С Википедије, слободне енциклопедије
∫
sin
a
x
d
x
=
−
1
a
cos
a
x
+
C
{\displaystyle \int \sin ax\;\mathrm {d} x=-{\frac {1}{a}}\cos ax+C\,\!}
∫
sin
2
a
x
d
x
=
x
2
−
1
4
a
sin
2
a
x
+
C
=
x
2
−
1
2
a
sin
a
x
cos
a
x
+
C
{\displaystyle \int \sin ^{2}{ax}\;\mathrm {d} x={\frac {x}{2}}-{\frac {1}{4a}}\sin 2ax+C={\frac {x}{2}}-{\frac {1}{2a}}\sin ax\cos ax+C\!}
∫
sin
3
a
x
d
x
=
cos
3
a
x
12
a
−
3
cos
a
x
4
a
+
C
{\displaystyle \int \sin ^{3}{ax}\;\mathrm {d} x={\frac {\cos 3ax}{12a}}-{\frac {3\cos ax}{4a}}+C\!}
∫
x
sin
2
a
x
d
x
=
x
2
4
−
x
4
a
sin
2
a
x
−
1
8
a
2
cos
2
a
x
+
C
{\displaystyle \int x\sin ^{2}{ax}\;\mathrm {d} x={\frac {x^{2}}{4}}-{\frac {x}{4a}}\sin 2ax-{\frac {1}{8a^{2}}}\cos 2ax+C\!}
∫
x
2
sin
2
a
x
d
x
=
x
3
6
−
(
x
2
4
a
−
1
8
a
3
)
sin
2
a
x
−
x
4
a
2
cos
2
a
x
+
C
{\displaystyle \int x^{2}\sin ^{2}{ax}\;\mathrm {d} x={\frac {x^{3}}{6}}-\left({\frac {x^{2}}{4a}}-{\frac {1}{8a^{3}}}\right)\sin 2ax-{\frac {x}{4a^{2}}}\cos 2ax+C\!}
∫
sin
b
1
x
sin
b
2
x
d
x
=
sin
(
(
b
2
−
b
1
)
x
)
2
(
b
2
−
b
1
)
−
sin
(
(
b
1
+
b
2
)
x
)
2
(
b
1
+
b
2
)
+
C
(for
|
b
1
|
≠
|
b
2
|
)
{\displaystyle \int \sin b_{1}x\sin b_{2}x\;\mathrm {d} x={\frac {\sin((b_{2}-b_{1})x)}{2(b_{2}-b_{1})}}-{\frac {\sin((b_{1}+b_{2})x)}{2(b_{1}+b_{2})}}+C\qquad {\mbox{(for }}|b_{1}|\neq |b_{2}|{\mbox{)}}\,\!}
∫
sin
n
a
x
d
x
=
−
sin
n
−
1
a
x
cos
a
x
n
a
+
n
−
1
n
∫
sin
n
−
2
a
x
d
x
(for
n
>
2
)
{\displaystyle \int \sin ^{n}{ax}\;\mathrm {d} x=-{\frac {\sin ^{n-1}ax\cos ax}{na}}+{\frac {n-1}{n}}\int \sin ^{n-2}ax\;\mathrm {d} x\qquad {\mbox{(for }}n>2{\mbox{)}}\,\!}
∫
d
x
sin
a
x
=
1
a
ln
|
tan
a
x
2
|
+
C
{\displaystyle \int {\frac {\mathrm {d} x}{\sin ax}}={\frac {1}{a}}\ln \left|\tan {\frac {ax}{2}}\right|+C}
∫
d
x
sin
n
a
x
=
cos
a
x
a
(
1
−
n
)
sin
n
−
1
a
x
+
n
−
2
n
−
1
∫
d
x
sin
n
−
2
a
x
(for
n
>
1
)
{\displaystyle \int {\frac {\mathrm {d} x}{\sin ^{n}ax}}={\frac {\cos ax}{a(1-n)\sin ^{n-1}ax}}+{\frac {n-2}{n-1}}\int {\frac {\mathrm {d} x}{\sin ^{n-2}ax}}\qquad {\mbox{(for }}n>1{\mbox{)}}\,\!}
∫
x
sin
a
x
d
x
=
sin
a
x
a
2
−
x
cos
a
x
a
+
C
{\displaystyle \int x\sin ax\;\mathrm {d} x={\frac {\sin ax}{a^{2}}}-{\frac {x\cos ax}{a}}+C\,\!}
∫
x
n
sin
a
x
d
x
=
−
x
n
a
cos
a
x
+
n
a
∫
x
n
−
1
cos
a
x
d
x
=
∑
k
=
0
2
k
≤
n
(
−
1
)
k
+
1
x
n
−
2
k
a
1
+
2
k
n
!
(
n
−
2
k
)
!
cos
a
x
+
∑
k
=
0
2
k
+
1
≤
n
(
−
1
)
k
x
n
−
1
−
2
k
a
2
+
2
k
n
!
(
n
−
2
k
−
1
)
!
sin
a
x
(for
n
>
0
)
{\displaystyle \int x^{n}\sin ax\;\mathrm {d} x=-{\frac {x^{n}}{a}}\cos ax+{\frac {n}{a}}\int x^{n-1}\cos ax\;\mathrm {d} x=\sum _{k=0}^{2k\leq n}(-1)^{k+1}{\frac {x^{n-2k}}{a^{1+2k}}}{\frac {n!}{(n-2k)!}}\cos ax+\sum _{k=0}^{2k+1\leq n}(-1)^{k}{\frac {x^{n-1-2k}}{a^{2+2k}}}{\frac {n!}{(n-2k-1)!}}\sin ax\qquad {\mbox{(for }}n>0{\mbox{)}}\,\!}
∫
−
a
2
a
2
x
2
sin
2
n
π
x
a
d
x
=
a
3
(
n
2
π
2
−
6
)
24
n
2
π
2
(for
n
=
2
,
4
,
6...
)
{\displaystyle \int _{\frac {-a}{2}}^{\frac {a}{2}}x^{2}\sin ^{2}{\frac {n\pi x}{a}}\;\mathrm {d} x={\frac {a^{3}(n^{2}\pi ^{2}-6)}{24n^{2}\pi ^{2}}}\qquad {\mbox{(for }}n=2,4,6...{\mbox{)}}\,\!}
∫
sin
a
x
x
d
x
=
∑
n
=
0
∞
(
−
1
)
n
(
a
x
)
2
n
+
1
(
2
n
+
1
)
⋅
(
2
n
+
1
)
!
+
C
{\displaystyle \int {\frac {\sin ax}{x}}\mathrm {d} x=\sum _{n=0}^{\infty }(-1)^{n}{\frac {(ax)^{2n+1}}{(2n+1)\cdot (2n+1)!}}+C\,\!}
∫
sin
a
x
x
n
d
x
=
−
sin
a
x
(
n
−
1
)
x
n
−
1
+
a
n
−
1
∫
cos
a
x
x
n
−
1
d
x
{\displaystyle \int {\frac {\sin ax}{x^{n}}}\mathrm {d} x=-{\frac {\sin ax}{(n-1)x^{n-1}}}+{\frac {a}{n-1}}\int {\frac {\cos ax}{x^{n-1}}}\mathrm {d} x\,\!}
∫
d
x
1
±
sin
a
x
=
1
a
tan
(
a
x
2
∓
π
4
)
+
C
{\displaystyle \int {\frac {\mathrm {d} x}{1\pm \sin ax}}={\frac {1}{a}}\tan \left({\frac {ax}{2}}\mp {\frac {\pi }{4}}\right)+C}
∫
x
d
x
1
+
sin
a
x
=
x
a
tan
(
a
x
2
−
π
4
)
+
2
a
2
ln
|
cos
(
a
x
2
−
π
4
)
|
+
C
{\displaystyle \int {\frac {x\;\mathrm {d} x}{1+\sin ax}}={\frac {x}{a}}\tan \left({\frac {ax}{2}}-{\frac {\pi }{4}}\right)+{\frac {2}{a^{2}}}\ln \left|\cos \left({\frac {ax}{2}}-{\frac {\pi }{4}}\right)\right|+C}
∫
x
d
x
1
−
sin
a
x
=
x
a
cot
(
π
4
−
a
x
2
)
+
2
a
2
ln
|
sin
(
π
4
−
a
x
2
)
|
+
C
{\displaystyle \int {\frac {x\;\mathrm {d} x}{1-\sin ax}}={\frac {x}{a}}\cot \left({\frac {\pi }{4}}-{\frac {ax}{2}}\right)+{\frac {2}{a^{2}}}\ln \left|\sin \left({\frac {\pi }{4}}-{\frac {ax}{2}}\right)\right|+C}
∫
sin
a
x
d
x
1
±
sin
a
x
=
±
x
+
1
a
tan
(
π
4
∓
a
x
2
)
+
C
{\displaystyle \int {\frac {\sin ax\;\mathrm {d} x}{1\pm \sin ax}}=\pm x+{\frac {1}{a}}\tan \left({\frac {\pi }{4}}\mp {\frac {ax}{2}}\right)+C}
∫
cos
a
x
d
x
=
1
a
sin
a
x
+
C
{\displaystyle \int \cos ax\;\mathrm {d} x={\frac {1}{a}}\sin ax+C\,\!}
∫
cos
2
a
x
d
x
=
x
2
+
1
4
a
sin
2
a
x
+
C
=
x
2
+
1
2
a
sin
a
x
cos
a
x
+
C
{\displaystyle \int \cos ^{2}{ax}\;\mathrm {d} x={\frac {x}{2}}+{\frac {1}{4a}}\sin 2ax+C={\frac {x}{2}}+{\frac {1}{2a}}\sin ax\cos ax+C\!}
∫
cos
n
a
x
d
x
=
cos
n
−
1
a
x
sin
a
x
n
a
+
n
−
1
n
∫
cos
n
−
2
a
x
d
x
(for
n
>
0
)
{\displaystyle \int \cos ^{n}ax\;\mathrm {d} x={\frac {\cos ^{n-1}ax\sin ax}{na}}+{\frac {n-1}{n}}\int \cos ^{n-2}ax\;\mathrm {d} x\qquad {\mbox{(for }}n>0{\mbox{)}}\,\!}
∫
x
cos
a
x
d
x
=
cos
a
x
a
2
+
x
sin
a
x
a
+
C
{\displaystyle \int x\cos ax\;\mathrm {d} x={\frac {\cos ax}{a^{2}}}+{\frac {x\sin ax}{a}}+C\,\!}
∫
x
2
cos
2
a
x
d
x
=
x
3
6
+
(
x
2
4
a
−
1
8
a
3
)
sin
2
a
x
+
x
4
a
2
cos
2
a
x
+
C
{\displaystyle \int x^{2}\cos ^{2}{ax}\;\mathrm {d} x={\frac {x^{3}}{6}}+\left({\frac {x^{2}}{4a}}-{\frac {1}{8a^{3}}}\right)\sin 2ax+{\frac {x}{4a^{2}}}\cos 2ax+C\!}
∫
x
n
cos
a
x
d
x
=
x
n
sin
a
x
a
−
n
a
∫
x
n
−
1
sin
a
x
d
x
=
∑
k
=
0
2
k
+
1
≤
n
(
−
1
)
k
x
n
−
2
k
−
1
a
2
+
2
k
n
!
(
n
−
2
k
−
1
)
!
cos
a
x
+
∑
k
=
0
2
k
≤
n
(
−
1
)
k
x
n
−
2
k
a
1
+
2
k
n
!
(
n
−
2
k
)
!
sin
a
x
{\displaystyle \int x^{n}\cos ax\;\mathrm {d} x={\frac {x^{n}\sin ax}{a}}-{\frac {n}{a}}\int x^{n-1}\sin ax\;\mathrm {d} x\,=\sum _{k=0}^{2k+1\leq n}(-1)^{k}{\frac {x^{n-2k-1}}{a^{2+2k}}}{\frac {n!}{(n-2k-1)!}}\cos ax+\sum _{k=0}^{2k\leq n}(-1)^{k}{\frac {x^{n-2k}}{a^{1+2k}}}{\frac {n!}{(n-2k)!}}\sin ax\!}
∫
cos
a
x
x
d
x
=
ln
|
a
x
|
+
∑
k
=
1
∞
(
−
1
)
k
(
a
x
)
2
k
2
k
⋅
(
2
k
)
!
+
C
{\displaystyle \int {\frac {\cos ax}{x}}\mathrm {d} x=\ln |ax|+\sum _{k=1}^{\infty }(-1)^{k}{\frac {(ax)^{2k}}{2k\cdot (2k)!}}+C\,\!}
∫
cos
a
x
x
n
d
x
=
−
cos
a
x
(
n
−
1
)
x
n
−
1
−
a
n
−
1
∫
sin
a
x
x
n
−
1
d
x
(for
n
≠
1
)
{\displaystyle \int {\frac {\cos ax}{x^{n}}}\mathrm {d} x=-{\frac {\cos ax}{(n-1)x^{n-1}}}-{\frac {a}{n-1}}\int {\frac {\sin ax}{x^{n-1}}}\mathrm {d} x\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,\!}
∫
d
x
cos
a
x
=
1
a
ln
|
tan
(
a
x
2
+
π
4
)
|
+
C
{\displaystyle \int {\frac {\mathrm {d} x}{\cos ax}}={\frac {1}{a}}\ln \left|\tan \left({\frac {ax}{2}}+{\frac {\pi }{4}}\right)\right|+C}
∫
d
x
cos
n
a
x
=
sin
a
x
a
(
n
−
1
)
cos
n
−
1
a
x
+
n
−
2
n
−
1
∫
d
x
cos
n
−
2
a
x
(for
n
>
1
)
{\displaystyle \int {\frac {\mathrm {d} x}{\cos ^{n}ax}}={\frac {\sin ax}{a(n-1)\cos ^{n-1}ax}}+{\frac {n-2}{n-1}}\int {\frac {\mathrm {d} x}{\cos ^{n-2}ax}}\qquad {\mbox{(for }}n>1{\mbox{)}}\,\!}
∫
d
x
1
+
cos
a
x
=
1
a
tan
a
x
2
+
C
{\displaystyle \int {\frac {\mathrm {d} x}{1+\cos ax}}={\frac {1}{a}}\tan {\frac {ax}{2}}+C\,\!}
∫
d
x
1
−
cos
a
x
=
−
1
a
cot
a
x
2
+
C
{\displaystyle \int {\frac {\mathrm {d} x}{1-\cos ax}}=-{\frac {1}{a}}\cot {\frac {ax}{2}}+C\,\!}
∫
x
d
x
1
+
cos
a
x
=
x
a
tan
a
x
2
+
2
a
2
ln
|
cos
a
x
2
|
+
C
{\displaystyle \int {\frac {x\;\mathrm {d} x}{1+\cos ax}}={\frac {x}{a}}\tan {\frac {ax}{2}}+{\frac {2}{a^{2}}}\ln \left|\cos {\frac {ax}{2}}\right|+C}
∫
x
d
x
1
−
cos
a
x
=
−
x
a
cot
a
x
2
+
2
a
2
ln
|
sin
a
x
2
|
+
C
{\displaystyle \int {\frac {x\;\mathrm {d} x}{1-\cos ax}}=-{\frac {x}{a}}\cot {\frac {ax}{2}}+{\frac {2}{a^{2}}}\ln \left|\sin {\frac {ax}{2}}\right|+C}
∫
cos
a
x
d
x
1
+
cos
a
x
=
x
−
1
a
tan
a
x
2
+
C
{\displaystyle \int {\frac {\cos ax\;\mathrm {d} x}{1+\cos ax}}=x-{\frac {1}{a}}\tan {\frac {ax}{2}}+C\,\!}
∫
cos
a
x
d
x
1
−
cos
a
x
=
−
x
−
1
a
cot
a
x
2
+
C
{\displaystyle \int {\frac {\cos ax\;\mathrm {d} x}{1-\cos ax}}=-x-{\frac {1}{a}}\cot {\frac {ax}{2}}+C\,\!}
∫
cos
a
1
x
cos
a
2
x
d
x
=
sin
(
a
2
−
a
1
)
x
2
(
a
2
−
a
1
)
+
sin
(
a
2
+
a
1
)
x
2
(
a
2
+
a
1
)
+
C
(for
|
a
1
|
≠
|
a
2
|
)
{\displaystyle \int \cos a_{1}x\cos a_{2}x\;\mathrm {d} x={\frac {\sin(a_{2}-a_{1})x}{2(a_{2}-a_{1})}}+{\frac {\sin(a_{2}+a_{1})x}{2(a_{2}+a_{1})}}+C\qquad {\mbox{(for }}|a_{1}|\neq |a_{2}|{\mbox{)}}\,\!}
∫
tan
a
x
d
x
=
−
1
a
ln
|
cos
a
x
|
+
C
=
1
a
ln
|
sec
a
x
|
+
C
{\displaystyle \int \tan ax\;\mathrm {d} x=-{\frac {1}{a}}\ln |\cos ax|+C={\frac {1}{a}}\ln |\sec ax|+C\,\!}
∫
tan
n
a
x
d
x
=
1
a
(
n
−
1
)
tan
n
−
1
a
x
−
∫
tan
n
−
2
a
x
d
x
(for
n
≠
1
)
{\displaystyle \int \tan ^{n}ax\;\mathrm {d} x={\frac {1}{a(n-1)}}\tan ^{n-1}ax-\int \tan ^{n-2}ax\;\mathrm {d} x\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,\!}
∫
d
x
q
tan
a
x
+
p
=
1
p
2
+
q
2
(
p
x
+
q
a
ln
|
q
sin
a
x
+
p
cos
a
x
|
)
+
C
(for
p
2
+
q
2
≠
0
)
{\displaystyle \int {\frac {\mathrm {d} x}{q\tan ax+p}}={\frac {1}{p^{2}+q^{2}}}(px+{\frac {q}{a}}\ln |q\sin ax+p\cos ax|)+C\qquad {\mbox{(for }}p^{2}+q^{2}\neq 0{\mbox{)}}\,\!}
∫
d
x
tan
a
x
+
1
=
x
2
+
1
2
a
ln
|
sin
a
x
+
cos
a
x
|
+
C
{\displaystyle \int {\frac {\mathrm {d} x}{\tan ax+1}}={\frac {x}{2}}+{\frac {1}{2a}}\ln |\sin ax+\cos ax|+C\,\!}
∫
d
x
tan
a
x
−
1
=
−
x
2
+
1
2
a
ln
|
sin
a
x
−
cos
a
x
|
+
C
{\displaystyle \int {\frac {\mathrm {d} x}{\tan ax-1}}=-{\frac {x}{2}}+{\frac {1}{2a}}\ln |\sin ax-\cos ax|+C\,\!}
∫
tan
a
x
d
x
tan
a
x
+
1
=
x
2
−
1
2
a
ln
|
sin
a
x
+
cos
a
x
|
+
C
{\displaystyle \int {\frac {\tan ax\;\mathrm {d} x}{\tan ax+1}}={\frac {x}{2}}-{\frac {1}{2a}}\ln |\sin ax+\cos ax|+C\,\!}
∫
tan
a
x
d
x
tan
a
x
−
1
=
x
2
+
1
2
a
ln
|
sin
a
x
−
cos
a
x
|
+
C
{\displaystyle \int {\frac {\tan ax\;\mathrm {d} x}{\tan ax-1}}={\frac {x}{2}}+{\frac {1}{2a}}\ln |\sin ax-\cos ax|+C\,\!}
∫
sec
a
x
d
x
=
1
a
ln
|
sec
a
x
+
tan
a
x
|
+
C
{\displaystyle \int \sec {ax}\,\mathrm {d} x={\frac {1}{a}}\ln {\left|\sec {ax}+\tan {ax}\right|}+C}
∫
sec
2
x
d
x
=
tan
x
+
C
{\displaystyle \int \sec ^{2}{x}\,\mathrm {d} x=\tan {x}+C}
∫
sec
n
a
x
d
x
=
sec
n
−
2
a
x
tan
a
x
a
(
n
−
1
)
+
n
−
2
n
−
1
∫
sec
n
−
2
a
x
d
x
(for
n
≠
1
)
{\displaystyle \int \sec ^{n}{ax}\,\mathrm {d} x={\frac {\sec ^{n-2}{ax}\tan {ax}}{a(n-1)}}\,+\,{\frac {n-2}{n-1}}\int \sec ^{n-2}{ax}\,\mathrm {d} x\qquad {\mbox{ (for }}n\neq 1{\mbox{)}}\,\!}
∫
sec
n
x
d
x
=
sec
n
−
2
x
tan
x
n
−
1
+
n
−
2
n
−
1
∫
sec
n
−
2
x
d
x
{\displaystyle \int \sec ^{n}{x}\,\mathrm {d} x={\frac {\sec ^{n-2}{x}\tan {x}}{n-1}}\,+\,{\frac {n-2}{n-1}}\int \sec ^{n-2}{x}\,\mathrm {d} x}
∫
d
x
sec
x
+
1
=
x
−
tan
x
2
+
C
{\displaystyle \int {\frac {\mathrm {d} x}{\sec {x}+1}}=x-\tan {\frac {x}{2}}+C}
∫
d
x
sec
x
−
1
=
−
x
−
cot
x
2
+
C
{\displaystyle \int {\frac {\mathrm {d} x}{\sec {x}-1}}=-x-\cot {\frac {x}{2}}+C}
∫
csc
a
x
d
x
=
1
a
ln
|
csc
a
x
−
cot
a
x
|
+
C
{\displaystyle \int \csc {ax}\,\mathrm {d} x={\frac {1}{a}}\ln {\left|\csc {ax}-\cot {ax}\right|}+C}
∫
csc
2
x
d
x
=
−
cot
x
+
C
{\displaystyle \int \csc ^{2}{x}\,\mathrm {d} x=-\cot {x}+C}
∫
csc
n
a
x
d
x
=
−
csc
n
−
1
a
x
cos
a
x
a
(
n
−
1
)
+
n
−
2
n
−
1
∫
csc
n
−
2
a
x
d
x
(for
n
≠
1
)
{\displaystyle \int \csc ^{n}{ax}\,\mathrm {d} x=-{\frac {\csc ^{n-1}{ax}\cos {ax}}{a(n-1)}}\,+\,{\frac {n-2}{n-1}}\int \csc ^{n-2}{ax}\,\mathrm {d} x\qquad {\mbox{ (for }}n\neq 1{\mbox{)}}\,\!}
∫
d
x
csc
x
+
1
=
x
−
2
sin
x
2
cos
x
2
+
sin
x
2
+
C
{\displaystyle \int {\frac {\mathrm {d} x}{\csc {x}+1}}=x-{\frac {2\sin {\frac {x}{2}}}{\cos {\frac {x}{2}}+\sin {\frac {x}{2}}}}+C}
∫
d
x
csc
x
−
1
=
2
sin
x
2
cos
x
2
−
sin
x
2
−
x
+
C
{\displaystyle \int {\frac {\mathrm {d} x}{\csc {x}-1}}={\frac {2\sin {\frac {x}{2}}}{\cos {\frac {x}{2}}-\sin {\frac {x}{2}}}}-x+C}
∫
cot
a
x
d
x
=
1
a
ln
|
sin
a
x
|
+
C
{\displaystyle \int \cot ax\;\mathrm {d} x={\frac {1}{a}}\ln |\sin ax|+C\,\!}
∫
cot
n
a
x
d
x
=
−
1
a
(
n
−
1
)
cot
n
−
1
a
x
−
∫
cot
n
−
2
a
x
d
x
(for
n
≠
1
)
{\displaystyle \int \cot ^{n}ax\;\mathrm {d} x=-{\frac {1}{a(n-1)}}\cot ^{n-1}ax-\int \cot ^{n-2}ax\;\mathrm {d} x\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,\!}
∫
d
x
1
+
cot
a
x
=
∫
tan
a
x
d
x
tan
a
x
+
1
{\displaystyle \int {\frac {\mathrm {d} x}{1+\cot ax}}=\int {\frac {\tan ax\;\mathrm {d} x}{\tan ax+1}}\,\!}
∫
d
x
1
−
cot
a
x
=
∫
tan
a
x
d
x
tan
a
x
−
1
{\displaystyle \int {\frac {\mathrm {d} x}{1-\cot ax}}=\int {\frac {\tan ax\;\mathrm {d} x}{\tan ax-1}}\,\!}
∫
d
x
cos
a
x
±
sin
a
x
=
1
a
2
ln
|
tan
(
a
x
2
±
π
8
)
|
+
C
{\displaystyle \int {\frac {\mathrm {d} x}{\cos ax\pm \sin ax}}={\frac {1}{a{\sqrt {2}}}}\ln \left|\tan \left({\frac {ax}{2}}\pm {\frac {\pi }{8}}\right)\right|+C}
∫
d
x
(
cos
a
x
±
sin
a
x
)
2
=
1
2
a
tan
(
a
x
∓
π
4
)
+
C
{\displaystyle \int {\frac {\mathrm {d} x}{(\cos ax\pm \sin ax)^{2}}}={\frac {1}{2a}}\tan \left(ax\mp {\frac {\pi }{4}}\right)+C}
∫
d
x
(
cos
x
+
sin
x
)
n
=
1
n
−
1
(
sin
x
−
cos
x
(
cos
x
+
sin
x
)
n
−
1
−
2
(
n
−
2
)
∫
d
x
(
cos
x
+
sin
x
)
n
−
2
)
{\displaystyle \int {\frac {\mathrm {d} x}{(\cos x+\sin x)^{n}}}={\frac {1}{n-1}}\left({\frac {\sin x-\cos x}{(\cos x+\sin x)^{n-1}}}-2(n-2)\int {\frac {\mathrm {d} x}{(\cos x+\sin x)^{n-2}}}\right)}
∫
cos
a
x
d
x
cos
a
x
+
sin
a
x
=
x
2
+
1
2
a
ln
|
sin
a
x
+
cos
a
x
|
+
C
{\displaystyle \int {\frac {\cos ax\;\mathrm {d} x}{\cos ax+\sin ax}}={\frac {x}{2}}+{\frac {1}{2a}}\ln \left|\sin ax+\cos ax\right|+C}
∫
cos
a
x
d
x
cos
a
x
−
sin
a
x
=
x
2
−
1
2
a
ln
|
sin
a
x
−
cos
a
x
|
+
C
{\displaystyle \int {\frac {\cos ax\;\mathrm {d} x}{\cos ax-\sin ax}}={\frac {x}{2}}-{\frac {1}{2a}}\ln \left|\sin ax-\cos ax\right|+C}
∫
sin
a
x
d
x
cos
a
x
+
sin
a
x
=
x
2
−
1
2
a
ln
|
sin
a
x
+
cos
a
x
|
+
C
{\displaystyle \int {\frac {\sin ax\;\mathrm {d} x}{\cos ax+\sin ax}}={\frac {x}{2}}-{\frac {1}{2a}}\ln \left|\sin ax+\cos ax\right|+C}
∫
sin
a
x
d
x
cos
a
x
−
sin
a
x
=
−
x
2
−
1
2
a
ln
|
sin
a
x
−
cos
a
x
|
+
C
{\displaystyle \int {\frac {\sin ax\;\mathrm {d} x}{\cos ax-\sin ax}}=-{\frac {x}{2}}-{\frac {1}{2a}}\ln \left|\sin ax-\cos ax\right|+C}
∫
cos
a
x
d
x
sin
a
x
(
1
+
cos
a
x
)
=
−
1
4
a
tan
2
a
x
2
+
1
2
a
ln
|
tan
a
x
2
|
+
C
{\displaystyle \int {\frac {\cos ax\;\mathrm {d} x}{\sin ax(1+\cos ax)}}=-{\frac {1}{4a}}\tan ^{2}{\frac {ax}{2}}+{\frac {1}{2a}}\ln \left|\tan {\frac {ax}{2}}\right|+C}
∫
cos
a
x
d
x
sin
a
x
(
1
−
cos
a
x
)
=
−
1
4
a
cot
2
a
x
2
−
1
2
a
ln
|
tan
a
x
2
|
+
C
{\displaystyle \int {\frac {\cos ax\;\mathrm {d} x}{\sin ax(1-\cos ax)}}=-{\frac {1}{4a}}\cot ^{2}{\frac {ax}{2}}-{\frac {1}{2a}}\ln \left|\tan {\frac {ax}{2}}\right|+C}
∫
sin
a
x
d
x
cos
a
x
(
1
+
sin
a
x
)
=
1
4
a
cot
2
(
a
x
2
+
π
4
)
+
1
2
a
ln
|
tan
(
a
x
2
+
π
4
)
|
+
C
{\displaystyle \int {\frac {\sin ax\;\mathrm {d} x}{\cos ax(1+\sin ax)}}={\frac {1}{4a}}\cot ^{2}\left({\frac {ax}{2}}+{\frac {\pi }{4}}\right)+{\frac {1}{2a}}\ln \left|\tan \left({\frac {ax}{2}}+{\frac {\pi }{4}}\right)\right|+C}
∫
sin
a
x
d
x
cos
a
x
(
1
−
sin
a
x
)
=
1
4
a
tan
2
(
a
x
2
+
π
4
)
−
1
2
a
ln
|
tan
(
a
x
2
+
π
4
)
|
+
C
{\displaystyle \int {\frac {\sin ax\;\mathrm {d} x}{\cos ax(1-\sin ax)}}={\frac {1}{4a}}\tan ^{2}\left({\frac {ax}{2}}+{\frac {\pi }{4}}\right)-{\frac {1}{2a}}\ln \left|\tan \left({\frac {ax}{2}}+{\frac {\pi }{4}}\right)\right|+C}
∫
sin
a
x
cos
a
x
d
x
=
−
1
2
a
cos
2
a
x
+
C
{\displaystyle \int \sin ax\cos ax\;\mathrm {d} x=-{\frac {1}{2a}}\cos ^{2}ax+C\,\!}
∫
sin
a
1
x
cos
a
2
x
d
x
=
−
cos
(
(
a
1
−
a
2
)
x
)
2
(
a
1
−
a
2
)
−
cos
(
(
a
1
+
a
2
)
x
)
2
(
a
1
+
a
2
)
+
C
(for
|
a
1
|
≠
|
a
2
|
)
{\displaystyle \int \sin a_{1}x\cos a_{2}x\;\mathrm {d} x=-{\frac {\cos((a_{1}-a_{2})x)}{2(a_{1}-a_{2})}}-{\frac {\cos((a_{1}+a_{2})x)}{2(a_{1}+a_{2})}}+C\qquad {\mbox{(for }}|a_{1}|\neq |a_{2}|{\mbox{)}}\,\!}
∫
sin
n
a
x
cos
a
x
d
x
=
1
a
(
n
+
1
)
sin
n
+
1
a
x
+
C
(for
n
≠
−
1
)
{\displaystyle \int \sin ^{n}ax\cos ax\;\mathrm {d} x={\frac {1}{a(n+1)}}\sin ^{n+1}ax+C\qquad {\mbox{(for }}n\neq -1{\mbox{)}}\,\!}
∫
sin
a
x
cos
n
a
x
d
x
=
−
1
a
(
n
+
1
)
cos
n
+
1
a
x
+
C
(for
n
≠
−
1
)
{\displaystyle \int \sin ax\cos ^{n}ax\;\mathrm {d} x=-{\frac {1}{a(n+1)}}\cos ^{n+1}ax+C\qquad {\mbox{(for }}n\neq -1{\mbox{)}}\,\!}
∫
sin
n
a
x
cos
m
a
x
d
x
=
−
sin
n
−
1
a
x
cos
m
+
1
a
x
a
(
n
+
m
)
+
n
−
1
n
+
m
∫
sin
n
−
2
a
x
cos
m
a
x
d
x
(for
m
,
n
>
0
)
{\displaystyle \int \sin ^{n}ax\cos ^{m}ax\;\mathrm {d} x=-{\frac {\sin ^{n-1}ax\cos ^{m+1}ax}{a(n+m)}}+{\frac {n-1}{n+m}}\int \sin ^{n-2}ax\cos ^{m}ax\;\mathrm {d} x\qquad {\mbox{(for }}m,n>0{\mbox{)}}\,\!}
also:
∫
sin
n
a
x
cos
m
a
x
d
x
=
sin
n
+
1
a
x
cos
m
−
1
a
x
a
(
n
+
m
)
+
m
−
1
n
+
m
∫
sin
n
a
x
cos
m
−
2
a
x
d
x
(for
m
,
n
>
0
)
{\displaystyle \int \sin ^{n}ax\cos ^{m}ax\;\mathrm {d} x={\frac {\sin ^{n+1}ax\cos ^{m-1}ax}{a(n+m)}}+{\frac {m-1}{n+m}}\int \sin ^{n}ax\cos ^{m-2}ax\;\mathrm {d} x\qquad {\mbox{(for }}m,n>0{\mbox{)}}\,\!}
∫
d
x
sin
a
x
cos
a
x
=
1
a
ln
|
tan
a
x
|
+
C
{\displaystyle \int {\frac {\mathrm {d} x}{\sin ax\cos ax}}={\frac {1}{a}}\ln \left|\tan ax\right|+C}
∫
d
x
sin
a
x
cos
n
a
x
=
1
a
(
n
−
1
)
cos
n
−
1
a
x
+
∫
d
x
sin
a
x
cos
n
−
2
a
x
(for
n
≠
1
)
{\displaystyle \int {\frac {\mathrm {d} x}{\sin ax\cos ^{n}ax}}={\frac {1}{a(n-1)\cos ^{n-1}ax}}+\int {\frac {\mathrm {d} x}{\sin ax\cos ^{n-2}ax}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,\!}
∫
d
x
sin
n
a
x
cos
a
x
=
−
1
a
(
n
−
1
)
sin
n
−
1
a
x
+
∫
d
x
sin
n
−
2
a
x
cos
a
x
(for
n
≠
1
)
{\displaystyle \int {\frac {\mathrm {d} x}{\sin ^{n}ax\cos ax}}=-{\frac {1}{a(n-1)\sin ^{n-1}ax}}+\int {\frac {\mathrm {d} x}{\sin ^{n-2}ax\cos ax}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,\!}
∫
sin
a
x
d
x
cos
n
a
x
=
1
a
(
n
−
1
)
cos
n
−
1
a
x
+
C
(for
n
≠
1
)
{\displaystyle \int {\frac {\sin ax\;\mathrm {d} x}{\cos ^{n}ax}}={\frac {1}{a(n-1)\cos ^{n-1}ax}}+C\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,\!}
∫
sin
2
a
x
d
x
cos
a
x
=
−
1
a
sin
a
x
+
1
a
ln
|
tan
(
π
4
+
a
x
2
)
|
+
C
{\displaystyle \int {\frac {\sin ^{2}ax\;\mathrm {d} x}{\cos ax}}=-{\frac {1}{a}}\sin ax+{\frac {1}{a}}\ln \left|\tan \left({\frac {\pi }{4}}+{\frac {ax}{2}}\right)\right|+C}
∫
sin
2
a
x
d
x
cos
n
a
x
=
sin
a
x
a
(
n
−
1
)
cos
n
−
1
a
x
−
1
n
−
1
∫
d
x
cos
n
−
2
a
x
(for
n
≠
1
)
{\displaystyle \int {\frac {\sin ^{2}ax\;\mathrm {d} x}{\cos ^{n}ax}}={\frac {\sin ax}{a(n-1)\cos ^{n-1}ax}}-{\frac {1}{n-1}}\int {\frac {\mathrm {d} x}{\cos ^{n-2}ax}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,\!}
∫
sin
n
a
x
d
x
cos
a
x
=
−
sin
n
−
1
a
x
a
(
n
−
1
)
+
∫
sin
n
−
2
a
x
d
x
cos
a
x
(for
n
≠
1
)
{\displaystyle \int {\frac {\sin ^{n}ax\;\mathrm {d} x}{\cos ax}}=-{\frac {\sin ^{n-1}ax}{a(n-1)}}+\int {\frac {\sin ^{n-2}ax\;\mathrm {d} x}{\cos ax}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,\!}
∫
sin
n
a
x
d
x
cos
m
a
x
=
sin
n
+
1
a
x
a
(
m
−
1
)
cos
m
−
1
a
x
−
n
−
m
+
2
m
−
1
∫
sin
n
a
x
d
x
cos
m
−
2
a
x
(for
m
≠
1
)
{\displaystyle \int {\frac {\sin ^{n}ax\;\mathrm {d} x}{\cos ^{m}ax}}={\frac {\sin ^{n+1}ax}{a(m-1)\cos ^{m-1}ax}}-{\frac {n-m+2}{m-1}}\int {\frac {\sin ^{n}ax\;\mathrm {d} x}{\cos ^{m-2}ax}}\qquad {\mbox{(for }}m\neq 1{\mbox{)}}\,\!}
also:
∫
sin
n
a
x
d
x
cos
m
a
x
=
−
sin
n
−
1
a
x
a
(
n
−
m
)
cos
m
−
1
a
x
+
n
−
1
n
−
m
∫
sin
n
−
2
a
x
d
x
cos
m
a
x
(for
m
≠
n
)
{\displaystyle \int {\frac {\sin ^{n}ax\;\mathrm {d} x}{\cos ^{m}ax}}=-{\frac {\sin ^{n-1}ax}{a(n-m)\cos ^{m-1}ax}}+{\frac {n-1}{n-m}}\int {\frac {\sin ^{n-2}ax\;\mathrm {d} x}{\cos ^{m}ax}}\qquad {\mbox{(for }}m\neq n{\mbox{)}}\,\!}
also:
∫
sin
n
a
x
d
x
cos
m
a
x
=
sin
n
−
1
a
x
a
(
m
−
1
)
cos
m
−
1
a
x
−
n
−
1
m
−
1
∫
sin
n
−
2
a
x
d
x
cos
m
−
2
a
x
(for
m
≠
1
)
{\displaystyle \int {\frac {\sin ^{n}ax\;\mathrm {d} x}{\cos ^{m}ax}}={\frac {\sin ^{n-1}ax}{a(m-1)\cos ^{m-1}ax}}-{\frac {n-1}{m-1}}\int {\frac {\sin ^{n-2}ax\;\mathrm {d} x}{\cos ^{m-2}ax}}\qquad {\mbox{(for }}m\neq 1{\mbox{)}}\,\!}
∫
cos
a
x
d
x
sin
n
a
x
=
−
1
a
(
n
−
1
)
sin
n
−
1
a
x
+
C
(for
n
≠
1
)
{\displaystyle \int {\frac {\cos ax\;\mathrm {d} x}{\sin ^{n}ax}}=-{\frac {1}{a(n-1)\sin ^{n-1}ax}}+C\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,\!}
∫
cos
2
a
x
d
x
sin
a
x
=
1
a
(
cos
a
x
+
ln
|
tan
a
x
2
|
)
+
C
{\displaystyle \int {\frac {\cos ^{2}ax\;\mathrm {d} x}{\sin ax}}={\frac {1}{a}}\left(\cos ax+\ln \left|\tan {\frac {ax}{2}}\right|\right)+C}
∫
cos
2
a
x
d
x
sin
n
a
x
=
−
1
n
−
1
(
cos
a
x
a
sin
n
−
1
a
x
)
+
∫
d
x
sin
n
−
2
a
x
)
(for
n
≠
1
)
{\displaystyle \int {\frac {\cos ^{2}ax\;\mathrm {d} x}{\sin ^{n}ax}}=-{\frac {1}{n-1}}\left({\frac {\cos ax}{a\sin ^{n-1}ax)}}+\int {\frac {\mathrm {d} x}{\sin ^{n-2}ax}}\right)\qquad {\mbox{(for }}n\neq 1{\mbox{)}}}
∫
cos
n
a
x
d
x
sin
m
a
x
=
−
cos
n
+
1
a
x
a
(
m
−
1
)
sin
m
−
1
a
x
−
n
−
m
−
2
m
−
1
∫
cos
n
a
x
d
x
sin
m
−
2
a
x
(for
m
≠
1
)
{\displaystyle \int {\frac {\cos ^{n}ax\;\mathrm {d} x}{\sin ^{m}ax}}=-{\frac {\cos ^{n+1}ax}{a(m-1)\sin ^{m-1}ax}}-{\frac {n-m-2}{m-1}}\int {\frac {\cos ^{n}ax\;\mathrm {d} x}{\sin ^{m-2}ax}}\qquad {\mbox{(for }}m\neq 1{\mbox{)}}\,\!}
also:
∫
cos
n
a
x
d
x
sin
m
a
x
=
cos
n
−
1
a
x
a
(
n
−
m
)
sin
m
−
1
a
x
+
n
−
1
n
−
m
∫
cos
n
−
2
a
x
d
x
sin
m
a
x
(for
m
≠
n
)
{\displaystyle \int {\frac {\cos ^{n}ax\;\mathrm {d} x}{\sin ^{m}ax}}={\frac {\cos ^{n-1}ax}{a(n-m)\sin ^{m-1}ax}}+{\frac {n-1}{n-m}}\int {\frac {\cos ^{n-2}ax\;\mathrm {d} x}{\sin ^{m}ax}}\qquad {\mbox{(for }}m\neq n{\mbox{)}}\,\!}
also:
∫
cos
n
a
x
d
x
sin
m
a
x
=
−
cos
n
−
1
a
x
a
(
m
−
1
)
sin
m
−
1
a
x
−
n
−
1
m
−
1
∫
cos
n
−
2
a
x
d
x
sin
m
−
2
a
x
(for
m
≠
1
)
{\displaystyle \int {\frac {\cos ^{n}ax\;\mathrm {d} x}{\sin ^{m}ax}}=-{\frac {\cos ^{n-1}ax}{a(m-1)\sin ^{m-1}ax}}-{\frac {n-1}{m-1}}\int {\frac {\cos ^{n-2}ax\;\mathrm {d} x}{\sin ^{m-2}ax}}\qquad {\mbox{(for }}m\neq 1{\mbox{)}}\,\!}
∫
sin
a
x
tan
a
x
d
x
=
1
a
(
ln
|
sec
a
x
+
tan
a
x
|
−
sin
a
x
)
+
C
{\displaystyle \int \sin ax\tan ax\;\mathrm {d} x={\frac {1}{a}}(\ln |\sec ax+\tan ax|-\sin ax)+C\,\!}
∫
tan
n
a
x
d
x
sin
2
a
x
=
1
a
(
n
−
1
)
tan
n
−
1
(
a
x
)
+
C
(for
n
≠
1
)
{\displaystyle \int {\frac {\tan ^{n}ax\;\mathrm {d} x}{\sin ^{2}ax}}={\frac {1}{a(n-1)}}\tan ^{n-1}(ax)+C\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,\!}
∫
tan
n
a
x
d
x
cos
2
a
x
=
1
a
(
n
+
1
)
tan
n
+
1
a
x
+
C
(for
n
≠
−
1
)
{\displaystyle \int {\frac {\tan ^{n}ax\;\mathrm {d} x}{\cos ^{2}ax}}={\frac {1}{a(n+1)}}\tan ^{n+1}ax+C\qquad {\mbox{(for }}n\neq -1{\mbox{)}}\,\!}
∫
cot
n
a
x
d
x
sin
2
a
x
=
−
1
a
(
n
+
1
)
cot
n
+
1
a
x
+
C
(for
n
≠
−
1
)
{\displaystyle \int {\frac {\cot ^{n}ax\;\mathrm {d} x}{\sin ^{2}ax}}=-{\frac {1}{a(n+1)}}\cot ^{n+1}ax+C\qquad {\mbox{(for }}n\neq -1{\mbox{)}}\,\!}
∫
cot
n
a
x
d
x
cos
2
a
x
=
1
a
(
1
−
n
)
tan
1
−
n
a
x
+
C
(for
n
≠
1
)
{\displaystyle \int {\frac {\cot ^{n}ax\;\mathrm {d} x}{\cos ^{2}ax}}={\frac {1}{a(1-n)}}\tan ^{1-n}ax+C\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,\!}
∫
−
c
c
sin
x
d
x
=
0
{\displaystyle \int _{-c}^{c}\sin {x}\;\mathrm {d} x=0\!}
∫
−
c
c
cos
x
d
x
=
2
∫
0
c
cos
x
d
x
=
2
∫
−
c
0
cos
x
d
x
=
2
sin
c
{\displaystyle \int _{-c}^{c}\cos {x}\;\mathrm {d} x=2\int _{0}^{c}\cos {x}\;\mathrm {d} x=2\int _{-c}^{0}\cos {x}\;\mathrm {d} x=2\sin {c}\!}
∫
−
c
c
tan
x
d
x
=
0
{\displaystyle \int _{-c}^{c}\tan {x}\;\mathrm {d} x=0\!}
∫
−
a
2
a
2
x
2
cos
2
n
π
x
a
d
x
=
a
3
(
n
2
π
2
−
6
)
24
n
2
π
2
(for
n
=
1
,
3
,
5...
)
{\displaystyle \int _{-{\frac {a}{2}}}^{\frac {a}{2}}x^{2}\cos ^{2}{\frac {n\pi x}{a}}\;\mathrm {d} x={\frac {a^{3}(n^{2}\pi ^{2}-6)}{24n^{2}\pi ^{2}}}\qquad {\mbox{(for }}n=1,3,5...{\mbox{)}}\,\!}
Milton Abramowitz and Irene Stegun, editors. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables .
I.S. Gradshteyn (И. С. Градштейн), I.M. Ryzhik (И. М. Рыжик); Alan Jeffrey, Daniel Zwillinger, editors. Table of Integrals, Series, and Products , seventh edition. Academic Press, 2007. ISBN 978-0-12-373637-6 .. Errata. (Several previous editions as well.)
A.P. Prudnikov (А. П. Прудников), Yu.A. Brychkov (Ю. А. Брычков), O.I. Marichev (О. И. Маричев). Integrals and Series . First edition (Russian), volume 1–5, Nauka , 1981−1986. First edition (English, translated from the Russian by N.M. Queen), volume 1–5, Gordon & Breach Science Publishers/CRC Press, 1988–1992. ISBN 978-2-88124-097-3 .. Second revised edition (Russian), volume 1–3, Fiziko-Matematicheskaya Literatura, 2003.
Yu.A. Brychkov (Ю. А. Брычков), Handbook of Special Functions: Derivatives, Integrals, Series and Other Formulas . Russian edition, Fiziko-Matematicheskaya Literatura, 2006. English edition. . Chapman & Hall/CRC Press. 2008. ISBN 978-1-58488-956-4 . .
Daniel Zwillinger. CRC Standard Mathematical Tables and Formulae , 31st edition. Chapman & Hall/CRC Press, 2002. ISBN 978-1-58488-291-6 .. (Many earlier editions as well.)
Meyer Hirsch, Integral Tables, Or, A Collection of Integral Formulae (Baynes and son, London, 1823) [English translation of Integraltafeln ]
Benjamin O. Pierce A short table of integrals - revised edition (Ginn & co., Boston, 1899)