Eksponencijalna raspodela

Из Википедије, слободне енциклопедије
Иди на навигацију Иди на претрагу
Eksponencijalna
Funkcija gustine verovatnoće
Grafički prikaz funkcije gustine verovatnoće eksponencijalne distribucije plot of the probability density function of the exponential distribution
Funkcija kumulativne raspodele
Funkcija kumulativne distribucije
Parametriλ > 0 stopa, ili inverzna skala
Nositeljx ∈ [0, ∞)
PDFλ eλx
CDF1 − eλx
Kvantil−ln(1 − F) / λ
Prosekλ−1 (= β)
Medijanaλ−1ln(2)
Modus0
Varijansaλ−2 (= β2)
Koef. asimetrije2
Kurtoza6
Entropija1 − ln(λ)
MGF
CF
Fišerova informacija
Kulbek-Lajblerova divergencija

U teoriji verovatnoće i statistici, eksponencijalna raspodela (pozanta kao negativna eksponencijalna raspodela) je raspodela verovatnoće vremena između događaja u Poasonovom procesu,[1][2] i.e., procesu u kome se događaji kontinuirano i nezavisno javljaju sa konstantnom prosečnom brzinom. To je poseban slučaj gama distribucije. Eksponencijalna distribucija je kontinuirani analog geometrijske distribucije i ima ključno svojstvo da je bez memorije. Pored toga što se koristi za analizu Poasonovih tačkastih procesa, ona se javlja u mnoštvu drugih konteksta.

Eksponencijalna distribucija nije isto što i klasa eksponencijalne familije distribucija, koja je velika klasa distribucija verovatnoće kojom je obuhvaćena eksponencijalna distribucija kao jedan od njenih članova, ali takođe uključuje normalnu distribuciju, binomnu distribuciju, gama distribuciju, Poasonovu, i mnoge druge.

Karakterizacija[уреди]

Funkcija gustine verovatnoće[уреди]

Funkcija gustine verovatnoće eksponencijalne distribucije je

Alternativno, ovo se može definisati korišćenjem desne-kontinuirane Hevisajdove odskočne funkcije, H(x) gde je H(0) = 1:[3][4]

Ovde je λ > 0 parameter distribucije, koji se obično naziva parametar brzine. Distribucija je podržana na intervalu [0, ∞). Ako slučajna promenljiva X ima ovu distribuciju, piše se X ~ Exp(λ).

Eksponencijalna distribucija ispoljava beskonačnu deljivost.

Funkcija kumulativne distribucije[уреди]

Funkcija kumulativne distribucije je data sa

Alternativno, ovo se može definisati koristeći Hevisajdovu odskočnu funkciju, H(x).

Alternativna parametrizacija[уреди]

Najčešće korišćena alternativna parametrizacija je putem definisanja funkcije gustine verovatnoće (pdf) eksponencijalne distribucije kao što je

gde je β > 0 srednja vrednost, standardna devijacija, i parametar skale distribucije, recipročna vrednost parametra brzine, λ, definisanog iznad. U ovoj specifikaciji, β je parametar preživljavanja u smislu da ako je slučajna varijabla X vremensko trajanje tokom koga određeni biološki ili mehanički sistem uspe da preživi i X ~ Exp(β), onda je E[X] = β. Naime, očekivano trajanje preživljavanja sistema je β jedinica vremena. Parametrizacija koja uključuje parametar „brzine” nastaje u kontekstu događaja koji pristižu brzinom λ, kada vreme između događaja (koje se može modelovati koristeći eksponencijalnu distribuciju) ima srednju vrednost β = λ−1.

Alternativna specifikacija je ponekad podesnija od gore navedene, a neki autori je koriste kao standardnu definiciju. Ova alternativna specifikacija se ovde ne koristi. Nažalost, to dovodi do nejasnoća u notacijama. Generalno, čitalac mora proveriti koja se od ove dve specifikacije koristi, ako autor piše „X ~ Exp(λ)”, misli se bilo na notaciju iz prethodne sekcije (koristeći λ) ili na notaciju iz ove sekcije (ovde, koristeći β da se izegne zabuna).[5]

Reference[уреди]

  1. ^ Stirzaker, David (2000). „Advice to Hedgehogs, or, Constants Can Vary”. The Mathematical Gazette. 84 (500): 197—210. ISSN 0025-5572. JSTOR 3621649. doi:10.2307/3621649. 
  2. ^ Guttorp, Peter; Thorarinsdottir, Thordis L. (2012). „What Happened to Discrete Chaos, the Quenouille Process, and the Sharp Markov Property? Some History of Stochastic Point Processes”. International Statistical Review. 80 (2): 253—268. ISSN 0306-7734. doi:10.1111/j.1751-5823.2012.00181.x. 
  3. ^ Calvert, James B. (2002). „Heaviside, Laplace, and the Inversion Integral”. University of Denver. 
  4. ^ Davies, Brian (2002). „Heaviside step function”. Integral Transforms and their Applications (3rd изд.). Springer. стр. 28. 
  5. ^ David Olive, Chapter 4. Truncated Distributions, "Lemma 4.3", Southern Illinois University, February 18, 2010, p.107.

Literatura[уреди]

Spoljašnje veze[уреди]