and Cm: a relativistic density functional study”. Physical Chemistry Chemical Physics. 2014 (16): 8997—9001. Bibcode:2014PCCP...16.8997Z. PMID 24695756. doi:10.1039/c4cp00235k. 
  107. ^ Es(IV) is known in einsteinium(IV) fluoride (EsF4); see Kleinschmidt, P (1994). „Thermochemistry of the actinides”. Journal of Alloys and Compounds. 213–214: 169—172. doi:10.1016/0925-8388(94)90898-2. 
  108. ^ Db(V) has been observed in dubnium pentachloride (DbCl5); see H. W. Gäggeler (2007). „Gas Phase Chemistry of Superheavy Elements” (PDF). Paul Scherrer Institute. str. 26—28. Arhivirano iz originala (PDF) 20. 2. 2012. g. 
  109. ^ Sg(VI) has been observed in seaborgium oxide hydroxide (SgO2(OH)2); see Huebener, S.; Taut, S.; Vahle, A.; Dressler, R.; Eichler, B.; Gäggeler, H. W.; Jost, D.T.; Piguet, D.; et al. (2001). „Physico-chemical characterization of seaborgium as oxide hydroxide” (PDF). Radiochim. Acta. 89 (11–12_2001): 737—741. doi:10.1524/ract.2001.89.11-12.737. Arhivirano iz originala (PDF) 25. 10. 2014. g. 
  110. ^ Sg(0) has been observed in seaborgium hexacarbonyl (Sg(CO)6); see Even, J.; Yakushev, A.; Dullmann, C. E.; Haba, H.; Asai, M.; Sato, T. K.; Brand, H.; Di Nitto, A.; Eichler, R.; Fan, F. L.; Hartmann, W.; Huang, M.; Jager, E.; Kaji, D.; Kanaya, J.; Kaneya, Y.; Khuyagbaatar, J.; Kindler, B.; Kratz, J. V.; Krier, J.; Kudou, Y.; Kurz, N.; Lommel, B.; Miyashita, S.; Morimoto, K.; Morita, K.; Murakami, M.; Nagame, Y.; Nitsche, H.; et al. (2014). „Synthesis and detection of a seaborgium carbonyl complex”. Science. 345 (6203): 1491—3. Bibcode:2014Sci...345.1491E. PMID 25237098. doi:10.1126/science.1255720.  (potrebna pretplata)
  111. ^ Bh(VII) has been observed in bohrium oxychloride (BhO3Cl); see "Gas chemical investigation of bohrium (Bh, element 107)" Arhivirano 2008-02-28 na sajtu Wayback Machine, Eichler et al., GSI Annual Report 2000. Retrieved on 2008-02-29
  112. ^ Hs(VIII) has been observed in hassium tetroxide (HsO4); see „Chemistry of Hassium” (PDF). Gesellschaft für Schwerionenforschung mbH. 2002. Pristupljeno 31. 1. 2007. 
  113. ^ Cn(II) has been observed in copernicium selenide (CnSe); see „Annual Report 2015: Laboratory of Radiochemistry and Environmental Chemistry” (PDF). Paul Scherrer Institute. 2015. str. 3. 
  114. ^ Langmuir, Irving (1919). „The arrangement of electrons in atoms and molecules”. J. Am. Chem. Soc. 41 (6): 868—934. doi:10.1021/ja02227a002. 

Spoljašnje veze[uredi | uredi izvor]