Литијум

Из Википедије, слободне енциклопедије
Иди на навигацију Иди на претрагу
Литијум
Lithium paraffin.jpg
Општа својства
Име, симболлитијум, Li
Изгледсребрнобела
Заступљеност0,006[1][2]
У периодном систему
Водоник Хелијум
Литијум Берилијум Бор Угљеник Азот Кисеоник Флуор Неон
Натријум Магнезијум Алуминијум Силицијум Фосфор Сумпор Хлор Аргон
Калијум Калцијум Скандијум Титанијум Ванадијум Хром Манган Гвожђе Кобалт Никл Бакар Цинк Галијум Германијум Арсен Селен Бром Криптон
Рубидијум Стронцијум Итријум Цирконијум Ниобијум Молибден Технецијум Рутенијум Родијум Паладијум Сребро Кадмијум Индијум Калај Антимон Телур Јод Ксенон
Цезијум Баријум Лантан Церијум Празеодијум Неодијум Прометијум Самаријум Европијум Гадолинијум Тербијум Диспрозијум Холмијум Ербијум Тулијум Итербијум Лутецијум Хафнијум Тантал Волфрам Ренијум Осмијум Иридијум Платина Злато Жива Талијум Олово Бизмут Полонијум Астат Радон
Францијум Радијум Актинијум Торијум Протактинијум Уранијум Нептунијум Плутонијум Америцијум Киријум Берклијум Калифорнијум Ајнштајнијум Фермијум Мендељевијум Нобелијум Лоренцијум Радерфордијум Дубнијум Сиборгијум Боријум Хасијум Мајтнеријум Дармштатијум Рендгенијум Коперницијум Нихонијум Флеровијум Московијум Ливерморијум Тенесин Оганесон
H

Li

Na
хелијумлитијумберилијум
Атомски број (Z)3
Група, периодагрупа 1 (алкални метали), периода 2
Блокs-блок
Категорија  алкални метал
Рел. ат. маса (Ar)[6,938, 6,997] конвенционална: 6,94
Ел. конфигурација[He] 2s1[3]
по љускама
2, 1
Физичка својства
Агрегатно стањечврсто
Тачка топљења453,65 K ​(180,50 °‍C, ​356,90 °F)
Тачка кључања1603[4] K ​(1330 °‍C, ​2426 °F)
Густина при с.т.0,534[5][6] g/cm3
течно ст., на т.т.0,512[2] g/cm3
Критична тачка3220 K, 67 MPa (екстраполирано)[7]
Топлота фузије3,00 kJ/mol
Топлота испаравања136 kJ/mol
Мол. топл. капацитет24,860 J/(mol·K)
Напон паре
P (Pa) 100 101 102
на T (K) 797 885 995
P (Pa) 103 104 105
на T (K) 1144 1337 1610
Атомска својства
Оксидациона стања+1
(веома кисео оксид)
Електронегативност0,98
Енергије јонизације1: 520,2 kJ/mol
2: 7298,1 kJ/mol
3: 11815,0 kJ/mol
Атомски радијус152 pm
Ковалентни радијус128±7 pm
Валсов радијус182 pm
Линије боје у спектралном распону
Остало
Кристална структураунутрашњецентр. кубична (BCC)
Body-centered cubic кристална структура за литијум
Брзина звука танак штап6000 m/s (на 20 °‍C)
Топл. ширење46 µm/(m·K) (на 25 °‍C)
Топл. водљивост84.8 W/(m·K)
Електрична отпорност92,8 nΩ·m (на 20 °‍C)
Магнетни распоредпарамагнетичан (= 1,4 · 10−5)[8]
Магнетна сусцептибилност (χmol)+14,2·10−6 cm3/mol(298 K)[9]
Јангов модул4,9 GPa
Модул смицања4,2 GPa
Модул стишљивости11 GPa
Мосова тврдоћа0.6
Бринелова тврдоћа5 MPa
CAS број7439-93-2
Историја
ОткрићеЈохан Август Арфведсон (1817)
Прва изолацијаЊилијам Томас Бранд (1821)
Главни изотопи
изо РА полуживот (t1/2) ТР ПР
6Li 5% стабилни
7Li 95% стабилни
6Li садржај може бити низак и до 3,75% у
природним узорцима. 7Li стога може да има
садржај до 96,25%.
референцеВикиподаци

Литијум (грч. lithos — камен), ознака Li, најлакши је од свих познатих метала. Има редни број 3 у периодном систему елемената, атомску тежину 6,94, специфичну тежину 0,534 (при 20 степени целзијуса). Представља смешу два изотопа 7Li(92,6%) и 6Li(7,4%).[10] Он је алкални метал у другој периоди периодном систему елемената. Литијум је врло лак метал и има најмању густину међу свим чврстим елементима (у стандардним условима).

Због своје велике реактивности, у природи се не налази у елементарном стању. На собној температури, само на потпуно сувом ваздуху је постојан дуже време, али врло споро реагује дајући литијум нитрид. У влажном ваздуху, на површини литијума врло брзо се формира мат сиви слој литијум хидроксида. Као и сви алкални метали, елементарни литијум реагује одмах већ при додиру са влагом на кожи те тако може проузроковати тешке опекотине и озледе због нагризања. Многа једињења литијума, која у воденим растворима дају јоне литијума сматрају се опасним за здравље, за разлику од аналогних једињења натријума и калијума.

Као микроелемент, литијум у облику својих соли је често саставни део минералних вода. У људском организму налазе се врло мале количине овог елемента. Не сматра се неопходним за живот и нема познате биолошке функције у организму. Међутим, неке соли литијума показују медицинско деловање и употребљавају се у литијумској терапији при лечењу биполарних поремећаја, манија, депресија и других сличних болести.

Историја[уреди]

Јохан Август Арфведсон је открио литијум

Шведски научник Јохан Арфведсон је открио литијум 1817. године. Он је 1817. приметио присуство неког непознатог елемента у минералу петалиту (Li[4]Al[4][Si4O10]), а недуго касније и у минералима сподумену (LiAl[Si2O6]) и лепидолиту (K(Li,Al)3[(Al,Si)4O10](F,OH)2), након анализе минералних узорака са острва Уте у Шведској. Његов академски учитељ Јакоб Берцелијус предложио је назив lithion, изведеницу из грчког λίθος líthosкамен, име које је изведено из материјала из којег је изолован, слично као и код других, до тада познатих, алкалних метала натријума и калијума, а касније се то име усталило у својој латинизираној форми lithium.[11] Немачки хемичар Кристиан Готлоб Гмелин приметио је 1818. године да соли литијума боје пламен у црвену боју. Оба научника су наредних година покушавали да добију овај елемент у чистом стању. Ово је успело исте године Бранду и Дејвију помоћу поступка електролизе литијум оксида (Li2O). Роберт Бунзен i Огастус Матиесен успели су 1855. помоћу електролизе литијум хлорида (LiCl) да добију још веће количине елементарног литијума. Атомску тежину му је одредио Ричардс претварањем литијум-хлорида у литијум перхлорат.[12]

Прва комерцијална производња почела је 1923. у немачкој компанији Metallgesellschaft (данас Chemetall GmbH), где се добијао помоћу електролизе истопљене смесе литијум- (LiCl) и калијум хлорида (KCl). Вилхелм Шленк је 1917. синтетисао прво литијуморганско једињење из органских једињења живе.[13] Све до краја Другог светског рата, осим употребе као средство за подмазивање (минерално уље са додатком литијум стеарата) и у индустрији стакла (литијум карбонат или литијум оксид), готово да и нису постојале апликације у којима се користио литијум. Међутим, то се променило након што је САД-у затребао трицијум за прављење хидрогенске бомбе, а који се може добити из литијума. Почела је знатна производња литијума, а једно од најиздашнијих налазишта био је рудник у близини града Кингс Маунтин у Северној Каролини.[14] Пошто трицијум има врло кратко време полураспада, неопходне количине литијума су константно расле, па су у САД у периоду од 1953. до 1963. нагомилане огромне залихе овог метала, које су тек након завршетка Хладног рата 1993. доспеле на светско тржиште.[14]

Осим класичних рударских извора, јефтиније добијање литијума је могуће и из сланих вода. Данас се литијум користи у великим количинама за разне сврхе као што је производња батерија, за полимеризацију еластомера, у грађевинарству, те за органске синтезе у фармацији и аргохемијској индустрији. Од 2007. најважнији сегмент употребе литијума су примарне (такозване „литијумске”) батерије и акумулатори (секундарне или литијум-јонске батерије).[15]

Налажење у природи[уреди]

Заступљен је у земљиној кори у количини од 0,0018 %, али је и поред мале процентуалне заступљености веома чест. За разлику од осталих алкалних метала, литијум се у природи налази у облику силиката. Минерали који га садрже су лепидолит, сподумен, амблигонит и петалит, од којих неки и служе као полазна сировина за његово добијање. Највећа лежишта руде литијума су у Боливији, Чилеу, Аргентини, Кини и Аустралији.[16] Пронађен је и у пепелу многих биљака као што је дуван, али и у млеку и крви.[12]

Добијање[уреди]

Добија се екстракцијом из минерала на разне начине, али се сви они заснивају или на слабијој растворљивости литијум-карбоната, а у односу на карбонате других алкалних метала или на растворљивости литијум хлорида у алкохолу. Такође, литијум се може добити електролизом стопљеног литијум хлорида.[12] Из сланих раствора који садрже литијум, може се исталожити литијум-карбонат разблаживањем водом и додавањем натријум карбоната (соде). Затим се упарава слана вода у ваздуху све док удео литијума не пређе 0,5%. Додавањем натријум карбоната из ње се почиње таложити тешко растворљиви литијум карбонат:

.

Нерачунајући производњу у САД, током 2008. године у свету је произведено око 27.400 тона литијума,[17] а углавном се на тржишту продавао у облику литијум карбоната (Li2CO3). Од ове количине 12.000 тона отпада на чилеанску Салар де Атакама, а готово 7.000 тона на аустралијски рудник Гринбушес.

Да би се добио метални литијум, прво се литијум карбонату додаје хлороводонична киселина. При томе настаје угљен-диоксид који се издваја као гас, те преостаје растворени литијум хлорид. Овај раствор се ставља у вакуумски испаривач где се упарава, све док се хлорид не искристализује:

Уређаји и опрема која се користи за добијање литијум-хлорида морају бити начињени из посебних врста челика или легура никла, јер слани раствор делује изузетно корозивно. Метални литијум се добија електролизом топивим електродама при температури од 352 °C из истопљене еутектичне смесе из 52 масена постотка литијум хлорида и 48 масена постотка калијум хлорида:

односно:

.

Међутим, у процесу електролизе, калијум се не издваја, јер у истопљеном хлориду он има нижи електродни потенцијал. За разлику од њега, трагови натријума се издвајају, те чине литијум изузетно реактивним (што је предност у органској хемији, али не и за Li-батерије). Течни литијум се скупља на површини електролита, те се релатно лако може издвојити из електролитичке ћелије. Литијум је такође могуће добити и електролизом литијум-хлорида у пиридину. Ова метода је посебно погодна за лабораторијско добијање мањих количина литијума.

Својства[уреди]

Физичке[уреди]

Кристална структура литијума, a = 351 pm[18]

У чистом стању и у одсуству ваздуха, има сребрнастометални сјај, по чему личи на натријум и калијум, али од њих је тврђи. Такође, има и вишу тачку топљења, која износи 186 °C, а кључа на око 1.336 °C. Густина износи свега 0,534 g/cm3[19] и представља најмању густину од свих чврстих елемената.[12] Само водоник у чврстом стању при температури од −260  °C има мању густину од 0,0763 g/cm3.[19] Прилично је испарљив и његова пара боји пламен Бунзенове грејалице кармин црвено, што се користи приликом квалитативне анализе његових соли.[20] Има највећу специфичну топлоту од свих елемената и она износи 0,96 на 50  °C. Литијум међу осталим алкалним металима има највише тачке топљења и кључања као и највећи специфични топлотни капацитет. Иако он има највећу тврдоћу од свих алкалних метала, може се резати ножем а његова Мосова тврдоћа износи 0,6.[21][6] Као типичан метал, добар је проводник струје (проводљивост око 18% од проводљивости бакра[1]) као и топлоте.

Попут других алкалних метала, и литијум се кристализује у кубном, просторно центрираном, густо пакованом кристалном систему у просторној групи Im3m са параметром решетке a = 351 pm и две формулске јединице по елементарној ћелији. На изузетно ниским температурама од 78 K мења се кристална структура спонтаним прелазом било у хексагоналну структуру типа магнезијума са параметрима решетке a = 311 pm и c = 509 pm или изменом у изобличену кубну структуру типа бакра (кубна површинско центрирана) са параметром решетке a = 438 pm. Тачан узрок због чега се јавља једна од ових структура није познат.[18]

Литијум испољава велики број сличности са магнезијумом, што се, између осталог, исказује и у чињеници јављања хетеротипских мешаних кристала од литијума и магнезијума, а који имају особину изодиморфије. Иако се магнезијум најгушће кристализује хексагонално, док се насупрот њега литијум кристализује у кубину просторно центрирану кугласту решетку, оба метала се могу хетеротипски мешати.[22] Међутим, ово се дешава само у врло ограниченом распону концентрација, при чему код вишка неке од компоненти, једна од њих намеће (присиљава да промени) кристалну решетку другој.

Јон литијума са −520 kJ/mol[23] има највишу енталпију хидратације међу свим јонима алкалних метала. Стога се он у води у потпуности хидратизује и снажно привлачи молекуле воде. Јон литијума гради две хидратне љуске, једну унутрашњу са четири молекула воде, која је изузетно снажно повезана са литијумовим јоном преко својих атома кисеоника, те једну вањску љуску, која је повезана са јоном Li[H2O]4+ преко „водоничних мостова” са другим молекулима воде. Због тога је јонски радијус хидратизованих јона литијума веома велик, већи чак и од неких јона тешких алкалних метала као што су рубидијум и цезијум, који у воденим растворима не граде такву врсту снажно везаних хидратних љуски.

Луисова формула дилитијума

У гасовитом стању, литијум се не налази у виду појединачних атома, већ у молекуларном стању као дилитијум Li2. На тај начин једновалентни литијум достиже попуњену s-атомску орбиталу а тиме и енергетски повољнију ситуацију. Дилитијум има дужину везе од 267,3 pm и енергију везе од 101 kJ/mol.[24]

Хемијске[уреди]

Метални литијум обложен нитридом због контакта са ваздухом

Литијум је, као и сви други алкални метали, врло реактиван и врло лако реагује са многим елементима и једињењима (попут воде дајући топлоту). Међу свим алкалним металима, он је највише реактиван. Посебност, по којој се литијум разликује од других алкалних метала је његова реакција са молекуларним азотом градећи литијум нитрид, реакција која се полако одвија већ и на собној температури:

.

Ово је могуће због велике густине набоја јона литијума Li+ те тако и велике енергије решетке литијум нитрида. Литијум са -3,04 V[23] има најнижи електродни потенцијал у целом периодном систему, те је стога и најмање племенити елемент од свих. Као и сви алкални метали, елементарни литијум се може чувати у керозину (петролеуму) или парафинском уљу, јер у супротном реагује са азотом и кисеоником из ваздуха.

Пошто су радијуси јона литијума Li+ и магнезијума Mg2+ слични по величини, такође постоје и одређене сличности у особинама литијума односно његових једињења са магнезијумом или једињењима магнезијума. Ова сличност у особинама између два елемента из суседних група периодног система позната је и као дијагонална веза (дијагонални ефект). Тако литијум, за разлику од натријума, гради многа металноорганска једињења (органолитијумска једињења), попут бутил литијума или метил литијума. Иста сличност уочена је и између берилијума и алуминијума, као и између бора и силицијума.

На ваздуху гори бљештавом белом светлошћу попут магнезијума, градећи моноксид, али друге оксиде гради теже. Са водоником се једини на црвеном усијању градећи литијум хидрид, а са азотом литијум нитрид. Директно се једини и са халогенима и сумпором и може се рећи да је хемијски активан, али мање од других алкалних метала. Бурно реагује са киселинама, а у реакцији са водом се не пали, чак ни ако вода кључа. Тада настаје реакција:[12]

Изотопи[уреди]

У природи се јављају оба стабилна изотопа литијума 6Li (7,6 %) и 7Li (92,4 %). Осим њих, познато је још неколико нестабилних изотопа почев од 4Li преко 8Li до 12Li, који се могу добити само вештачким путем. Њихова времена полураспада износе само неколико милисекунди.[25]

Реакције изотопа литијума и водоника у Кастл-Браво термонуклеарној бомби. Планиране (очекиване) и стварне реакције изотопа 7Li

Изотоп 6Li има врло важну улогу у технологији нуклеарне фузије. Поред улоге у нуклеарним фузијским реакторима, служи и као полазни материјал за добијање трицијума у хидрогенској бомби, који је неопходан за фузију са деутеријумом којом се производи енормна количина енергије. Трицијум настаје у плашту фузијског реактора (такозваном бланкету) или унутар хидрогенске бомбе поред хелијума бомбардирањем литијума 6Li неутронима, који настају током фузије, а према следећој нуклеарној реакцији:

.

Такође, могућа је и реакција

али је она мање погодна.

Из овог разлога, изотоп 6Li се издваја при производњи литијума.[26] Раздвајање изотопа се може вршити на примјер путем размене изотопа литијум амалгама и неког раствореног литијумовог једињења (попут литијум хлорида у етанолу). При томе се може достићи принос од око 50%.[27]

Изотоп 7Li настаје у незнатним количинама у нуклеарним централама путем нуклеарне реакције изотопа бора 10B (кориштен као успоривач неутрона) са неутронима.[28]

Оба изотопа литијума 6Li и 7Li кориштена су у експериментима са ултрахладним кватним гасовима. Тако је начињен и први Бозе-Ајнштајнов кондензат са (бозон) изотопом 7Li.[29] Међутим 6Li је фермион[30][31] те су научници 2003. године успели да молекул овог изотопа претворе у суперфлуид.[32]

Употреба[уреди]

Литијумска батерија

Највећи део произведених соли литијума се не редукује до металног литијума, већ се користи било директно као литијум карбонат, литијум хидроксид, литијум хлорид, литијум бромид или се преводи у неки друго једињење литијума. Као метал, он је неопходан у одређеном броју апликација, међу којима је највише у индустрији батерија и индустрији стакла и керамике.

Као метал[уреди]

Део произведеног металног литијума користи се за добијање његових једињења, која се не могу директно добити из литијум карбоната. То су, у првом реду, органолитијумска једињења попут бутил литијума, једињења литијума и водоника као литијум хидрида (LiH) или литијум алуминијум хидрида као и литијум амида. Због способности литијума да реагује директно са азотом, користи се и за уклањање тог гаса тамо где је то неопходно.

Метални литијум је изузетно снажно редукционо средство. Он редукује многе материјале, који иначе не реагују са другим редукционим средствима. Употребљава се и за делимично хидрирање ароматичних једињења (Бирчова редукција). У металургији, користи се за одстрањивање сумпора из истопљеног жељеза, дезоксидацију и уклањање угљеника из истопљених метала.

Пошто литијум има веома низак електродни потенцијал, може се употребљавати у батеријама као анода. Такве литијумске батерије имају врло велику густину енергије, а могу произвести посебно висок електрични напон. Треба разликовати литијумске батерије које се не могу поновно пунити са пуњивим литијум-јонским батеријама (акумулаторима), код којих се као катода користи метални оксид литијума као на примјер литијум кобалт оксид, а на страни аноде користи се графит или неко једињење на којем се интеркалирају јони литијума.[33]

Састојак легура[уреди]

Литијум се понекад додаје другим металима при њиховом легирању, ради побољшања њихових особина. Често за те сврхе довољне и врло мале количине литијума. Многим супстанцама додавање литијума побољшава отпорност на извлачење, тврдоћу и механичку еластичност. Један од примера легура са литијумом је такозвани Bahnmetall (нем. жељезнички метал), легура олова са око 0,04% литијума, која се користи у Немачкој као материјал за израду ваљкастих лежаја на жељезницама. Такође и у магнезијумским и алуминијумским легурама, литијум се додаје за побољшање механичких особина. Истовремено, легуре литијума су врло лаке и стога се често користе и у авионској и свемирској техници.

Истраживање (атомска физика)[уреди]

У области атомске физике, литијум се врло често употребљава, јер је као 6Li једини међу алкалним металима са стабилним фермионским изотопом, због чега је погодан за истраживање ефеката у ултрахладним фермионским квантним гасовима. Истовремено, исказује веома широку Фешбачову резонанцу, која омогућава да се дужина распршења између атома подешава по жељи, при чему се не мора посебно прецизно одржавати магнетно поље због ширине резонанце.

Медицина[уреди]

Већ од 1850. литијум се почео користити у медицини западноевропских земаља као средство против гихта. Међутим, није се показао делотворан. И други видови употребе литијумских соли у медицини су такође остали безуспешни, између осталих и као средство против инфективних болести.

Тек 1949. аустралијски физијатар Џон Кејд описао је могућу област употребе литијумових соли. Он је заморцима убризгавао различита хемијска једињења, између осталих и соли литијума, од чега су они много слабије реаговали на вањске подражаје, те су били много мирнији али не и поспани.[34] Тек након што је исто испробао и на себи између 1952. и 1954. Кејд је подржао употребу литијум карбоната као лека у терапији депресивних, шизофрених и маничних пацијената, а након спроведене опсежне студије на психијатријској болници у Рискову (Данска).[35] Тиме су постављени будући темељи данашње терапије литијумом.

Референце[уреди]

  1. 1,0 1,1 dtv-Atlas Chemie. 1 (9 изд.). dtv. 2000. ISBN 9783423032179. 
  2. 2,0 2,1 Binder, Harry H. der chemischen Elemente (1999). Lexikon. Stuttgart: S. Hirzel Verlag. ISBN 978-3-7776-0736-8. 
  3. ^ Wieser, Michael E.; Coplen, Tyler B. (2010). „Atomic weights of the elements 2009 (IUPAC Technical Report)”. Pure and Applied Chemistry: 1. doi:10.1351/PAC-REP-10-09-14. 
  4. ^ Zhang, Yiming; Julian R. G. Evans; Yang, Shoufeng (2011). „Corrected Values for Boiling Points and Enthalpies of Vaporization of Elements in Handbooks”. Journal of Chemical & Engineering Data. 56: 328—337. doi:10.1021/je1011086. 
  5. ^ Greenwood, A.; Earnshaw (1988). Chemie der Elemente (1 изд.). Weinheim: VCH. стр. 97. ISBN 978-3-527-26169-7. 
  6. 6,0 6,1 "„Lithium”. The Gale Encyclopedia of Science. Gale. 2008. ISBN 978-1578516803. Приступљено 5. 9. 2014. [мртва веза]
  7. ^ Bergmann, Ludwig; Schaefer, Clemens; Kassing, Rainer (2005). Lehrbuch der Experimentalphysik, Band 6: Festkörper (2 изд.). Walter de Gruyter. стр. 361. ISBN 978-3-11-017485-4. 
  8. ^ Robert C. Weast, ур. (1990). CRC Handbook of Chemistry and Physics. Boca Raton: CRC (Chemical Rubber Publishing Company). стр. E—129 do E—145. ISBN 978-0-8493-0470-5. 
  9. ^ Weast, Robert (1984). CRC, Handbook of Chemistry and Physics. Boca Raton, Florida: Chemical Rubber Company Publishing. стр. E110. ISBN 978-0-8493-0464-4. 
  10. ^ Housecroft, C. E.; Sharpe, A. G. (2008). Inorganic Chemistry (3. изд.). Prentice Hall. ISBN 978-0-13-175553-6. 
  11. ^ Figurowski, N. (1981). Die Entdeckung der chemischen Elemente und der Ursprung ihrer Namen. Köln: Aulis-Verlag Deubner. стр. 135. ISBN 978-3-7614-0561-1. 
  12. 12,0 12,1 12,2 12,3 12,4 Паркес, Г. Д. & Фил, Д. 1973. Мелорова модерна неорганска хемија. Научна књига. Београд.
  13. ^ Elschenbroich, C. (2009). Organometallchemie (6 изд.). Leipzig: Teubner B.G. Gmbh. стр. 16. ISBN 9783835192232. 
  14. 14,0 14,1 Kogel, Jessica Elzea (2006). Industrial minerals & rocks: commodities, markets, and uses (7 изд.). SME. стр. 599. ISBN 978-0-87335-233-8. 
  15. ^ United States Geological Survey: Minerals Yearbook 2007: Lithium. (PDF), 2007.
  16. ^ Dodaci; Po definicijama USGS, bazne rezerve obuhvataju one dijelove resursa koji imaju dovoljan potencijal da postanu ekonomski dostupne u okviru planiranih nivoa a izvan onih koji pretpostavljaju dokazane tehnologije i trenutne ekonomije. Bazna rezerva uključuje one resurse koji su trenutno ekonomični (rezerve), granično ekonomični (granične rezerve) i neke od onih koji su trenutno neekonomični (subekonomski resursi).
  17. ^ Lithium na USGS Mineral Resources, 2009 (PDF).
  18. 18,0 18,1 K. Schubert: Ein Modell für die Kristallstrukturen der chemischen Elemente u: Acta Crystallographica 30, 1974, str. 193–204, doi:10.1107/S0567740874002469.
  19. 19,0 19,1 Holleman, Arnold F.; Wiberg, Egon; Wiberg, Nils (1985). Lehrbuch der Anorganischen Chemie (91–100 изд.). Berlin: de Gruyter. стр. 928—931. ISBN 978-3-11-007511-3. 
  20. ^ Рондовић, Д. 1991. Квалитативна хемијска анализа. Научна књига: Београд.
  21. ^ Litijum na stranici webelements.com, fizičke osobine.
  22. ^ H. Malissa: Die Trennung des Lithiums vom Magnesium in Lithium-Magnesium-Legierungen. u: Fresenius’ Journal of Analytical Chemistry. 171, br. 4, 1959, str. 281–282, doi:10.1007/BF00555410.
  23. 23,0 23,1 Binnewies, M. (2004). Allgemeine und Anorganische Chemie (1 изд.). Spektrum Verlag. стр. 241. ISBN 978-3827402080. 
  24. ^ Winter, Mark J. Bonding (1994). Chemical. Oxford University Press. ISBN 978-0-19-855694-7. 
  25. ^ The Nubase evaluation of nuclear and decay properties (PDF, engl.).
  26. ^ ABC oružje.
  27. ^ Bauer, Richard (1985). „Lithium – wie es nicht im Lexikon steht”. Chemie in unserer Zeit. 19 (5): 167—173. doi:10.1002/ciuz.19850190505. 
  28. ^ Volkmer, Martin (2007). Kernenergie Basiswissen (PDF). Inforum. стр. 39. ISBN 978-3-926956-44-6. Архивирано из оригинала (pdf) на датум 17. 6. 2012. Приступљено 1. 4. 2019. 
  29. ^ C. C. Bradley, C. A. Sackett, J. J. Tollett, R. G. Hulet: Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions. u: Physical Review Letters 75, br. 9, 1995, str. 1687–1690, doi:10.1103/PhysRevLett.75.1687 (PDF[мртва веза]).
  30. ^ Fermionic Studies in 6Lithium
  31. ^ Ling, A. V. (2006). Focus on Boson Research. Nova Publishers. стр. 184. ISBN 9781594545207. 
  32. ^ S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, S. Riedl, C. Chin, J. Hecker Denschlag, R. Grimm: Bose-Einstein Condensation of Molecules. u: Science. 302, br. 5653, 2003, str. 2101–2103, doi:10.1126/science.1093280
  33. ^ O litijskim baterijama Архивирано на сајту Wayback Machine (јануар 24, 2009) (на језику: енглески) na stranici TU Graz (PDF).
  34. ^ Cade, J. (1949). „Lithium salts in the treatment of psychotic excitement”. Med. J. Australia. 36: 349—352. PMID 18142718. 
  35. ^ Schou, M. (2001). Lithiumbehandlung der manisch-depressiven Krankheit. Thieme. ISBN 978-3-13-593304-7. 

Спољашње везе[уреди]