Максвел–Болцманова дистрибуција

С Википедије, слободне енциклопедије

У физици (посебно у статистичкој механици), Максвел-Болцманова расподела је посебна дистрибуција вероватноће названа по Џејмсу Клерку Максвелу и Лудвигу Болцману.

Прво је дефинисана и коришћена за описивање брзина честица у идеалним гасовима, где се честице слободно крећу унутар непокретног контејнера без међусобне интеракције, изузев врло кратких судара у којима међусобно или са својим окружењем размењују енергију и моментум. Термин „честица“ у овом контексту односи се само на гасовите честице ( атоме или молекуле ), а претпоставља се да је систем честица достигао термодинамичку равнотежу . [1] Енергије таквих честица прате оно што је познато као Маквел-Болцманова статистика, а статистичка расподела брзина изведена је изједначавањем енергија честица са кинетичком енергијом .

Математички, Маквел-Болцманова расподела је хи дистрибуција са три степена слободе (компоненте вектора брзине у Еуклидовом простору ), са параметром скале који мери брзине у јединицама пропорционалним квадратном корену од (однос температуре и масе честица). [2]

Маквел-Болцанова расподела резултат је кинетичке теорије гасова, која пружа поједностављено објашњење многих основних гасних својстава, укључујући притисак и дифузију . [3] Маквел-Болцманова расподела се у основи примењује на брзине честица у три димензије, али се испоставило да зависи само од брзине ( износа брзине) честица. Расподела вероватноће брзине честице указује на то које су брзине вероватније: честица ће имати брзину случајно одабрану из расподеле и већа је вероватноћа да ће бити унутар једног опсега брзина од другог. Кинетичка теорија гасова односи се на класични идеалан гас, који је идеализација стварних гасова. У стварним гасовима постоје различити ефекти (нпр. Ван дер Валсове интеракције, вртложни ток, релативистичка ограничења брзине и интеракције квантне размене ) који могу учинити њихову расподелу брзине другачијом од Максвел-Болцманновог модела. Међутим, разређени гасови на уобичајеним температурама понашају се готово као идеалан гас и Максвелова расподела брзине је одлична апроксимација за такве гасове. Идеалне плазме, које су јонизовани гасови са довољно малом густином, често имају и расподелу честица која је делимично или у потпуности максвеловска. [4]

Дистрибуцију је први извео Максвел 1860. године на хеуристичким основама. [5] Болцман је касније, 1870-их, спровео значајна истраживања физичког порекла ове дистрибуције.

Дистрибуција се може извести на основу тога што максимализује ентропију система. Списак извода су:

  1. Максимална расподела вероватноће ентропије у фазном простору, са ограничењем очувања просечне енергије ;
  2. Канонски ансамбл .

Функција дистрибуције[уреди | уреди извор]

Под претпоставком да систем од интереса садржи велики број честица, удео честица унутар бесконачно малог елемента тродимензионалног простора брзине,, центриран на вектор брзине величине, је, у којима

где је маса честица и је производ Болцманове константне и термодинамичке температуре .

Функције густине вероватноће брзине брзине неколико племенитих гасова на температури од 298,15 К (25° Ц). И оса је С / М, тако да површина под било којим секције криве (која представља вероватноћу брзине бића у том опсегу) је без димензија.

Елемент простора брзине можемо записати као d = d d d, за брзине у стандардном картезијанском координатном систему или као d = д d у стандардном сферном координатном систему, где d је елемент пуног угла. У овом случају, је дата као функција расподеле вероватноће, правилно нормализована тако да d преко свих брзина једнака је један. У физици плазме, расподела вероватноће се често помножи са густином честица, тако да је интеграл резултујуће функције расподеле једнак густини.

Максвелова функција расподеле за честице које се крећу само у једном смеру, ако је овај правац , је

који се могу добити интегрисањем тродимензионалне форме дане изнад и .

Препознавши симетрију , може се интегрисати преко пуног угла и написати расподела вероватноће брзина као функција

Ова функција густине вероватноће даје вероватноћу, по јединици брзине, налажења честице брзином близу . Ова једначина је једноставно Максвел-Болцманова расподела (дата у инфо кутији) са параметром расподеле . Максвел-Болцманова расподела еквивалентна је хи дистрибуцији са три степена слободе и параметром скале .

Најједноставнија обична диференцијална једначина коју задовољава расподела је:

или представљено без јединице:

Дарвин-Фовлер-овом методом средњих вредности добија се Максвел-Болцманова расподела као тачан резултат.

Однос према 2D Максвел-Болцмановој расподели[уреди | уреди извор]

Симулација 2D гаса који се релаксира према Максвел-Болцмановој расподели брзине

За честице ограничене да се крећу у равни, расподела брзине је дата са

Ова расподела се користи за опис система у равнотежи. Међутим, већина система не започиње у равнотежном стању. Еволуцијом система ка његовом равнотежном стању управља Болцманова једначина . Једначина предвиђа да ће за интеракције кратког домета равнотежна расподела брзине следити Максвел-Болцманнову расподелу. Десно је симулација молекуларне динамике (МД) у којој је 900 честица тврде сфере ограничено да се креће у правоугаонику. Они комуницирају помоћу савршено еластичних судара . Систем се покреће из равнотеже, али расподела брзине (у плавој боји) брзо конвергира у 2D Маквелл-Болтзманн расподелу (у наранџастој боји).

Типичне брзине[уреди | уреди извор]

Solar Atmosphere Maxwell–Boltzmann Distribution.
Максвел-Болцманова расподела која одговара соларној атмосфери. Масе честица су једна протонска маса ,, а температура је ефективна температура сунчеве фотосфере , . означавају највероватније, средње и средње средње квадратне брзине. Њихове вредности су и .

Средња брзина , највероватнија брзина ( режим ) vp и средња квадратна брзина могу се добити из својстава Максвелове расподеле.

Ово добро функционише за готово идеалне, монатомске гасове попут хелијума, али и за молекуларне гасове попут двоатомског кисеоника . То је зато што, упркос већем топлотном капацитету (већој унутрашњој енергији при истој температури) због већег броја степени слободе, њихова транслациона кинетичка енергија (а самим тим и брзина) остаје непромењена. [6]

}}-->Укратко, типичне брзине су повезане на следећи начин:

Средња квадратна брзина директно је повезана са брзином звука c у гасу, за

где је адијабатски индекс, f је број степена слободе појединачног молекула гаса. За горњи пример, двоатомни азот (приближни ваздух ) на 300 , [7] и

права вредност ваздуха се може апроксимализовати коришћењем просечне моларне тежине ваздуха ( 29 ), дајући 347 на 300 (корекције за променљиву влажност ваздуха су реда од 0,1% до 0,6%).

Просечна релативна брзина

где је тродимензионална расподела брзине

Интеграл се лако може извршити променом на координате и

Извођење и сродне дистрибуције[уреди | уреди извор]

Максвел – Болтзманн статистика[уреди | уреди извор]

Првобитно извођење из 1860. године Џејмса Клерка Максвела био је аргумент заснован на молекуларним сударима кинетичке теорије гасова као и одређеним симетријама у функцији расподеле брзине; Максвел је такође дао рани аргумент да ови молекуларни судари имају тенденцију ка равнотежи. [5] [8] После Максвела, Лудвиг Болцман је 1872. године [9] такође извео расподелу на механичким основама и тврдио да би гасови временом требало да теже ка тој расподели, услед судара (види Х-теорему ). Касније (1877) [10] је поново извео расподелу у оквиру статистичке термодинамике . Изводи у овом одељку су у складу са Болцмановим извођењем из 1877. године, почев од резултата познатог као Максвел -Болцманн статистика (из статистичке термодинамике). Максвел -Болцманова статистика даје просечан број честица пронађених у датом једночестичном микростању . Под одређеним претпоставкама, логаритам фракције честица у датом микростању сразмеран је односу енергије тог стања и температуре система:

Претпоставке ове једначине су да честице не интерагују међусобно и да су класичне; то значи да се стање сваке честице може сматрати независно од стања осталих честица. Поред тога, претпоставља се да су честице у топлотној равнотежи. [1] [11]

Ова веза се може написати као једначина увођењем нормализујућег фактора:

 

 

 

 

(1)

где:

  • Ni је очекивани број честица у једночестичном микростању i ,
  • N је укупан број честица у систему,
  • Ei је енергија микростања i ,
  • збир над индексом j узима у обзир сва микростања,
  • T је равнотежна температура система,
  • k је Болцманова константа .

Деноминатор у једначини ( 1 ) је једноставно нормализујући фактор тако да односи доприносе јединству- другим речима, то је нека врста партицијске функције (за једнопартицијски систем, а не уобичајена партицијска функција читавог система).

Будући да су брзина и велоцитет повезани са енергијом, једначина ( 1 ) се може користити за добијање односа између температуре и брзине честица гаса. Све што је потребно је открити густину микростања у енергији, која се одређује поделом простора импулса на регионе једнаке величине.

Расподела вектора импулса[уреди | уреди извор]

За потенцијалну енергију се узима нула, тако да је сва енергија у облику кинетичке енергије. Однос између кинетичке енергије и импулса за масивне нерелативистичке честице је

 

 

 

 

(2)

где је п 2 квадрат импулсног вектора p = [ п кп ип з ]. Стога једначину ( 1 ) можемо преписати као:

 

 

 

 

(3)

где је З партицијска функција, која одговара деноминатору у једначини ( 1 ). Овде је m молекулска маса гаса, Т термодинамичка температура и k Болцманова константа . Ова дистрибуција је пропорционалан функцији густине вероватноће f п за проналажење молекула са овим вредностима компоненти импулса, па:

 

 

 

 

(4)

Нормализујућа константа може се одредити препознавањем да вероватноћа молекула има одређени замах мора бити 1. Интегрисањем експоненцијала у ( 4 ) по свим pk,p y и pz добија се фактор од

Тако да је нормализована функција расподеле:

Сматра се да је расподела производ три независне нормално дистрибуиране променљиве ,, и, са одступањем . Поред тога, може се видети да ће величина моментума бити распоређена као Максвел-Болцманнова расподела, са . Максвел-Болцманнова расподела за импулс (или једнако за брзине) може се темељније добити помоћу Х-теореме у равнотежи у оквиру кинетичке теорије гасних оквира.

Расподела енергије[уреди | уреди извор]

Расподела енергије је импозантна

 

 

 

 

(7)

где је бесконачно мали запремински простор импулса фазног простора који одговара енергетском интервалу . Користећи сферну симетрију односа дисперзије енергије и импулса, ово се може изразити у на следећи начин :

 

 

 

 

(8)

Користећи тада ( 8 ) у ( 7 ) и изражавајући све у смислу енергије, добијамо

Будући да је енергија пропорционална збиру квадрата три нормално распоређене компоненте импулса, ова расподела енергије може се записати еквивалентно гама расподели, користећи параметар облика, и параметар скале, .

Користећи теорему о равнотежи, с обзиром да је енергија равномерно распоређена између сва три степена слободе у равнотежи, такође можемо поделити у скуп хи-квадрат дистрибуција, где енергија по степену слободе,, дистрибуира се као хи-квадрат дистрибуција са једним степеном слободе, [12]

У равнотежи, ова расподела ће важити за било који број степени слободе. На пример, ако су честице ригидни масени диполи фиксног диполног момента, имаће три транслациона степена слободе и два додатна ротациона степена слободе. Енергија у сваком степену слободе биће описана према горњој хи-квадрат расподели са једним степеном слободе, а укупна енергија биће распоређена према хи-квадрат дистрибуцији са пет степена слободе. То има импликације у теорији специфичне топлоте гаса.

Максвел-Болцманн-ова расподела се такође може добити узимајући у обзир да је гас врста квантног гаса за који се може извршити апроксимација ε >> к Т.

Расподела за вектор брзине[уреди | уреди извор]

Схватајући да је густина вероватноће брзине f v пропорционална функцији густине вероватноће импулса за

и користећи p = m v добијамо

што је Максвел-Болцманова асподела брзине. Вероватноћа проналаска честице брзином у бесконачно малом елементу [ dv kdv y ,dv z ] о брзини v = [ vk ,v yv z] је

Као и моментум, и за ову расподелу се види да је производ три независне нормално дистрибуиране променљиве ,, и, али са одступањем . Такође се може видети да је Максвел-Болцманова расподела брзине за векторску брзину [v kv yvz ] је умножак расподеле за сваки од три правца:

где је расподела за један правац

Свака компонента вектора брзине има нормалну расподелу са средњом вредношћу и стандардна девијација, тако да вектор има тродимензионалну нормалну расподелу, одређену врсту мултиваријантне нормалне расподеле, са средњом вредности и коваријанција, где је идентитет матрица.

Расподела брзине[уреди | уреди извор]

Максвел-Болцманова расподела брзине следи непосредно из расподеле вектора брзине, горе. Имајте на уму да је брзина

а елемент запремине у сферним координатама

где и су сферни координатни углови вектора брзине. Интеграција функције густине вероватноће брзине преко пуних углова даје додатни фактор од . Расподела брзине са заменом брзине за збир квадрата векторских компонената:

У n -димензионалном простору[уреди | уреди извор]

У n- димензионалном простору Максвел-Болцманова расподела постаје:

Дистрибуција брзине постаје:

Следећи интегрални резултат је користан:

где је функција Гама . Овај резултат се може користити за израчунавање тренутака функције расподеле брзине:

која је сама средња брзина .

Извод функције расподеле брзине:

Такође видети[уреди | уреди извор]

  • Квантна Болцманова једначина
  • Маквелл – Болтзманн статистика
  • Маквелл-Јуттнерова расподела
  • Болцманова расподела
  • Болцманов фактор
  • Раилеигх дистрибуција
  • Кинетичка теорија гасова

Референце[уреди | уреди извор]

  1. ^ а б Statistical Physics (2nd Edition), F. Mandl, Manchester Physics, John Wiley & Sons, 2008, ISBN 9780471915331
  2. ^ University Physics – With Modern Physics (12th Edition), H.D. Young, R.A. Freedman (Original edition), Addison-Wesley (Pearson International), 1st Edition: 1949, 12th Edition: 2008, ISBN 978-0-321-50130-1
  3. ^ Encyclopaedia of Physics (2nd Edition), R.G. Lerner, G.L. Trigg, VHC publishers, 1991, ISBN 3-527-26954-1 (Verlagsgesellschaft), ISBN 0-89573-752-3 (VHC Inc.)
  4. ^ N.A. Krall and A.W. Trivelpiece, Principles of Plasma Physics, San Francisco Press, Inc., 1986, among many other texts on basic plasma physics
  5. ^ а б See:
  6. ^ Raymond A. Serway; Jerry S. Faughn; Chris Vuille (2011). College Physics, Volume 1 (9th изд.). стр. 352. ISBN 9780840068484. 
  7. ^ Nitrogen at room temperature is considered a "rigid" diatomic gas, with two rotational degrees of freedom additional to the three translational ones, and the vibrational degree of freedom not accessible.
  8. ^ Gyenis, Balazs (2017). „Maxwell and the normal distribution: A colored story of probability, independence, and tendency towards equilibrium”. Studies in History and Philosophy of Modern Physics. 57: 53—65. Bibcode:2017SHPMP..57...53G. arXiv:1702.01411Слободан приступ. doi:10.1016/j.shpsb.2017.01.001. 
  9. ^ Boltzmann, L., "Weitere studien über das Wärmegleichgewicht unter Gasmolekülen." Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften in Wien, mathematisch-naturwissenschaftliche Classe, 66, 1872, pp. 275–370.
  10. ^ Boltzmann, L., "Über die Beziehung zwischen dem zweiten Hauptsatz der mechanischen Wärmetheorie und der Wahrscheinlichkeitsrechnung respektive den Sätzen über das Wärmegleichgewicht." Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften in Wien, Mathematisch-Naturwissenschaftliche Classe. Abt. II, 76, 1877, pp. 373–435. Reprinted in Wissenschaftliche Abhandlungen, Vol. II, pp. 164–223, Leipzig: Barth, 1909. Translation available at: http://crystal.med.upenn.edu/sharp-lab-pdfs/2015SharpMatschinsky_Boltz1877_Entropy17.pdf Архивирано на сајту Wayback Machine (5. март 2021)
  11. ^ McGraw Hill Encyclopaedia of Physics (2nd Edition), C.B. Parker, 1994, ISBN 0-07-051400-3
  12. ^ Laurendeau, Normand M. (2005). Statistical thermodynamics: fundamentals and applications. Cambridge University Press. стр. 434. ISBN 0-521-84635-8. , Appendix N, page 434

Додатна литература[уреди | уреди извор]

  • Физика за научнике и инжењере - са савременом физиком (6. издање), ПА Типлер, Г. Мосца, Фрееман, 2008,ISBN 0-7167-8964-7
  • Термодинамика, од концепата до примене (друго издање), А. Схавит, Ц. Гутфингер, ЦРЦ Пресс (Таилор и Францис Гроуп, САД), 2009,ISBN 978-1-4200-7368-3
  • Хемијска термодинамика, ДЈГ Ивес, Универзитетска хемија, Мацдоналд Тецхницал анд Сциентифиц, 1971,ISBN 0-356-03736-3
  • Елементи статистичке термодинамике (друго издање), ЛК Насх, Принциплес оф Цхемистри, Аддисон-Веслеи, 1974,ISBN 0-201-05229-6
  • Вард, ЦА и Фанг, Г 1999, „Израз за предвиђање флукса испаравања течности: Приступ статистичкој брзини теорије“, Пхисицал Ревиев Е, вол. 59, бр. 1, стр. 429–40.
  • Рахими, П & Вард, ЦА 2005, „Кинетика испаравања: приступ теорији статистичке брзине“, Међународни часопис за термодинамику, вол. 8, бр. 9, стр. 1–14.