Teorema prostih brojeva — разлика између измена

С Википедије, слободне енциклопедије
Садржај обрисан Садржај додат
.
 
Ред 6: Ред 6:


== Iskaz ==
== Iskaz ==
[[File:Prime number theorem ratio convergence.svg|thumb|300px|Graph showing ratio of the prime-counting function {{math|''π''(''x'')}} to two of its approximations, {{math|''x'' / log ''x''}} and {{math|Li(''x'')}}. As {{mvar|x}} increases (note {{mvar|x}} axis is logarithmic), both ratios tend towards 1. The ratio for {{math|''x'' / log ''x''}} converges from above very slowly, while the ratio for {{math|Li(''x'')}} converges more quickly from below.]]
[[File:Prime number theorem ratio convergence.svg|thumb|300px|Grafikon koji prikazuje odnos funkcije brojanja prostih brojeva {{math|''π''(''x'')}} i dve njene aproksimacije, {{math|''x'' / log ''x''}} i {{math|Li(''x'')}}. Kako se {{mvar|x}} povećava (napomena: {{mvar|x}} osa je logaritamska), oba se odnosa kreću prema 1. Odnos za {{math|''x'' / log ''x''}} konvergira odozgo vrlo sporo, dok odnos za {{math|Li(''x'')}} brže konvergira odozdo.]]
[[File:Prime number theorem absolute error.svg|thumb|300px|Log-log plot showing absolute error of {{math|''x'' / log ''x''}} and {{math|Li(''x'')}}, two approximations to the prime-counting function {{math|''π''(''x'')}}. Unlike the ratio, the difference between {{math|''π''(''x'')}} and {{math|''x'' / log ''x''}} increases without bound as {{mvar|x}} increases. On the other hand, {{math|Li(''x'') − ''π''(''x'')}} switches sign infinitely many times.]]
[[File:Prime number theorem absolute error.svg|thumb|300px|Log-log grafikon prikazuje apsolutnu grešku od {{math|''x'' / log ''x''}} i {{math|Li(''x'')}}, dve aproksimacije funkciji brojanja prostih brojeva {{math|''π''(''x'')}}. Za razliku od odnosa, razlika između {{math|''π''(''x'')}} i {{math|''x'' / log ''x''}} se povećava bez ograničenja kako se {{mvar|x}} povećava. S druge strane, {{math|Li(''x'') − ''π''(''x'')}} manja znak beskonačno mnogo puta.]]


Let {{math|''π''(''x'')}} be the [[prime-counting function]] that gives the number of primes less than or equal to {{mvar|x}}, for any real number {{mvar|x}}. For example, {{math|''π''(10) {{=}} 4}} because there are four prime numbers (2, 3, 5 and 7) less than or equal to 10. The prime number theorem then states that {{math|''x'' / log ''x''}} is a good approximation to {{math|''π''(''x'')}} (where log here means the natural logarithm), in the sense that the [[limit of a function|limit]] of the ''quotient'' of the two functions {{math|''π''(''x'')}} and {{math|''x'' / log ''x''}} as {{mvar|x}} increases without bound is 1:
Neka je {{math|''π''(''x'')}} [[prime-counting function|funkcija brojanja prostih brojeva]] koja daje broj prostih brojeva manji ili jednak sa {{mvar|x}}, za svaki realni broj {{mvar|x}}. Na primer, {{math|''π''(10) {{=}} 4}}, jer postoje četiri prosta broja (2, 3, 5 i 7) manja ili jednaka od 10. Prema teoremi prostih brojeva tada je {{math|''x'' / log ''x''}} dobra aproksimacija za {{math|''π''(''x'')}} (gde log značava prirodni logaritam), u smislu da je [[limit of a function|limit]] količnika dve funkcije {{math|''π''(''x'')}} i {{math|''x'' / log ''x''}} kako se {{mvar|x}} povećava bez ograničenja jednak 1:


: <math>\lim_{x\to\infty}\frac{\;\pi(x)\;}{\;\left[ \frac{x}{\log(x)}\right]\;} = 1,</math>
: <math>\lim_{x\to\infty}\frac{\;\pi(x)\;}{\;\left[ \frac{x}{\log(x)}\right]\;} = 1,</math>


Ovo je poznato kao '''asimptotski zakon distribucije prostih brojeva'''. Koristeći [[Велико О|asimptotsku notaciju]] ovaj rezultat se može napisati kao
known as '''the asymptotic law of distribution of prime numbers'''. Using [[asymptotic notation]] this result can be restated as


:<math>\pi(x)\sim \frac{x}{\log x}.</math>
:<math>\pi(x)\sim \frac{x}{\log x}.</math>


This notation (and the [[theorem]]) does ''not'' say anything about the limit of the ''difference'' of the two functions as {{mvar|x}} increases without bound. Instead, the theorem states that {{math|''x'' / log ''x''}} approximates {{math|''π''(''x'')}} in the sense that the [[relative error]] of this approximation approaches 0 as {{mvar|x}} increases without bound.
Ova notacija (i [[teorema]]) ''ne'' govori o limitu ''razlike'' dve funkcije kad se {{mvar|x}} povećava bez ograničenja. Umesto toga, teorema navodi da {{math|''x'' / log ''x''}} aproksimira {{math|''π''(''x'')}} u smislu da se [[Грешка у апроксимацији|relativna greška]] ove aproksimacije približava 0, kada se {{mvar|x}} povećava bez ograničenja.


The prime number theorem is equivalent to the statement that the {{mvar|n}}th prime number {{mvar|p<sub>n</sub>}} satisfies
Teorema prostih brojeva je ekvivalentna tvrđenju da {{mvar|n}}-ti prosti broj {{mvar|p<sub>n</sub>}} zadovoljava


:<math>p_n \sim n\log(n),</math>
:<math>p_n \sim n\log(n),</math>


the asymptotic notation meaning, again, that the relative error of this approximation approaches 0 as {{mvar|n}} increases without bound. For example, the {{val|2|e=17}}th prime number is {{val|8512677386048191063}},<ref>{{cite web|title=Prime Curios!: 8512677386048191063|url=http://primes.utm.edu/curios/cpage/24149.html|work=Prime Curios!|publisher=University of Tennessee at Martin|date=2011-10-09}}</ref> and ({{val|2|e=17}})log({{val|2|e=17}}) rounds to {{val|7967418752291744388}}, a relative error of about 6.4%.
asimptotska notacija ponovo ukazuje na to da relativna greška ove aproksimacije pristupa 0 kad se {{mvar|n}} povećava bez ograničenja. Na primer, {{val|2|e=17}}-ti prosti broj je {{val|8512677386048191063}},<ref>{{cite web|title=Prime Curios!: 8512677386048191063|url=http://primes.utm.edu/curios/cpage/24149.html|work=Prime Curios!|publisher=University of Tennessee at Martin|date=2011-10-09}}</ref> i ({{val|2|e=17}})log({{val|2|e=17}}) zaokružuje se na {{val|7967418752291744388}}, sa relativnom greškom od oko 6,4%.


Teorema prostih brojeva je isto tako ekvivalentna sa
The prime number theorem is also equivalent to
:<math>\lim_{x\to\infty} \frac{\vartheta (x)}x = \lim_{x\to\infty} \frac{\psi(x)}x=1,</math>
:<math>\lim_{x\to\infty} \frac{\vartheta (x)}x = \lim_{x\to\infty} \frac{\psi(x)}x=1,</math>
where {{mvar|ϑ}} and {{mvar|ψ}} are [[Chebyshev function|the first and the second Chebyshev functions]] respectively.
gde su {{mvar|ϑ}} i {{mvar|ψ}} prva i druga [[Chebyshev function|Čebiševa funkcija]], respektivno.


== Tabela {{math|''π''(''x'')}}, {{math|''x'' / log ''x''}}, and {{math|li(''x'')}} ==
== Tabela {{math|''π''(''x'')}}, {{math|''x'' / log ''x''}}, and {{math|li(''x'')}} ==

Верзија на датум 18. фебруар 2020. у 06:31

U teoriji brojeva, teorema prostih brojeva (engl. prime number theorem, PNT) opisuje asimptotsku distribuciju prostih brojeva među positivnim celim brojevima. It formalizes the intuitive idea that primes become less common as they become larger by precisely quantifying the rate at which this occurs. The theorem was proved independently by Jacques Hadamard and Charles Jean de la Vallée Poussin in 1896 using ideas introduced by Bernhard Riemann (in particular, the Riemann zeta function).

The first such distribution found is π(N) ~ N/log(N), where π(N) is the prime-counting function and log(N) is the natural logarithm of N. This means that for large enough N, the probability that a random integer not greater than N is prime is very close to 1 / log(N). Consequently, a random integer with at most 2n digits (for large enough n) is about half as likely to be prime as a random integer with at most n digits. For example, among the positive integers of at most 1000 digits, about one in 2300 is prime (log(101000) ≈ 2302.6), whereas among positive integers of at most 2000 digits, about one in 4600 is prime (log(102000) ≈ 4605.2). In other words, the average gap between consecutive prime numbers among the first N integers is roughly log(N).[1]

Iskaz

Grafikon koji prikazuje odnos funkcije brojanja prostih brojeva π(x) i dve njene aproksimacije, x / log x i Li(x). Kako se x povećava (napomena: x osa je logaritamska), oba se odnosa kreću prema 1. Odnos za x / log x konvergira odozgo vrlo sporo, dok odnos za Li(x) brže konvergira odozdo.
Log-log grafikon prikazuje apsolutnu grešku od x / log x i Li(x), dve aproksimacije funkciji brojanja prostih brojeva π(x). Za razliku od odnosa, razlika između π(x) i x / log x se povećava bez ograničenja kako se x povećava. S druge strane, Li(x) − π(x) manja znak beskonačno mnogo puta.

Neka je π(x) funkcija brojanja prostih brojeva koja daje broj prostih brojeva manji ili jednak sa x, za svaki realni broj x. Na primer, π(10) = 4, jer postoje četiri prosta broja (2, 3, 5 i 7) manja ili jednaka od 10. Prema teoremi prostih brojeva tada je x / log x dobra aproksimacija za π(x) (gde log značava prirodni logaritam), u smislu da je limit količnika dve funkcije π(x) i x / log x kako se x povećava bez ograničenja jednak 1:

Ovo je poznato kao asimptotski zakon distribucije prostih brojeva. Koristeći asimptotsku notaciju ovaj rezultat se može napisati kao

Ova notacija (i teorema) ne govori o limitu razlike dve funkcije kad se x povećava bez ograničenja. Umesto toga, teorema navodi da x / log x aproksimira π(x) u smislu da se relativna greška ove aproksimacije približava 0, kada se x povećava bez ograničenja.

Teorema prostih brojeva je ekvivalentna tvrđenju da n-ti prosti broj pn zadovoljava

asimptotska notacija ponovo ukazuje na to da relativna greška ove aproksimacije pristupa 0 kad se n povećava bez ograničenja. Na primer, 2×1017-ti prosti broj je 8512677386048191063,[2] i (2×1017)log(2×1017) zaokružuje se na 7967418752291744388, sa relativnom greškom od oko 6,4%.

Teorema prostih brojeva je isto tako ekvivalentna sa

gde su ϑ i ψ prva i druga Čebiševa funkcija, respektivno.

Tabela π(x), x / log x, and li(x)

U ovoj tabeli su upoređene vrednosti π(x) sa dve aproksimacije x / log x i li(x). Zadnja kolna, x / π(x), je prosek razmaka između prostih brojeva ispod x.

x π(x) π(x) − x/log x π(x)/x / log x li(x) − π(x) x/π(x)
10 4 −0.3 0.921 2.2 2.500
102 25 3.3 1.151 5.1 4.000
103 168 23.0 1.161 10.0 5.952
104 1229 143.0 1.132 17.0 8.137
105 9592 906.0 1.104 38.0 10.425
106 78498 6116.0 1.084 130.0 12.740
107 664579 44158.0 1.071 339.0 15.047
108 5761455 332774.0 1.061 754.0 17.357
109 50847534 2592592.0 1.054 1701.0 19.667
1010 455052511 20758029.0 1.048 3104.0 21.975
1011 4118054813 169923159.0 1.043 11588.0 24.283
1012 37607912018 1416705193.0 1.039 38263.0 26.590
1013 346065536839 11992858452.0 1.034 108971.0 28.896
1014 3204941750802 102838308636.0 1.033 314890.0 31.202
1015 29844570422669 891604962452.0 1.031 1052619.0 33.507
1016 279238341033925 7804289844393.0 1.029 3214632.0 35.812
1017 2623557157654233 68883734693281.0 1.027 7956589.0 38.116
1018 24739954287740860 612483070893536.0 1.025 21949555.0 40.420
1019 234057667276344607 5481624169369960.0 1.024 99877775.0 42.725
1020 2220819602560918840 49347193044659701.0 1.023 222744644.0 45.028
1021 21127269486018731928 446579871578168707.0 1.022 597394254.0 47.332
1022 201467286689315906290 4060704006019620994.0 1.021 1932355208.0 49.636
1023 1925320391606803968923 37083513766578631309.0 1.020 7250186216.0 51.939
1024 18435599767349200867866 339996354713708049069.0 1.019 17146907278.0 54.243
1025 176846309399143769411680 3128516637843038351228.0 1.018 55160980939.0 56.546
OEIS A006880 A057835 A057752

Vrednost za π(1024) bila je originalno izračunata koristeći Rimanovu hipotezu.[3] Od tada su bezuslovno verifikovane.[4]

Analog za nesvodljive polinome na konačnom polju

There is an analogue of the prime number theorem that describes the "distribution" of irreducible polynomials over a finite field; the form it takes is strikingly similar to the case of the classical prime number theorem.

To state it precisely, let F = GF(q) be the finite field with q elements, for some fixed q, and let Nn be the number of monic irreducible polynomials over F whose degree is equal to n. That is, we are looking at polynomials with coefficients chosen from F, which cannot be written as products of polynomials of smaller degree. In this setting, these polynomials play the role of the prime numbers, since all other monic polynomials are built up of products of them. One can then prove that

If we make the substitution x = qn, then the right hand side is just

which makes the analogy clearer. Since there are precisely qn monic polynomials of degree n (including the reducible ones), this can be rephrased as follows: if a monic polynomial of degree n is selected randomly, then the probability of it being irreducible is about 1/n.

One can even prove an analogue of the Riemann hypothesis, namely that

The proofs of these statements are far simpler than in the classical case. It involves a short combinatorial argument,[5] summarised as follows: every element of the degree n extension of F is a root of some irreducible polynomial whose degree d divides n; by counting these roots in two different ways one establishes that

where the sum is over all divisors d of n. Möbius inversion then yields

where μ(k) is the Möbius function. (This formula was known to Gauss.) The main term occurs for d = n, and it is not difficult to bound the remaining terms. The "Riemann hypothesis" statement depends on the fact that the largest proper divisor of n can be no larger than n/2.

Reference

  1. ^ Hoffman, Paul (1998). The Man Who Loved Only NumbersНеопходна слободна регистрација. New York: Hyperion Books. стр. 227. ISBN 978-0-7868-8406-3. MR 1666054. 
  2. ^ „Prime Curios!: 8512677386048191063”. Prime Curios!. University of Tennessee at Martin. 2011-10-09. 
  3. ^ „Conditional Calculation of π(1024). Chris K. Caldwell. Приступљено 2010-08-03. 
  4. ^ Platt, David (2015). „Computing π(x) analytically”. Mathematics of Computation. 84 (293): 1521—1535. MR 3315519. arXiv:1203.5712Слободан приступ. doi:10.1090/S0025-5718-2014-02884-6. 
  5. ^ Chebolu, Sunil; Mináč, Ján (децембар 2011). „Counting Irreducible Polynomials over Finite Fields Using the Inclusion π Exclusion Principle”. Mathematics Magazine. 84 (5): 369—371. JSTOR 10.4169/math.mag.84.5.369. arXiv:1001.0409Слободан приступ. doi:10.4169/math.mag.84.5.369. 

Literatura

Spoljašnje veze