Криптон

С Википедије, слободне енциклопедије
Криптон
Krypton discharge tube.jpg
Општа својства
Име, симболкриптон, Kr
Изгледбезбојни гас који показује беличасти сјај у електричном пољу
У периодном систему
Водоник Хелијум
Литијум Берилијум Бор Угљеник Азот Кисеоник Флуор Неон
Натријум Магнезијум Алуминијум Силицијум Фосфор Сумпор Хлор Аргон
Калијум Калцијум Скандијум Титанијум Ванадијум Хром Манган Гвожђе Кобалт Никл Бакар Цинк Галијум Германијум Арсен Селен Бром Криптон
Рубидијум Стронцијум Итријум Цирконијум Ниобијум Молибден Технецијум Рутенијум Родијум Паладијум Сребро Кадмијум Индијум Калај Антимон Телур Јод Ксенон
Цезијум Баријум Лантан Церијум Празеодијум Неодијум Прометијум Самаријум Европијум Гадолинијум Тербијум Диспрозијум Холмијум Ербијум Тулијум Итербијум Лутецијум Хафнијум Тантал Волфрам Ренијум Осмијум Иридијум Платина Злато Жива Талијум Олово Бизмут Полонијум Астат Радон
Францијум Радијум Актинијум Торијум Протактинијум Уранијум Нептунијум Плутонијум Америцијум Киријум Берклијум Калифорнијум Ајнштајнијум Фермијум Мендељевијум Нобелијум Лоренцијум Радерфордијум Дубнијум Сиборгијум Боријум Хасијум Мајтнеријум Дармштатијум Рендгенијум Коперницијум Нихонијум Флеровијум Московијум Ливерморијум Тенесин Оганесон
Ar

Kr

Xe
бромкриптонрубидијум
Атомски број (Z)36
Група, периодагрупа 18 (племенити гасови), периода 4
Блокp-блок
Рел. ат. маса (Ar)83,798(2)[1]
Ел. конфигурација
по љускама
2, 8, 18, 8
Физичка својства
Тачка топљења115,78 K ​(−157,37 °‍C, ​−251,27 °F)
Тачка кључања119,93 K ​(−153,415 °‍C, ​−244,147 °F)
Густина на СТП (0 °‍C и 101,325 kPa)3,749 g/L
течно ст., на т.к.2,413 g/cm3[2]
Тројна тачка115,775 K, ​73,53 kPa[3][4]
Критична тачка209,48 K, 5,525 MPa[4]
Топлота фузије1,64 kJ/mol
Топлота испаравања9,08 kJ/mol
Мол. топл. капацитет20,95[5] J/(mol·K)
Напон паре
P (Pa) 100 101 102
на T (K) 59 65 74
P (Pa) 103 104 105
на T (K) 84 99 120
Атомска својства
Електронегативност3,00
Енергије јонизације1: 1350,8 kJ/mol
2: 2350,4 kJ/mol
3: 3565 kJ/mol
Ковалентни радијус116±4 pm
Валсов радијус202 pm
Линије боје у спектралном распону
Остало
Кристална структурапостраничноцентр. кубична (FCC)
Face-centered cubic кристална структура за криптон
Брзина звука(gas, 23°C) 220 m·s−1
(tečnost) 1120 m/s
Топл. водљивост9.43×10−3  W/(m·K)
Магнетни распореддијамагнетичан[6]
Магнетна сусцептибилност (χmol)−28,8·10−6 cm3/mol (298 K)[7]
CAS број7439-90-9
Историја
Откриће и прва изолацијаВилијам Ремзи и Морис Траверс (1898)
Главни изотопи
изо РА полуживот (t1/2) ТР ПР
78Kr 0,36% 9,2×1021 y[8] εε 78Se
79Kr syn 35 h ε 79Br
β+ 79Br
γ
80Kr 2,29% стабилни
81Kr трагови 2,3×105 y ε 81Br
γ
82Kr 11,59% стабилни
83Kr 11,50% стабилни
84Kr 56,99% стабилни
85Kr syn 11 y β 85Rb
86Kr 17,28% стабилни
референцеВикиподаци

Криптон (Kr, лат. krypton) племенити је гас VIIIА групе са редним бројем 36.[9] Има неколико изотопа чије се атомске масе налазе између 72-94. Постојани изотопи су: 78, 80, 82, 83, 84 i 86.[10] Заступљена је у земљиној атмосфери у количини од око 1,14 ppm, такође је заступљен и као један од продуката распада уранијума и плутонијума Откривен је 1898. године од стране Вилијама Ремзија и Мориса Вилијама Траверса.

Криптон је нереактиван племенити гас, а познат је веома мали број његових једињења. Криптон је безбојан. Реагује са гасовитим флуором под високим притиском градећи флуориде. Једини практични значај је његова детекција која омогућава проналажење руда уранијума.

Историја[уреди | уреди извор]

Након што су Џон Вилијам Страт и Вилијам Ремзи 1894. открили аргон као први племенити гас, те хелијум 1895. којег је Ремзи изоловао из руда уранијума, а који је до тада био познат само из Сунчевог спектра, он је на основу законитости периодног система уочио да би требао постојати још неки сличан елемент. Ремзи је почев до 1896. истраживао различите минерале и метеорите као и гасове које они испуштају при загрејавању или растварању. Међутим, његов сарадник Морис Траверс и он нису били успешни, па су до тада успели да пронађу само хелијум и ретки аргон. Такође, ни проучавања врелих гасова из Котрета у Француској и са Исланда нису дала никакве резултате.[11]

На крају, они су почели да проучавају 15 литара сировог аргона који су добили, те да га раздвајају на састојке помоћу утечњавања и фракционе дестилације. Када су испитали нечистоће, које су преостале након што је готово сав сирови аргон потпуно испарио, нашли су до тада непознате жуте и зелене спектралне линије тј. доказ новог хемијског елемента. Дали су му име криптон према старогрчком κρυπτός (kriptos) у значењу сакривен. Након што су Ремзи и Траверс извршили даљњу дестилацију и прочишћавање, успели су да одреде и моларну масу криптона од око 80 g/mol. Након открића криптона, а након што су из једне фракције са још нижом температуром кључања издвојити гас неон, коначно су путем издвајања из сировог криптона дошли до још једног племенитог гаса, ксенона.[11]

А. фон Антропоф је 1924. објавио да је успео да синтетише прво једињење криптона у облику црвене, стабилне чврсте ствари састављене из криптона и хлора. Касније се испоставило да се у овом споју не налази криптон већ азот моноксид и хлороводоник. Ипак након 1962. када је добијено прво једињење једног племенитог гаса, ксенона, почео је веће интересовање науке и настојања да се синтетишу једињења криптона. Прво такво једињење добио је А.В. Грос, за који је првобитно претпостављао да се ради о криптон-тетрафлуориду, да би после додатних испитивања идентификован као криптон-дифлуорид.[12]

Таласне дужине електромагнетског зрачења које емитује изотоп криптона 86Kr узет је 1960. као основа за дефиницију јединице метра. Тиме је укинуто недовољно тачна дефиниција која је до тада узимана као еталон „праметра” направљен од легуре иридијума и платине. Тада је за један метар узета удаљеност 1.650.763,73 таласних дужина електромагнетног зрачења нуклида 86Kr које емитује при преласку из стања 5d5 у 2pl0 у вакууму.[13] Ова дефиниција је важила све до 1983. када је замењена дефиницијом, која се узима као удаљеност коју светлост пређе у вакууму за одређени део секунде.[14]

Особине[уреди | уреди извор]

Кубна густо пакована структура чврстог криптона, a = 572 pm

Физичке[уреди | уреди извор]

У нормалним условима температуре и притиска, криптон је једноатомни, безбојни гас без мириса, који се кондензује при температури од 121,2 K (−152°C) a pri 115,79 K (−157,36°C) прелази у чврсто стање. Као и други племенити гасови осим хелијума, криптон се кристализује у кубном густо пакованом кристалном систему са параметром решетке a = 572 pm.[15] Као и сви племенити гасови, он такође има све електронске љуске попуњене (електронска конфигурација племенитог гаса). Тиме се може објасити да се као гас налази у једноатомном стању, те да му је реактивност изузетно слаба.

Са густоћом од 3,749 kg/m³ при температури од 0°C и притиску од 1013 hPa, криптон је тежи од ваздуха и пада на тло. У фазном дијаграму, тројна тачка се налази на 115,76 K и 0,7315 bar,[16] док се критична тачка налази на −63,75°C, 5,5 MPa при чему је критична густина 0,909 g/cm³.[17] У води је слабо растворљив, тако да се при 0°C у 1 литру воде може растворити највише 110 ml криптона.[17]

Хемијске[уреди | уреди извор]

Попут свих племенитих гасова, криптон је веома нереактиван. У изузетним случајевима и под посебним условима окружења, он може реаговати са најелектронегативнијим елементом, флуором, при чему настаје криптон дифлуорид. За разлику од ксенон-флуорида, криптон-дифлуорид је термодинамички нестабилан, његово стварање је стога ендотермно те се мора одвијати при нижим температурама. Флуорови радикали, који су неопходни за реакцију са криптоном, могу се добити помоћу зрачења ултраљубичастим зракама, бомбардовањем протонима или електричним пражњењем.[12]

Криптон гради клатрате са различитим једињењима, у којима је гас физички затворен у неку шупљину те је на тај начин везан за њих. Тако на пример криптон са водом и смесом воде и хлороформа гради клатрат при −78°C,[18] док је клатрат са хидрохиноном тако стабилан да је криптон за њега везан дуже време.[17] Такође је познат и инклузијско једињење криптона у олигосахариду α-циклодекстрину.[19]

Изотопи[уреди | уреди извор]

Познато је укупно 31 изотоп криптона те 10 нуклеарних изомера. Међу њима постоји пет стабилних изотопа: 80Kr, 82Kr, 83Kr, 84Kr и 86Kr. Сви они се јављају у природи као и изотоп 78Kr који се врло споро распада (време полураспада 2 · 1021 година). Највећи удео у природној смеси изотопа има изотоп 84Kr са 57%, а следе га 86Kr са 17,3%; 82Kr са 11,58% и 83Kr са 11,49%. Осим ових, изотоп 80Kr са уделом од 2,28% и 78Kr са 0,35% су много ређи у природи.[20] У природи се такође налази и радиоактивни изотоп криптона 81Kr, који је уједно и његов најдуже живући нестабилни изотоп са временом полураспада од 229 хиљада година,[20] а настаје у траговима путем атмосферских реакција.[21] И радиоактивни изотоп 85Kr са временом полураспада од 10,756 година такође се јавља у атмосфери у траговима. Он настаје заједно са другим краткоживућим изотопима при разбијању језгара уранијума и плутонијума. Може доспети у атмосферу било нуклеарном експлозијом или током поновне прераде нуклеарног горива, а због различите расподеле емисијских извора на Земљи много је чешћи на северној него на јужној хемисфери. Након атмосферских нуклеарних тестова 1960-их и значајног загађења атмосфере изотопом 85Kr, уследио је пад његове концентрације,[21] али је на мерној станици у Генту између 1979. и 1999. забележен нагли пораст због рада постројења за поновну прераду нуклеарног горива у Ла Агу у Нормандији.[22] Стабилни изотоп 83Kr је једини НРМ-активни изотоп криптона. Хиперполаризирани 83Kr је кориштен у тестовима на пацовима за проучавање плућа животиња помоћу томографије магнетном резонанцом.[23]

Референце[уреди | уреди извор]

  1. ^ Meija, J.; et al. (2016). „Atomic weights of the elements 2013 (IUPAC Technical Report)”. Pure and Applied Chemistry. 88 (3): 265—291. doi:10.1515/pac-2015-0305. 
  2. ^ Krypton. encyclopedia.airliquide.com
  3. ^ „Section 4, Properties of the Elements and Inorganic Compounds; Melting, boiling, triple, and critical temperatures of the elements”. CRC Handbook of Chemistry and Physics (85th изд.). Boca Raton, Florida: CRC Press. 2005. 
  4. ^ а б Haynes, William M., ур. (2011). CRC Handbook of Chemistry and Physics (92nd изд.). Boca Raton, FL: CRC Press. стр. 4.121. ISBN 1439855110. 
  5. ^ Shuen-Chen Hwang, Robert D. Lein, Daniel A. Morgan (2005). "Noble Gases". Kirk Othmer Encyclopedia of Chemical Technology. Wiley. pp. 343–383. doi:10.1002/0471238961.0701190508230114.a01.
  6. ^ Magnetic susceptibility of the elements and inorganic compounds Архивирано на сајту Wayback Machine (12. јануар 2012), in Lide, D. R., ур. (2005). CRC Handbook of Chemistry and Physics (86th изд.). Boca Raton (FL): CRC Press. ISBN 0-8493-0486-5. 
  7. ^ Weast, Robert (1984). CRC, Handbook of Chemistry and Physics. Boca Raton, Florida: Chemical Rubber Company Publishing. стр. E110. ISBN 0-8493-0464-4. 
  8. ^ Patrignani, C.; et al. (Particle Data Group) (2016). „Review of Particle Physics”. Chinese Physics C. 40 (10): 100001. Bibcode:2016ChPhC..40j0001P. doi:10.1088/1674-1137/40/10/100001.  See p. 768
  9. ^ Housecroft, C. E.; Sharpe, A. G. (2008). Inorganic Chemistry (3. изд.). Prentice Hall. ISBN 978-0-13-175553-6. 
  10. ^ Parkes, G.D. & Phil, D. (1973). Melorova moderna neorganska hemija. Beograd: Naučna knjiga. 
  11. ^ а б William Ramsay: The Rare Gases of the Atmosphere. Govor tokom dodjele Nobelove nagrade 12. decembar 1904.
  12. ^ а б John F. Lehmann, Hélène P. A. Mercier, Gary J. Schrobilgen: The chemistry of krypton. u: Coordination Chemistry Reviews. 2002, 233/234, str. 1–39, doi:10.1016/S0010-8545(02)00202-3.
  13. ^ K. Clusius: Zur Geschichte des Metermasses. u: Cellular and Molecular Life Sciences. 1963, 19, 4, str. 169–177, doi:10.1007/BF02172293.
  14. ^ Međunarodni biro za mjere i utege: The BIPM and the evolution of the definition of the metre Архивирано 2011-06-07 на сајту Wayback Machine. Pristupljeno 10. decembra 2009.
  15. ^ K. Schubert: Ein Modell für die Kristallstrukturen der chemischen Elemente. u: Acta Crystallographica. 1974, 30, str. 193–204.
  16. ^ W. T. Ziegler, D. W. Yarbrough, J. C. Mullins: Calculation of the Vapor Pressure and Heats of Vaporization and Sublimation of Liquids and Solids below One Atmosphere Pressure. VI. Krypton. u: Ga. Inst. Technol., Eng. Exp. Stn., Proj. A-764, Tech. Rep. No. 1, 1964. (NIST webbook).
  17. ^ а б в Helmut Sitzmann: Krypton. Thieme Chemistry (izdavač): RÖMPP Online – Version 3.13. Georg Thieme Verlag KG, Stuttgart 2011.
  18. ^ R. M. Barrer, D. J. Ruzicka: Non-stoichiometric clathrate compounds of water. Dio 4. – Kinetics of formation of clathrate phases. u: Transactions of the Faraday Society. 1962, 58, str. 2262–2271, doi:10.1039/TF9625802262.
  19. ^ Wolfram Saenger, Mathias Noltemeyer: Röntgen-Strukturanalyse des α-Cyclodextrin-Krypton-Einschlußkomplexes: Ein Edelgas in organischer Matrix. u: Angewandte Chemie. 1972, 86, 16, str. 594–595, doi:10.1002/ange.19740861611.
  20. ^ а б G. Audi, O. Bersillon, J. Blachot, A. H. Wapstra: The NUBASE evaluation of nuclear and decay properties Архивирано 2011-07-20 на сајту Wayback Machine (PDF). u: Nuclear Physics. 2003, vol. A 729, str. 3–128.
  21. ^ а б Dan Snyder: Resources on Isotopes – Periodic Table--Krypton Архивирано 2001-09-24 на сајту Wayback Machine. United States Geological Survey, stanje januar 2004.
  22. ^ P. Cauwels, J. Buysse, A. Poffijn, G. Eggermont: Study of the atmospheric 85Kr concentration growth in Gent between 1979 and 1999. u: Radiation Physics and Chemistry. 2001, 61, str. 649–651, doi:10.1016/S0969-806X(01)00361-9.
  23. ^ Zackary I. Cleveland, Galina E. Pavlovskaya, Nancy D. Elkins, Karl F. Stupic, John E. Repine, Thomas Meersmann: Hyperpolarized 83Kr MRI of lungs. u: Journal of Magnetic Resonance. 2008, 195, 2, str. 232–237, doi:10.1016/j.jmr.2008.09.020.

Литература[уреди | уреди извор]

Спољашње везе[уреди | уреди извор]