Вулкан

Из Википедије, слободне енциклопедије
За друге употребе, погледајте Вулкан (вишезначна одредница).
Облаци пепела досежу висину од 19 km (12 mi) током климакса експлозивне ерупције на планини Пинатубо у Филипинима 1991.

Вулкан представља отвор (или руптуру) у Земљиној кори, кроз који истопљена стенска маса (лава), пепео и гасови бивају истиснути на површину, где се хладе и таложе. Вулкан је геолошки облик (најчешће планина, мада такође постоје и подморски вулкани) где лава излази на површину Земљине коре.[1] Реч вулкан потиче од острва Вулкано у Тиренском мору. По другим изворима реч вулкан потиче од римског бога Вулкана, бога ватре и вулкана.[2] Наука која се бави изучавањем вулкана назива се вулканологија.[3] Са становишта одређивања географског положаја и описом вулкана као морфолошки насталих облика након вулканских ерупција, без претензија улажења у сам процес настанка и његовог објашњења, вулканима се бави географија.

Вулкани битно утичу на обликовање Земљиног рељефа. На Земљи, најчешће се сусрећу на рубовима литосферних плоча. Вулкан може бити активан или неактиван, зависно од његових ерупција и тектонској активности у његовој близини. Најистакнутији део вулкана је вулканска купола која се непрестано повећава. На врху куполе се налази кратер, а везу између кратера и вулканског огњишта чини вулкански канал.[4]

Продор магме може се догодити из више разлога као што су тектонски утицаји и промене дубинског притиска који је гурају, висока температура (600 до 1200 °C) која повећава покретљивост магме те топљење стене или због гасова и пара који повећавају узгон магме. Магма на површини Земље се назива лава.

Лава може избијати на површину на два начина:

  • Изливањем - магма избија полако и једнолично, због чега настају базалтни покрови. Примери су полуострво Декан, Камчатка, Исланд. Ово је такозвани хавајски тип вулкана. Овакав тип ерупција јавља се у случају базичних магми, с малом количином волатила.
  • Ерупцијом - експлозивно, настаје због велике количине накупљених гасова и водене паре. Попраћени су потресима, а забилежени су и случајеви катастрофалних последица за околину. (Сент Хеленс 1980. године, Кракатау 1883. године, Мон Пеле 1902. године). Ово је азијски тип вулкана. Јавља се у случају магме са пуно волатила, киселог типа.

Осим лаве из вулкана може избијати и пирокластични материјал: вулканске бомбе - већи комади лаве који приликом хлађења добијају вретенаст облик, вулкански блокови – здробљени пирокластични материјал који може тежити и по неколико хиљада тона, вулкански прашинац или туф – вулкански пепео помешан с водом те лапиле – ужарено камење величине шљунка. Вулканска активност често је праћена попратним појавама, избијањима водене паре, различитих гасова и хемијских хејињења.

Фумароле су отвори из којих избија водена пара, а из солфатара избија Водоник-сулфид (H2S). Мофети су отвори из којих избија угљен-диоксид, CO2. Вулканска подручја често прате термални и минерални извори. Гејзири су отвори из којих због високог притиска избија врела вода и водена пара. Најпознатији гејзер је онај у Националном парку Јелоустоун, Стари Верни.

Тектонске плоче[уреди]

Мапа приказује дивергентне границе плоча, океанске ширеће гребене (енгл. OSR – Oceanic Spreading Ridges) и недавне копнене вулкане
Еруптивни стуб планине Етна из 2007. године производи пепео, плавац и лаву
Вулкан Убинас
Поглед из ваздуха на Барен острво Андаманских острва у Индији, током ерупције 1995. То је једини активни вулкан у Јужној Азији.
Планина Шаста
Вулкан Санта Ана, Ел Салвадор. Блиски поглед из ваздуха на угњеждене калдере и кратере, заједно са кратерским језером.
Лава са хавајског вулкана
Главни чланак: Plate tectonics

Дивергентне границе плоча[уреди]

Главни чланак: Дивергентна граница

У средњоокеанском гребену, две тектоника плоче се удаљавају једна од друге и при томе се формира океанска кора хлађењем и очвршћавањем топле растопљене стене. Пошто је кора веома танка у тим гребенима услед повлачења тектонских плоча, ослобађање притиска доводи до адијабатске експанзије и парцијалног топљења мантла, узрокујући вулканизам и креирање нове океанске коре. Највећи део дивергентних граница плоча је на дну океана; стога, већина вулканских активности је подморска, и њом се формира ново морско дно. Хидротермални извори (такође познати као дубоки отвори) су доказ овакве вулканске активности. Тамо где је средишње океански гребен изнад нивоа мора, обликују се вулканска острва, на пример, Исланд.

Конвергентне границе плоча[уреди]

Главни чланак: Конвергентна граница

Субдукционе зоне су места где две плоче, обично океанска и континентална плоча, сударају. У том случају долази до подвлачења океанске плоче, или њеног потапања под континенталну плочу, чиме се формира дубоко океанки гребен у близини обале. У процесу који се назива топлотно отапање, вода ослобођена са потањајуће плоче снижава температуру преклапајуће ивице мантла, креирајући магму. Ова магма може да има веома варирајућу вискозност услед високог садржаја силицијумма, тако да често не досеже до површине него се хлади у дубини. Кад досегне до површине фромира се вулкан. Типичан пример тог типа вулкана је планина Етна и вулкани у Ватреном појасу Пацифика.

Вруће тачке[уреди]

Главни чланак: Врућа тачка

Вруће тачке су назив који је се користи за вулканске области за које се сматра да су формиране путем плашта мантла, за који се претпоставља да је стуб топлог материјала који се подиже са границе сржног мантла у фиксираном простору што узрокује отапање великих запремина. Пошто се тектонске плоче крећу преко њих, сваки вулкан постаје латентан и коначно се поновно формира током напредовања плоче преко постулираног плашта. Сматра се да су Хавајска острва формирана на тај начин, као и плато Снејк Ривер, при чему је Јелоустонска калдера део Северно Америчке плоче која је тренутно изнад вруће тачке. Међутим, ова теорија је била критикована.[3]

Подела вулкана према својствима[уреди]

Вулкани се могу поделит по њиховим својствима. Тако постоје стратовулкани – вулкани са слојевитим структурама која настаје измењивањем излива лаве и пепела, вулкани у облику штита – који због избијања лаве добију изглед штита (нпр. Хаваји, Исланд, Мауна Лоа), супервулкани – велики вулкани који имају потенцијално велику разорну моћ и утицај на околину (нпр. Јелоустонска калдера).

Вулкани постоје и под морем. Подводни вулкани често стварају нова острва. (нпр. Хаваји).

Активни вулкани на Земљи формирају вулканске зоне. Најактивнија вулканска зона је она која окружује Тихи океан, још се назива Ватрени појас Пацифика. Након ње она дуж Средњоатлантског гребена. Окомито на те две зоне пружа се средоземна зона, од америчког до евроазијаског јарка (пукотине) где је забележена велика вулканска активност с пуно мањих вулкана, али и неких који су мало већи (нпр. Килиманџаро).

У близини вулкана подручје је врло богато рудама и термалним изворима, а тло је веома плодно, међутим живјети у близини вулкана је врло опасно. О томе сведочи пример Кратакауа – вулканског острва који је након 200 година мировања експлодирао, 1883. г. Та је експлозија разнела већи део острва, али и повећала два суседна отока. Претпоставља се да је то био најгласнији звук забиљежен у историји, чуо се у кругу од 5000 km. Последице експлозије биле су велике штете и плимни талас висине 36 метара који је узео 36.000 живота.

Нешто слично се догодило и с вулканом Мон Пеле који је уништио град Сен Пјер када је из кратера избио ужарени облак с воденом паром, сумпорном киселином и другим материјалом, сручио се на град и околину, потпуно уништио зграде и поља те је 26.000 људи погинуло.

Тако је и планина Ст. Хеленс у америчкој савезној држави Вашингтон еруптирала 1980. године, експлозија је разнела врх вулкана, а уоколо су летеле стене величине аутобуса. Претпоставља се да је ерупција имала снагу 500 атомских бомби, јер су сва стабла на подручју од 600 km² сравњена са земљом.

Занимљиво би било споменути још и Мауну Кеу, вулканску планину на Хавајима која је, мерена од дна Тихог оцеана, висока 10.203 метара, што је за око 2,5 км више од Монт Евереста.

Појавни облици вулкана[уреди]

Најуобичајеније схватање вулкана је да је он купастог облика са отвором у средини (кратер, ждрело или гротло) преко кога је повезан са жариштем. Међутим, вулкани могу бити најразноликијих облика, па чак и облика платоа (базалтни платои).

Установљено је да појавни облик вулкана зависи од више фактора, а један од њих је свакако киселост магме.

  • Уколико су магме са садржајем силицијума (Si) већим од 63%, ради се о киселим магмама. Овакве магме су најопасније јер имају велику вискозност и теже да заробе гасове који су присутни. Ово даље изазива да магма избија под изузетно великим притисцима и долази до стварања стратовулкана. Последице овакве ерупције су катастрофалне. Стварају се пирокластични токови (овако настају стене игнимбрити), развијају се температуре до 1200 °C услед којих ови токови прже све пред собом, а формирају слојеве који могу бити и неколико метара дебели. Вулкански пепео који се изнесе у атмосферу може прећи веома велике удаљености, а његовом седиментацијом (таложењем) настају туфови.
  • Уколико магма садржи од 52-63% силицијума (Si), лава је интермедијарна. Оваква лава се обично јавља изнад зона субдукције.
  • Уколико магма садржи између 52% и 45% силицијума (Si), онда је базична лава. Ова лава (садржи повећани проценат магнезијума (Mg) и гвожђа (Fe)) је много мање вискозности од киселе магме, а вискозност зависи од температуре. Оваква лава обично има неколико честих појавних облика: pillow лава (изнад океанских рифтова), формира нову океанску и континенталну кору, и базалтни платои.
  • Ређе се јављају магме са мање од 45% силицијума, а зову се ултрабазичне. Установљено је да се последња ерупција овакве магме одиграла током протерозоика.

Највише вулканске купе[уреди]

Вулкан на Индонежанском острву Јава
  1. Мауна Kea (Хаваји) - 8818 m (под водом 4650 m), активан
  2. Чимборасо (Јужна Америка) - 6268 m, угашен
  3. Килиманџаро (Африка) - 5895 m, угашен
  4. Дамаванд (Иран) - 5670 m, угашен
  5. Попокатепетл (Мексико) - 5452 m, угашен
  6. Кенија (Африка) - 5200 m, угашен
  7. Арарат (Турска) - 5165 m, угашен
  8. Кључевскаја Сопка (Камчатка) - 4800 m, активан

Такође и пречник кратера може имати знатне размере. Везув и Етна имају пречник кратера око 600 m, вулкани на Јави око 7 km, док вулкани на Хавајским острвима достижу и до 15 km у пречнику.

Географски распоред вулканских области на земљи[уреди]

  1. ватрени појас Пацифика
  2. Средоземно-трансазијска област
  3. Атлантско-океанска област

Ватреном појасу Пацифика припада највећи број активних вулкана. Од преко 600 активних вулкана, ватреном појасу Пацифика припада 418 вулкана.

Значајне вулканске ерупције[уреди]

  1. Ерупција вулкана Везув
    • У подне 24. августа 79. године снажна ерупција је уништила Помпеју, усмртивши око 20.000 људи.
  2. Ерупција вулкана Тамбора
    • Ерупција овог вулкана који се налази на Сумбави потпуно је затрпала 1815. године Сумбаву, градић са 14.000 становника. Од директних последица ерупције, обрушавања великих таласа на околна острва и од глади страдало је преко 44.000 људи.
  3. Ерупција вулкана Кракатау
    • Један од најстравичнијих вулкана се налази на истоименом острву у Индонезији. Вулкан је 1883. године буквално експлодирао разневши две трећине острва, формирао је депресију дубине 300 m. Вулкан је изазвао велике таласе (цунамије) који су били уочени на свим отвореним морима света. Звук који је произвела експлозија вулкана чула је једна дванаестина Земљине кугле. То је иначе најјачи звук произведен на Земљи у забележеној историји. На индонежанским острвима од последица ерупције страдало је преко 40.000 људи.

Ефекти вулкана[уреди]

Шематски приказ вулканског инјектирања аеросола и гасова
Графикон соларне радијације 1958–2008 приказује како се радијација редукује након велких вулканских ерупција
Концентрација сумпор диоксида над Сиера Негра вулкан, Галапагоска острва, током ерупције октобра 2005

Постоје многи различити типови вулканских ерупција и асоцираних активности: фретских ерупција (ерупције које генеришу пару), експлозивна ерупција лаве са високим садржајем силицијума (e.g., Риолит), ефузивна ерупција ниско силицијумске лаве (e.g., базалт), пирокластични токови, лахари (ток дробљења) и емисије угљен-диоксида. Све ове активности могу да предсављају хазард за људе. Земљотреси, термални извори, Фумароле, блатни лонци и гејзери често прате вулканску активност.

Вулкански гасови[уреди]

Концентрације различитих вулканских гасова може знатно да варира од једног вулкана до другог. Водена пара је типично најзаступљенији вулкански гас, чему следи угљен-диоксид[5] и сумпор диоксид. Други значајни вулкански гасови су водоник сулфид, хлороводоник, и флуороводоник. Велики број мање заступљених и гасова у траговима је присутан у вулканским емисијама, на пример водоник, угљен-моноксид, халоугљеници, органска једињења, и испарљиви матални хлориди.

Велике, експлозивне вулканске ерупције уносе водену пару (H2O), угљен-диоксид (CO2), сумпор диоксид (SO2), хлороводонок (HCl), флуороводоник (HF) и пепео (пулверизовану стену и пловућац) у стратосферу до висина од 16–32 km (10–20 mi) изнад Земљине површине. Најзначајнији утицај ових ињекција долази од конверзије сумпор диоксида у сумпорну киселину (H2SO4), која се брзо кондензује у стратосфери у облику сулфатних аеросолова. Саме SO2 емисије две различите ерупције су довољне за упоређивање њеховог потенцијалног климатског импакта.[6] Аеросоли повећавају Земљин албедо — њену рефлекцију Сунчеве радијације назад у свемир — и стога узрокују хлађење Земљине ниже атмосфере или тропосфере; међутим, они исто тако апсорбују топлоту коју зрачи Земља, чиме се загрејава стратосфера. Неколико ерупција током задњег века су узроковале снижење просечне температуре на Земљиној површини до половине степена (Фаренхајтове скале) током периода од једне до три године; сумпор диоксид из ерупције Вајинапутина је вероватно узроковао Руску глад (1601—1603).[7]

Значајне последице[уреди]

Претпоставља се да се једна вулканска зима догодила око пре 70.000 година након суперерупције језера Тоба на острву Суматра у Индонезији.[8] Према теорији Тобанске катастрофе коју поржавају неки антрополози и археолози, она је имала глобалне консеквенце,[9] убијајући највећи део људске популације и креирајући популационо уско грло које је утицало на генетичко наслеђе свих данашњих људи.[10] Године 1815. је ерупција планине Тамбора креирала гловалне климатске аномалије које су постале познате као „година без лета“ због ефекта на Северно Америчке и Европске времеске прилике.[11] Пољопривредне културе нису успеле, а стока је угинула на већем делу северне хемисфере, што је резултирало једном од најгорих глади 19. века.[12] Ледена зима 1740-41, која је довела до распрострањене глади у северном делу Европе, може такође дуговати своје порекло вулканској ерупцији.[13]

Предложено је да је вулканска активност проузроковала или допринела догађајима из крају Ордовицијана, Пермско-тријаског и касног Девонијанског масовног изумирања, а можда и других. Масивни еруптивни догађај који је формирао Сибирске трапе, један од највећих познатих вулканских догађаја у посљедњих 500 милиона година геолошке историје Земље, трајао је милион година и сматра се вероватним узрочником „великог изумирања“ пре око 250 милиона година,[14] за које се процењује да је довело до изумрања око 90% врста које су постојале у то време.[15]

Кисела киша[уреди]

Облаци пепела се издижу из вулкана Ејафјадлајекидл 17. априла 2010

Сулфатни аеросолови узрокују комплекс хемијских реакција чиме се мењају хлорна и азотна хемијска композиција стратосфере. Тај ефекат, заједно са повећањем стратосферних нивоа хлора услед хлорофлуороугљеничног загађења, доводи до формирања хлор моноксида (ClO), кои уништава озон (O3).

Како се аеросоли накупљају и коагулишу, они се размештају у горњој тропосфери где служе као језгра за цирусне облаке и даље модификују Земљин радијациони баланс. Највећи део хлороводоника (HCl) и флуороводоника (HF) се раствара се у капљицама воде у ерупционом облаку и брзо пада на земљу као кисела киша. Инјектирани пепео такође брзо пада из стратосфере; највећи део пепела се уклања у току од неколико дана до неколико недеља. Коначно, експлозивне вулканске ерупције ослобађају угљен-диоксид и тако стварају знатан извор угљеника за биогеохемијске циклусе.[16]

Гасне емисије из вулкана су природни доприносилац киселим кишама. Вулканска активности ослобађа око 130 до 230 тераграма (145 милиона до 255 милиона кратких тона) угљен-диоксида сваке године.[17] Вулканске ерупције могу да унесу аеросоле у Земљину атмосферу. Велики уноси могу да узрокују видљиве ефекте као што су необично обојени заласци сунца и да имају глобални утицај на климу превасходно у виду хлађења. Вулканске ерупције такође имају користан учинак путем додавања нутријената у земљиште кроз елувијални процес вулканских стена. Ова плодна тла помажу расту биљки и разних усева. Вулканске ерупције могу такође да створе нова острва, јер се магма хлади и учвршћује након контакта са водом.

Хазарди[уреди]

Главни чланак: Вулканске опасности

Пепео који ерупције избацују у ваздух може да представља опасност за авионе, посебно џет авионе код којих се честице могу растопити због високе радне температуре; отопљене честице се затим задржавају на лопатицама турбине и мењају њигов облик, ометајући рад турбине. Опасна излагања из 1982. године након ерупције планине Галунгунг у Индонезији и 1989. године након ерупције планине Редоубт на Аљасци подигли су свест о овој појави. Организација међународног цивилног ваздухопловства је установила девет саветодавних центара о вулканском пепелу за праћење облака пепела и саветовање пилота. Ерупција вулкана Ејафјадлајекидл 2010. је изазвала велике поремећаје у ваздушном саобраћају у Европи.

Види још[уреди]

Референце[уреди]

  1. NSTA Press (2007). „Earthquakes, Volcanoes, and Tsunamis” (PDF). Resources for Environmental Literacy. Archive.Org. Архивирано из оригинала (PDF) на датум 14. 7. 2014. Приступљено 22. 4. 2014. 
  2. Young, Davis A. (2016). „Volcano”. Mind over Magma: The Story of Igneous Petrology. Приступљено 1. 11. 2016. 
  3. 3,0 3,1 Foulger, G.R. (2010). Plates vs. Plumes: A Geological Controversy. Wiley-Blackwell. ISBN 978-1-4051-6148-0. 
  4. Press, NSTA (2007). „Earthquakes, Volcanoes, and Tsunamis”. Resources for Environmental Literacy. Приступљено 22. 4. 2014. 
  5. Pedone, M.; Aiuppa, A.; Giudice, G.; Grassa, F.; Francofonte, V.; Bergsson, B.; Ilyinskaya, E. (2014). „Tunable diode laser measurements of hydrothermal/volcanic CO2 and implications for the global CO2 budget.” (PDF). Solid Earth. 5: 1209—1221. doi:10.5194/se-5-1209-2014. 
  6. Miles, M. G.; Grainger, R. G.; Highwood, E. J. (2004). „The significance of volcanic eruption strength and frequency for climate” (PDF). Quarterly Journal of the Royal Meteorological Society. 130: 2361—2376. doi:10.1256/qj.30.60. 
  7. „Volcanic Eruption Of 1600 Caused Global Disruption”. ScienceDaily. University of California – Davis. 25. 4. 2008. 
  8. "Supervolcano Eruption – In Sumatra – Deforested India 73,000 Years Ago". ScienceDaily. November 24, 2009.
  9. "The new batch – 150,000 years ago". BBC – Science & Nature – The evolution of man.
  10. „When humans faced extinction”. BBC. 9. 6. 2003. Приступљено 5. 1. 2007. 
  11. Boer, Jelle Zeilinga de; Sanders, Donald Theodore (2002). Volcanoes in Human History: The Far-reaching Effects of Major Eruptions. Princeton University Press. стр. 155—. ISBN 0-691-05081-3. 
  12. Oppenheimer, Clive (2003). „Climatic, environmental and human consequences of the largest known historic eruption: Tambora volcano (Indonesia) 1815”. Progress in Physical Geography. 27 (2): 230—259. doi:10.1191/0309133303pp.379ra. 
  13. "Ó Gráda, C.: Famine: A Short History". Princeton University Press.
  14. "Yellowstone's Super Sister". Discovery Channel.
  15. Benton M J (2005). When Life Nearly Died: The Greatest Mass Extinction of All Time. Thames & Hudson. ISBN 978-0-500-28573-2. 
  16. McGee, Kenneth A.; Doukas, Michael P.; Kessler, Richard; Gerlach, Terrence M. (1997). „Impacts of Volcanic Gases on Climate, the Environment, and People”. United States Geological Survey. Приступљено 9. 8. 2014.   This article incorporates text from this source, which is in the public domain.
  17. „Volcanic Gases and Their Effects”. U.S. Geological Survey. Приступљено 16. 6. 2007. 

Литература[уреди]

  • Cas, R.A.F. and J.V. Wright, Volcanic Successions. Unwin Hyman Inc. 528p. 1987. ISBN 0-04-552022-4.
  • Macdonald, Gordon and Agatin T. Abbott. (1970). Volcanoes in the Sea. University of Hawaii Press, Honolulu. 441 p.
  • Marti, Joan & Ernst, Gerald. (2005). Volcanoes and the Environment. Cambridge University Press. ISBN 0-521-59254-2. 
  • Ollier, Cliff. (1988). Volcanoes. Basil Blackwell, Oxford, UK, ISBN 0-631-15664-X (hardback), ISBN 0-631-15977-0 (paperback).
  • Sigurðsson, Haraldur (1999). Encyclopedia of Volcanoes. Academic Press. ISBN 0-12-643140-X.  This is a reference aimed at geologists, but many articles are accessible to non-professionals.

Спољашње везе[уреди]