Биномна теорема

Из Википедије, слободне енциклопедије
Биномни коефицијенти се појављују као елементи Паскаловог троугла.

Биномна теорема је теорема елементарне алгебре и описује коефицијенте степена бинома када је он представљен у развијеној форми. По овој теореми, могуће је представити израз (x + y)n сумом сабирака облика axbyc, где су коефицијенти a позитивни цели бројеви, при чему је збир експонената x и y једнак n за сваки сабирак. На пример:

Коефицијенти који се појављују у биномном развоју називају се биномни коефицијенти. Они су идентични бројевима који се појављују у Паскаловом троуглу. Ови бројеви се могу израчунати једноставном формулом која користи факторијел.

Исти ови коефицијенти се јављају у комбинаторици, где је израз xnkyk једнак броју различитих комбинација k елемената који се бирају из скупа од n чланова.

Формуле[уреди]

Коефицијент који стоји уз xnkyk дат је формулом:

која је дефинисана уз помоћ функције факторијела n!. Ова формула се може написати и на следећи начин:

где су k фактори и у имениоцу и у бројиоцу разломка. Иако се у овој формули користи разломак, биномни коефицијенти су цели бројеви.

Исказ теореме[уреди]

Сваки степен израза x + y могуће је представити у форми:

где означава одговарајући биномни коефицијент. Други начин записивања ове формуле је:


Спољашње везе[уреди]