Hronološki pregled daleke budućnosti

Из Википедије, слободне енциклопедије
Иди на навигацију Иди на претрагу
A dark gray and red sphere representing the Earth lies against a black background to the right of an orange circular object representing the Sun
Umetničko viđenje ugljenisane Zemlje kroz 7,9 milijardi godina, nakon što je Sunce ušlo u fazu crvenog džina.

Iako predviđanja budućnosti nikada ne mogu biti apsolutno sigurna, sadašnja znanja iz raznih naučnih oblasti dozvoljavaju predviđanje događaja u dalekoj budućnosti, barem u najširim crtama. U ove naučne oblasti spadaju: astrofizika, koja otkriva kako se planete i zvezde formiraju, kako deluju jedne na druge i kako umiru; fizika elementarnih čestica, koja otkriva ponašanje materije u najmanjim razmerama; evoluciona biologija, koja predviđa kako će život evoluirati tokom vremena; i tektonika ploča, koja pokazuje kako se kontinenti pomeraju tokom milenijuma.

Sve projekcije budućnosti Zemlje, Sunčevog sistema i Svemira moraju uzeti u obzir drugi zakon termodinamike, koji kaže da entropija, ili gubitak energije dostupne za rad, mora da raste tokom vremena. Zvezde će na kraju iscrpsti svoje zalihe vodoničnog goriva i sagoreti. Bliski susreti gravitaciono odbacuju planete od svojih zvezdanih sistema, a zvezdane sisteme od galaksija.

Na kraju, očekuje se da sama materija padne pod uticaj radioaktivnog raspada, s obzirom da se i najstabilniji materijali cepaju na subatomske čestice. Sadašnji podaci ukazuju da svemir ima ravnu geometriju (ili vrlo blizu ravne) i da se, prema tome, neće urušiti u sebe posle nekog konačnog vremena, a beskonačna budućnost dozvoljava pojavu više događaja koji su ekstremno neverovatni, kao što je formiranje Bolcmanovih mozgova.

Hronološke tabele koje su ovde prikazane pokrivaju događaje od početka 11. milenijuma do najdalje budućnosti. Brojni alternativni budući događaji su navedeni da bi objasnili još uvek nerešena pitanja, kao što su sledeća: da li će ljudi izumreti, da li će se protoni raspasti i da li će Zemlja preživeti kada se Sunce pretvori u crvenog džina.

Legenda[уреди]

Astronomy and astrophysics Astronomija i astrofizika
Geology and planetary science Geologija i planetarna nauka
Biology Biologija
Particle physics Fizika elementarnih čestica
Mathematics Matematika
Technology and culture Tehnologija i kultura

Budućnost Zemlje, Sunčevog sistema i Svemira[уреди]

Key.svg Broj

godina

Događaj
Geology and planetary science 10,000 Ako prestanak funkcije Vilksovog basena ugrozi istočnoantarktički kontinentalni basen, biće potrebno ovoliko vremena da se potpuno otopi. Nivo mora bi porastao za 3 do 4 metra. (Kao jedna od potencijalnih dugoročnih posledica globalnog zagrevanja, ovo je odvojeno od kratkoročne pretnje zapadnoantarktičkog kontinentalnog basena.)
Astronomy and astrophysics 10,000 Crveni superdžin Antares će verovatno eksplodirati u supernovu. Očekuje se da ova eksplozija bude vidljiva po danu.
[1]
Geology and planetary science 15,000 Prema Teoriji saharske pumpe, precesija Zemljinih polova će pomeriti Severnoafrički monsun dovoljno daleko na sever da se u Saharu vrati tropska klima, kao što je to bio slučaj pre 5.000-10.000 godina.
[2][3]
Geology and planetary science 25,000 The northern Martian polar ice cap could recede as Mars reaches a warming peak of the northern hemisphere during the c. 50,000-year perihelion precession aspect of its Milankovitch cycle.[4][5]
Astronomy and astrophysics 36,000 The small red dwarf Ross 248 will pass within 3.024 light-years of Earth, becoming the closest star to the Sun. It will recede after about 8,000 years, making first Alpha Centauri again and then Gliese 445 the nearest stars (see timeline).
Geology and planetary science 50,000 According to Berger and Loutre, the current interglacial period ends sending the Earth back into a glacial period of the current ice age, regardless of the effects of anthropogenic global warming.

Niagara Falls will have eroded away the remaining 32 km to Lake Erie, and ceased to exist.

The many glacial lakes of the Canadian Shield will have been erased by post-glacial rebound and erosion.[6]

Astronomy and astrophysics 50,000 The length of the day used for astronomical timekeeping reaches about 86,401 SI seconds, due to lunar tides decelerating the Earth's rotation. Under the present-day timekeeping system, either a leap second would need to be added to the clock every single day, or else by then, in order to compensate, the length of the day would have had to have been officially lengthened by one SI second.
Astronomy and astrophysics 100,000 The proper motion of stars across the celestial sphere, which is the result of their movement through the Milky Way, renders many of the constellations unrecognisable.
Astronomy and astrophysics 100,000 The hypergiant star VY Canis Majoris will likely have exploded in a hypernova.
Geology and planetary science 100,000 Earth will likely have undergone a supervolcanic eruption large enough to erupt 400 km3 (96 cubic miles) of magma. For comparison, Lake Erie is 484 km3 (116 cu mi).
Biology 100,000 Native North American earthworms, such as Megascolecidae, will have naturally spread north through the United States Upper Midwest to the Canada–US border, recovering from the Laurentide Ice Sheet glaciation (38°N to 49°N), assuming a migration rate of 10 metres per year.[7] (However, non-native invasive earthworms of North America have already been introduced by humans on a much shorter timescale, causing a shock to the regional ecosystem.)
Geology and planetary science 100,000+ As one of the long-term effects of global warming, 10% of anthropogenic carbon dioxide will still remain in a stabilized atmosphere.[8]
Geology and planetary science 250,000 Lōʻihi, the youngest volcano in the Hawaiian–Emperor seamount chain, will rise above the surface of the ocean and become a new volcanic island.
Astronomy and astrophysics c. 300,000 At some point in the next "several" hundred thousand years, the Wolf–Rayet star WR 104 is expected to explode in a supernova. It has been suggested that it may produce a gamma-ray burst that could pose a threat to life on Earth should its poles be aligned 12° or lower towards Earth. The star's axis of rotation has yet to be determined with certainty.[9]
Astronomy and astrophysics 500,000 Earth will likely have been hit by an asteroid of roughly 1 km in diameter, assuming it cannot be averted.
Geology and planetary science 500,000 The rugged terrain of Badlands National Park in South Dakota will have eroded away completely.[10]
Geology and planetary science 950,000 Meteor Crater, a large impact crater in Arizona considered the "freshest" of its kind, will have eroded away.[11]
Geology and planetary science 1 million Earth will likely have undergone a supervolcanic eruption large enough to erupt 3.200 km3 (770 cubic miles) of magma, an event comparable to the Toba supereruption 75,000 years ago.
Astronomy and astrophysics 1 million Highest estimated time until the red supergiant star Betelgeuse explodes in a supernova. The explosion is expected to be easily visible in daylight. It may explode in as little as 100,000 years, depending on the evolutionary model.
Astronomy and astrophysics 1 million Desdemona and Cressida, moons of Uranus, will likely have collided.[12]
Astronomy and astrophysics 1.4 million The star Gliese 710 will pass as close as 9,000 AU (0.14 light-years to the Sun) before moving away. This will gravitationally perturb members of the Oort cloud, a halo of icy bodies orbiting at the edge of the Solar System, thereafter raising the likelihood of a cometary impact in the inner Solar System.
Biology 2 million Estimated time for the recovery of coral reef ecosystems from human-caused ocean acidification; a similar time was taken for the recovery of marine ecosystems after the acidification event that occurred about 65 million years ago.[13]
Geology and planetary science 2 million+ The Grand Canyon will erode further, deepening slightly, but principally widening into a broad valley surrounding the Colorado River.[14]
Astronomy and astrophysics 2.7 million Average orbital half-life of current centaurs, that are unstable because of gravitational interaction of the several outer planets.[15] See predictions for notable centaurs.
Geology and planetary science 10 million The widening East African Rift valley is flooded by the Red Sea, causing a new ocean basin to divide the continent of Africa and the African Plate into the newly formed Nubian Plate and the Somali Plate.
Biology 10 million Estimated time for full recovery of biodiversity after a potential Holocene extinction, if it were on the scale of the five previous major extinction events.[16]

Even without a mass extinction, by this time most current species will have disappeared through the background extinction rate, with many clades gradually evolving into new forms.[17]

Astronomy and astrophysics 10 to 1,000 million Cupid and Belinda, moons of Uranus, will likely have collided.
Geology and planetary science 25 million According to Christopher R. Scotese, the movement of the San Andreas Fault will cause the Gulf of California to flood into the Central Valley. This will form a new inland sea on the West Coast of North America.
Astronomy and astrophysics 50 million Maximum estimated time before the moon Phobos collides with Mars.
Geology and planetary science 50 million According to Christopher R. Scotese, the movement of the San Andreas Fault will cause the current locations of Los Angeles and San Francisco to merge.

Africa's collision with Eurasia closes the Mediterranean Basin and creates a mountain range similar to the Himalayas.

The Appalachian Mountains peaks will largely erode away,[18] weathering at 5.7 Bubnoff units, although topography will actually rise as regional valleys deepen at twice this rate.[19]

Geology and planetary science 50–60 million The Canadian Rockies will erode away to a plain, assuming a rate of 60 Bubnoff units.[20] (The Southern Rockies in the United States are eroding at a somewhat slower rate.[21])
Geology and planetary science 50–400 million Estimated time for Earth to naturally replenish its fossil fuel reserves.[22]
Geology and planetary science 80 million The Big Island will have become the last of the current Hawaiian Islands to sink beneath the surface of the ocean, while a more recently formed chain of "new Hawaiian Islands" will then have emerged in their place.[23]
Astronomy and astrophysics 100 million Earth will likely have been hit by an asteroid comparable in size to the one that triggered the K–Pg extinction 66 million years ago, assuming it cannot be averted.
Geology and planetary science 100 million According to the Pangaea Proxima Model created by Christopher R. Scotese, a new subduction zone will open in the Atlantic Ocean and the Americas will begin to converge back toward Africa.
Geology and planetary science 100 million Upper estimate for lifespan of the rings of Saturn in their current state.[24]
Astronomy and astrophysics 110 million Due a more rapid consumption of hydrogen in the Sun's core, the Sun's luminosity will have risen 1%.
Astronomy and astrophysics 180 million Due to the gradual slowing down of Earth's rotation, a day on Earth will be one hour longer than it is today.[25]
Mathematics 230 million Prediction of the orbits of the planets is impossible over greater time spans than this, due to the limitations of Lyapunov time.
Astronomy and astrophysics 240 million From its present position, the Solar System completes one full orbit of the Galactic center.
Geology and planetary science 250 million Due to the northward movement of the West Coast of North America, the coast of California will collide with Alaska.
Geology and planetary science 250 million All the continents on Earth may fuse into a supercontinent. Three potential arrangements of this configuration have been dubbed Amasia, Novopangaea, and Pangaea Ultima.
Geology and planetary science 300–600 million Estimated time for Venus's mantle temperature to reach its maximum. Then, over a period of about 100 million years, major subduction occurs and the crust is recycled.
Geology and planetary science 400–500 million The supercontinent (Pangaea Ultima, Novopangaea, or Amasia) will likely have rifted apart.
Astronomy and astrophysics 500 million Estimated time until a gamma-ray burst, or massive, hyperenergetic supernova, occurs within 6,500 light-years of Earth; close enough for its rays to affect Earth's ozone layer and potentially trigger a mass extinction, assuming the hypothesis is correct that a previous such explosion triggered the Ordovician–Silurian extinction event. However, the supernova would have to be precisely oriented relative to Earth to have any negative effect.
Astronomy and astrophysics 600 million Tidal acceleration moves the Moon far enough from Earth that total solar eclipses are no longer possible.
Geology and planetary science 600 million The Sun's rising luminosity begins to disrupt the carbonate–silicate cycle; higher luminosity raises weathering of surface rocks, which traps carbon dioxide in the ground as carbonate. Volcanoes will continue to pump carbon dioxide for at least the next 1.1 billion years. However, the long term trend is for the carbon dioxide level to steadily drop.[26]
Biology 600 million By this time, carbon dioxide levels will fall to the point at which C3 photosynthesis used by trees is no longer possible. By this point, forests will no longer be able to survive, causing a mega mass extinction of the Earth's vegetation.
Biology 600–700 million As temperatures continue to rise on the surface, plants and animals could evolve new ways of survival like becoming carnivorous or associating with fungi. This is expected to occur just before the Earth enters into a moist greenhouse state.
Biology 700–800 million Due to rising surface temperatures and deteriorating ozone layer form the lack of oxygen producing plants, animals could travel to high elevations, where it is cooler. Flying creatures would fare a better chance at survival due to their ability to travel long distances looking for cooler temperatures. Many animals may be driven to the poles or possibly underground. These creatures would become active during the polar night and hibernate during the polar day due to the intense heat and radiation. Much of the land would become a barren desert and plants + animals would primarily be found in the oceans.[26]
Biology 800 million Carbon dioxide levels fall to the point at which C4 photosynthesis is no longer possible. Without plant life to recycle oxygen in the atmosphere, free oxygen and the ozone layer will disappear from the atmosphere allowing for intense levels of deadly UV light to reach the surface. However, in their book The Life and Death of Planet Earth, authors Peter D. Ward and Donald Brownlee stated that some animal life may be able to survive in the oceans. However, due to a lessening of organic matter and oxygen in the water, animal life would die off there too. By this time all multicellular life will die out. The only life left on the Earth after this will be single celled bacteria.
Geology and planetary science 1 billion 27% of the ocean's mass will have been subducted into the mantle. If this were to continue uninterrupted, it would reach an equilibrium where 65% of the surface water would remain at the surface.
Geology and planetary science 1.1 billion The Sun's luminosity has risen by 10%, causing Earth's surface temperatures to reach an average of c. 320 K (47 °C; 116 °F). The atmosphere will become a "moist greenhouse", resulting in a runaway evaporation of the oceans. As water evaporates from the Earth's surface, rocks harden, causing plate tectonics to slow and eventually stop. Pockets of liquid water may still be present at the poles or at high elevations, allowing small areas where life can survive.
Biology 1.3 billion Eukaryotic life dies out on Earth due to carbon dioxide starvation. Only prokaryotes remain.
Astronomy and astrophysics 1.5–1.6 billion The Sun's rising luminosity causes its circumstellar habitable zone to move outwards; as carbon dioxide rises in Mars's atmosphere, its surface temperature rises to levels akin to Earth during the ice age.
Biology 1.6 billion Lower estimate till all prokaryotic life will go extinct.
Geology and planetary science 2.3 billion The Earth's outer core freezes, if the inner core continues to grow at its current rate of 1 mm per year. Without its liquid outer core, the Earth's magnetic field shuts down, and charged particles emanating from the Sun gradually deplete the atmosphere.
Geology and planetary science 2.8 billion Earth's surface temperature, even at the poles, reaches an average of c. 422 K (149 °C; 300 °F). At this point, all life, now reduced to unicellular colonies in isolated, scattered microenvironments such as high-altitude lakes or subsurface caves, will go extinct.
Astronomy and astrophysics c. 3 billion There is a roughly 1 in 100,000 chance that the Earth might be ejected into interstellar space by a stellar encounter before this point, and a 1 in 3 million chance that it will then be captured by another star. Were this to happen, life, assuming it survived the interstellar journey, could potentially continue for far longer.[27]
Astronomy and astrophysics 3 billion Median point at which the Moon's rising distance from the Earth lessens its stabilising effect on the Earth's axial tilt. As a consequence, Earth's true polar wander becomes chaotic and extreme, leading to dramatic shifts in the planet's climate due to the changing axial tilt. If the Earth's tilt exceeds 54°, then the poles will receive more solar radiation than the equator. The planet's tilt could shift to as high as 60° - 90° for periods of 10 million years.
Astronomy and astrophysics 3.3 billion 1% chance that Jupiter's gravity may make Mercury's orbit so eccentric as to collide with Venus, sending the inner Solar System into chaos. Possible scenarios include Mercury colliding with the Sun, being ejected from the Solar System, or colliding with Earth.
Geology and planetary science 3.5–4.5 billion All water currently present in oceans (if not lost earlier) evaporates. The greenhouse effect caused by the massive water atmosphere combined with the luminosity of the Sun reaching roughly 35–40% more than its present-day value, will result in Earth's surface heating up with the temperature rising to 1.400 K (1.130 °C; 2.060 °F) in extreme case, which is hot enough to melt some surface rock.[28] This period in Earth's future is often compared to Venus today, but the temperature is actually around two times the temperature on Venus today, and at this temperature the surface will be partially molten, while Venus probably has a mostly solid surface at present. Venus will also probably drastically heat up at this time as well, most likely being much hotter than Earth will be as it is closer to the Sun.
Astronomy and astrophysics 3.6 billion Neptune's moon Triton falls through the planet's Roche limit, potentially disintegrating into a planetary ring system similar to Saturn's.
Astronomy and astrophysics 4 billion Median point by which the Andromeda Galaxy will have collided with the Milky Way, which will thereafter merge to form a galaxy dubbed "Milkomeda". The planets of the Solar System are expected to be relatively unaffected by this collision.[29]
Astronomy and astrophysics 5.4 billion With the hydrogen supply exhausted at its core, the Sun leaves the main sequence and begins to evolve into a red giant.
Astronomy and astrophysics 7.5 billion Earth and Mars may become tidally locked with the expanding subgiant Sun.
Astronomy and astrophysics 7.59 billion The Earth and Moon are very likely destroyed by falling into the Sun, just before the Sun reaches the tip of its red giant phase and its maximum radius of 256 times the present-day value. Before the final collision, the Moon possibly spirals below Earth's Roche limit, breaking into a ring of debris, most of which falls to the Earth's surface.

During this era, Saturn's moon Titan may reach surface temperatures necessary to support life.

Astronomy and astrophysics 7.9 billion The Sun reaches the tip of the red-giant branch of the Hertzsprung–Russell diagram, achieving its maximum radius of 256 times the present-day value. In the process, Mercury, Venus, very likely Earth, and possibly Mars are destroyed.
Astronomy and astrophysics 8 billion The Sun becomes a carbon-oxygen white dwarf with about 54.05% its present mass. At this point, if somehow the Earth survives, temperatures on the surface of the planet, as well as other remaining planets in the Solar System, will begin dropping rapidly, due to the white dwarf Sun emitting much less energy than it does today.
Astronomy and astrophysics 22 billion The end of the Universe in the Big Rip scenario, assuming a model of dark energy with w = −1.5. If the density of dark energy is less than -1, then the Universe's expansion would continue to accelerate and the Observable Universe would continue to get smaller. Around 200 million years before the rip, galaxy clusters like the Local Group or the Sculptor Group would be destroyed. 60 million years before the rip, all galaxies will begin to lose stars around their edges and will completely disintegrate in another 40 million years. Three months before the Rip, all star systems will become gravitationally unbound, and planets will fly off into the rapidly expanding universe. 30 minutes before the end, planets, stars, asteroids and even extreme objects like neutron stars and black holes will evaporate into atoms. 10−19 seconds before the end, atoms would break apart and right at the moment of the rip even space time itself would disintegrate. The universe would enter into a "rip singularity" when all distances become infinitely large. Where as a "crunch singularity" all matter is infinitely concentrated, in a "rip singularity" all matter is infinitely spread out. However, Observations of galaxy cluster speeds by the Chandra X-ray Observatory suggest that the true value of w is c. −0.991, meaning the Big Rip will not occur.
Astronomy and astrophysics 50 billion If the Earth and Moon are not engulfed by the Sun, by this time they will become tidelocked, with each showing only one face to the other. Thereafter, the tidal action of the white dwarf Sun will extract angular momentum from the system, causing the lunar orbit to decay and the Earth's spin to accelerate.
Astronomy and astrophysics 65 billion The Moon may end up colliding with the Earth due to the decay of its orbit, assuming the Earth and Moon are not engulfed by the red giant Sun.
Astronomy and astrophysics 100-150 billion The Universe's expansion causes all galaxies beyond the former Milky Way's Local Group to disappear beyond the cosmic light horizon, removing them from the observable universe.
Astronomy and astrophysics 150 billion The cosmic microwave background cools from its current temperature of c. 2.7 K to 0.3 K, rendering it essentially undetectable with current technology.
Astronomy and astrophysics 450 billion Median point by which the c. 47 galaxies of the Local Group will coalesce into a single large galaxy.
Astronomy and astrophysics 800 billion Expected time when the net light emission from the combined "Milkomeda" galaxy begins to decline as the red dwarf stars pass through their blue dwarf stage of peak luminosity.
Astronomy and astrophysics 1012 (1 trillion) Low estimate for the time until star formation ends in galaxies as galaxies are depleted of the gas clouds they need to form stars.

The universe's expansion, assuming a constant dark energy density, multiplies the wavelength of the cosmic microwave background by 1029, exceeding the scale of the cosmic light horizon and rendering its evidence of the Big Bang undetectable. However, it may still be possible to determine the expansion of the universe through the study of hypervelocity stars.

Astronomy and astrophysics 4×1012 (4 trillion) Estimated time until the red dwarf star Proxima Centauri, the closest star to the Sun at a distance of 4.25 light-years, leaves the main sequence and becomes a white dwarf.
Astronomy and astrophysics 1.2×1013 (12 trillion) Estimated time until the red dwarf VB 10, as of 2016 the least massive main sequence star with an estimated mass of 0.075 M, runs out of hydrogen in its core and becomes a white dwarf.
Astronomy and astrophysics 3×1013 (30 trillion) Estimated time for stars (including the Sun) to undergo a close encounter with another star in local stellar neighborhoods. Whenever two stars (or stellar remnants) pass close to each other, their planets' orbits can be disrupted, potentially ejecting them from the system entirely. On average, the closer a planet's orbit to its parent star the longer it takes to be ejected in this manner, because it is gravitationally more tightly bound to the star.[30]
Astronomy and astrophysics 1014 (100 trillion) High estimate for the time until normal star formation ends in galaxies.[31] This marks the transition from the Stelliferous Era to the Degenerate Era; with no free hydrogen to form new stars, all remaining stars slowly exhaust their fuel and die.[32]
Astronomy and astrophysics 1.1–1.2×1014 (110–120 trillion) Time by which all stars in the universe will have exhausted their fuel (the longest-lived stars, low-mass red dwarfs, have lifespans of roughly 10–20 trillion years).[31] After this point, the stellar-mass objects remaining are stellar remnants (white dwarfs, neutron stars, black holes) and brown dwarfs.

Collisions between brown dwarfs will create new red dwarfs on a marginal level: on average, about 100 stars will be shining in what was once the Milky Way. Collisions between stellar remnants will create occasional supernovae.[31]

Astronomy and astrophysics 1015 (1 quadrillion) Estimated time until stellar close encounters detach all planets in star systems (including the Solar System) from their orbits.[31]

By this point, the Sun will have cooled to five degrees above absolute zero.[33]

Astronomy and astrophysics 1019 to 1020
(10–100 quintillion)
Estimated time until 90%–99% of brown dwarfs and stellar remnants (including the Sun) are ejected from galaxies. When two objects pass close enough to each other, they exchange orbital energy, with lower-mass objects tending to gain energy. Through repeated encounters, the lower-mass objects can gain enough energy in this manner to be ejected from their galaxy. This process eventually causes the Milky Way to eject the majority of its brown dwarfs and stellar remnants.[31][34]
Astronomy and astrophysics 1020 (100 quintillion) Estimated time until the Earth collides with the black dwarf Sun due to the decay of its orbit via emission of gravitational radiation,[35] if the Earth is not ejected from its orbit by a stellar encounter or engulfed by the Sun during its red giant phase.[35]
Astronomy and astrophysics 1030 (1 nonillion) Estimated time until those stars not ejected from galaxies (1%–10%) fall into their galaxies' central supermassive black holes. By this point, with binary stars having fallen into each other, and planets into their stars, via emission of gravitational radiation, only solitary objects (stellar remnants, brown dwarfs, ejected planets, black holes) will remain in the universe.[31]
Particle physics 2×1036 The estimated time for all nucleons in the observable universe to decay, if the hypothesized proton half-life takes its smallest possible value (8.2×1033 years).[36][37][note 1]
Particle physics 3×1043 Estimated time for all nucleons in the observable universe to decay, if the hypothesized proton half-life takes the largest possible value, 1041 years,[31] assuming that the Big Bang was inflationary and that the same process that made baryons predominate over anti-baryons in the early Universe makes protons decay.[37][note 1] By this time, if protons do decay, the Black Hole Era, in which black holes are the only remaining celestial objects, begins.[32][31]
Particle physics 1065 Assuming that protons do not decay, estimated time for rigid objects, from free-floating rocks in space to planets, to rearrange their atoms and molecules via quantum tunneling. On this timescale, any discrete body of matter "behaves like a liquid" and becomes a smooth sphere due to diffusion and gravity.[35]
Particle physics 5.8×1068 Estimated time until a stellar mass black hole with a mass of 3 solar masses decays into subatomic particles by the Hawking process.[38]
Particle physics 6.036×1099 Estimated time until the supermassive black hole of TON 618, as of 2018 the most massive known with the mass of 66 billion solar masses, dissipates by the emission of Hawking radiation,[38] assuming zero angular momentum (non-rotating black hole).
Particle physics 1.7×10106 Estimated time until a supermassive black hole with a mass of 20 trillion solar masses decays by the Hawking process.[38] This marks the end of the Black Hole Era. Beyond this time, if protons do decay, the Universe enters the Dark Era, in which all physical objects have decayed to subatomic particles, gradually winding down to their final energy state in the heat death of the universe.[32][31]
Particle physics 10139 2018 estimate of Standard Model lifetime before collapse of a false vacuum; 95% confidence interval is 1058 to 10241 years due in part to uncertainty about the top quark mass.
Particle physics 10200 Estimated high time for all nucleons in the observable universe to decay, if they do not via the above process, through any one of many different mechanisms allowed in modern particle physics (higher-order baryon non-conservation processes, virtual black holes, sphalerons, etc.) on time scales of 1046 to 10200 years.[32]
Particle physics 101500 Assuming protons do not decay, the estimated time until all baryonic matter has either fused together to form iron-56 or decayed from a higher mass element into iron-56 (see iron star).[35]
Particle physics Low estimate for the time until all objects exceeding the Planck mass[није у датом извору] collapse via quantum tunnelling into black holes, assuming no proton decay or virtual black holes.[35] On this vast timescale, even ultra-stable iron stars are destroyed by quantum tunnelling events. First iron stars of sufficient mass will collapse via tunnelling into neutron stars. Subsequently, neutron stars and any remaining iron stars collapse via tunnelling into black holes. The subsequent evaporation of each resulting black hole into sub-atomic particles (a process lasting roughly 10100 years) is on these timescales instantaneous.
Particle physics [note 2][note 3] Estimated time for a Boltzmann brain to appear in the vacuum via a spontaneous entropy drop.[39]
Particle physics [note 3] High estimate for the time until all matter collapses into neutron stars or black holes, assuming no proton decay or virtual black holes,[35] which then (on these timescales) instantaneously evaporate into sub-atomic particles.
Particle physics [note 3] High estimate for the time for the universe to reach its final energy state, even in the presence of a false vacuum.[39][није у датом извору]
Particle physics [note 2][note 3] Around this vast timeframe, quantum tunnelling in any isolated patch of the vacuum could generate, via inflation, new Big Bangs giving birth to new universes.[40]

Because the total number of ways in which all the subatomic particles in the observable universe can be combined is , a number which, when multiplied by , disappears into the rounding error, this is also the time required for a quantum-tunnelled and quantum fluctuation-generated Big Bang to produce a new universe identical to our own, assuming that every new universe contained at least the same number of subatomic particles and obeyed laws of physics within the range predicted by string theory.[41]

Budućnost čovečanstva[уреди]

Key.svg Godina od danas Događaj
technology and culture 10,000 Najverovatniji životni vek tehnološke civilizacije, prema Drejkovoj jednačini.
[42]
Biology 10,000
Mathematics 10,000
[43]
technology and culture 20,000
Geology and planetary science 100,000+
[44]
Technology and culture 1 million [45]
Biology 2 million Vertebrate species separated for this long will generally undergo allopatric speciation. Evolutionary biologist James W. Valentine predicted that if humanity has been dispersed among genetically isolated space colonies over this time, the galaxy will host an evolutionary radiation of multiple human species with a "diversity of form and adaptation that would astound us".[46] This would be a natural process of isolated populations, unrelated to potential deliberate genetic enhancement technologies.
Mathematics 7.8 million Humanity has a 95% probability of being extinct by this date, according to J. Richard Gott's formulation of the controversial Doomsday argument, which argues that we have probably already lived through half the duration of human history.[47]
technology and culture 100 million Maximal estimated lifespan of technological civilization, according to Frank Drake's original formulation of the Drake equation.[48]
Astronomy and astrophysics 1 billion Estimated time for an astroengineering project to alter the Earth's orbit, compensating for the Sun's rising brightness and outward migration of the habitable zone, accomplished by repeated asteroid gravity assists.[49][50]

Letelice i istraživanje svemira[уреди]

Trenutno se pet svemirskih letelica (Vojadžer 1, Vojadžer 2, Pionir 10, Pionir 11 i Novi horizonti) nalazi na putanjama koje će ih odvesti izvan Sunčevog sistema u međuzvezdani prostor. Osim ako se ne sudare sa nekim objektom, za šta je verovatnoća izuzetno mala, letelice će trajati beskonačno dugo.

Key.svg Godina od danas Događaj
Astronomy and astrophysics 10,000 Pionir 10 će proći na 3,8 svetlosnih godina od Barnardove zvezde.
Astronomy and astrophysics 25,000 Poruka iz Aresiba, skup radio podataka emitovanih 16. novembra 1974, stići će na svoje odredište, globularni klaster Mesje 13.
 Ovo je jedina međuzvezdana radio poruka koja je upućena u tako udaljenu oblast galaksije. Položaj ovog klastera u galaksiji će se pomeriti za 24 svetlosne godine dok poruka ne stigne do njega, ali s obzirom da ima prečnik od 168 svetlosnih godina, poruka će ipak stići na svoje odredište. Odgovoru bi trebalo još 25.000 godina da stigne nazad.
Astronomy and astrophysics 32,000 Pionir 10 će proći na udaljenosti od 3 svetlosne godine od zvezde Ross 248.
Astronomy and astrophysics 40,000 Voyager 1 passes within 1.6 light-years of AC+79 3888, a star in the constellation Camelopardalis also known as Gliese 445.
Astronomy and astrophysics 50,000 The KEO space time capsule, if it is launched, will reenter Earth's atmosphere.
Astronomy and astrophysics 296,000 Voyager 2 passes within 4.3 light-years of Sirius, the brightest star in the night sky.
Astronomy and astrophysics 800,000–8 million Low estimate of Pioneer 10 plaque lifespan, before the etching is destroyed by poorly-understood interstellar erosion processes.
Astronomy and astrophysics 2 million Pioneer 10 passes near the bright star Aldebaran.
Astronomy and astrophysics 4 million Pioneer 11 passes near one of the stars in the constellation Aquila.
Astronomy and astrophysics 8 million The LAGEOS satellites' orbits will decay, and they will re-enter Earth's atmosphere, carrying with them a message to any far future descendants of humanity, and a map of the continents as they are expected to appear then.
Astronomy and astrophysics 1 billion Estimated lifespan of the two Voyager Golden Records, before the information stored on them is rendered unrecoverable.

Tehnološki projekti[уреди]

Ljudski  proizvodi[уреди]

Astronomski događaji[уреди]

Kalendarska predviđanja[уреди]

Nuklearna energija[уреди]

Napomene[уреди]

  1. ^ Hockey, T.; Trimble, V. (2010). „Public reaction to a V = −12.5 supernova”. The Observatory. 130: 167. Bibcode:2010Obs...130..167H. 
  2. ^ Mowat, Laura (14. 07. 2017). „Africa's desert to become lush green tropics as monsoons MOVE to Sahara, scientists say”. Express.co.uk (на језику: енглески). Приступљено 23. 03. 2018. 
  3. ^ „Orbit: Earth's Extraordinary Journey”. ExptU. 23. 12. 2015. Архивирано из оригинала на датум 14. 07. 2018. Приступљено 23. 03. 2018. 
  4. ^ Schorghofer, Norbert (23. 09. 2008). „Temperature response of Mars to Milankovitch cycles” (PDF). Geophysical Research Letters. 35 (18): L18201. Bibcode:2008GeoRL..3518201S. doi:10.1029/2008GL034954. Архивирано из оригинала (PDF) на датум 19. 09. 2009. 
  5. ^ Beech, Martin (2009). Terraforming: The Creating of Habitable Worlds. Springer. стр. 138—142. 
  6. ^ Bastedo, Jamie (1994). Shield Country: The Life and Times of the Oldest Piece of the Planet. Arctic Institute of North America of the University of Calgary. стр. 202. Шаблон:ISBN missing
  7. ^ Schaetzl, Randall J.; Anderson, Sharon (2005). Soils: Genesis and Geomorphology. Cambridge University Press. стр. 105. Шаблон:ISBN missing
  8. ^ Archer 2009, стр. 123.
  9. ^ Tuthill, Peter; Monnier, John; Lawrance, Nicholas; Danchi, William; Owocki, Stan; Gayley, Kenneth (2008). „The Prototype Colliding-Wind Pinwheel WR 104”. The Astrophysical Journal. 675 (1): 698—710. Bibcode:2008ApJ...675..698T. arXiv:0712.2111Слободан приступ. doi:10.1086/527286. 
  10. ^ „Badlands National Park – Nature & Science – Geologic Formations”. 
  11. ^ Landstreet, John D. (2003). Physical Processes in the Solar System: An introduction to the physics of asteroids, comets, moons and planets. Keenan & Darlington. стр. 121. Шаблон:ISBN missing
  12. ^ „Uranus's colliding moons”. astronomy.com. 2017. Приступљено 23. 09. 2017. 
  13. ^ Goldstein, Natalie (2009). Global Warming. Infobase Publishing. »The last time acidification on this scale occurred (about 65 mya) it took more than 2 million years for corals and other marine organisms to recover; some scientists today believe, optimistically, that it could take tens of thousands of years for the ocean to regain the chemistry it had in preindustrial times.« Шаблон:ISBN missing
  14. ^ „Grand Canyon – Geology – A dynamic place”. Views of the National Parks. National Park Service. 
  15. ^ Horner, J.; Evans, N.W.; Bailey, M. E. (2004). „Simulations of the Population of Centaurs I: The Bulk Statistics”. Monthly Notices of the Royal Astronomical Society. 354 (3): 798—810. Bibcode:2004MNRAS.354..798H. arXiv:astro-ph/0407400Слободан приступ. doi:10.1111/j.1365-2966.2004.08240.x. 
  16. ^ Kirchner, James W.; Weil, Anne (09. 03. 2000). „Delayed biological recovery from extinctions throughout the fossil record”. Nature. 404 (6774): 177—180. Bibcode:2000Natur.404..177K. PMID 10724168. doi:10.1038/35004564. 
  17. ^ Wilson, Edward O. (1999). The Diversity of Life. W. W. Norton & Company. стр. 216. Шаблон:ISBN missing
  18. ^ „Geology”. Encyclopedia of Appalachia. University of Tennessee Press. 2011. Архивирано из оригинала на датум 21. 05. 2014. Приступљено 08. 09. 2018. 
  19. ^ Hancock, Gregory; Kirwan, Matthew (јануар 2007). „Summit erosion rates deduced from 10Be: Implications for relief production in the central Appalachians” (PDF). Geology. 35 (1): 89. Bibcode:2007Geo....35...89H. doi:10.1130/g23147a.1. 
  20. ^ Yorath, C. J. (1995). Of rocks, mountains and Jasper: a visitor's guide to the geology of Jasper National Park. Dundurn Press. стр. 30. Шаблон:ISBN missing
  21. ^ Dethier, David P.; Ouimet, W.; Bierman, P. R.; Rood, D. H.; et al. (2014). „Basins and bedrock: Spatial variation in 10Be erosion rates and increasing relief in the southern Rocky Mountains, USA” (PDF). Geology. 42 (2): 167—170. Bibcode:2014Geo....42..167D. doi:10.1130/G34922.1. 
  22. ^ Patzek, Tad W. (2008). „Can the Earth Deliver the Biomass-for-Fuel we Demand?”. Ур.: Pimentel, David. Biofuels, Solar and Wind as Renewable Energy Systems: Benefits and Risks. Springer. Шаблон:ISBN missing
  23. ^ Perlman, David (14. 10. 2006). „Kiss that Hawaiian timeshare goodbye / Islands will sink in 80 million years”. San Francisco Chronicle. 
  24. ^ Lang, Kenneth R. (2003). The Cambridge Guide to the Solar System. Cambridge University Press. стр. 328—329. Шаблон:ISBN missing
  25. ^ Scudder, Jillian. „How Long Until The Moon Slows The Earth To A 25 Hour Day?”. Forbes. Приступљено 30. 05. 2017. 
  26. 26,0 26,1 Ward & Brownlee 2003, стр. 117–28.
  27. ^ Adams 2008, стр. 33–44.
  28. ^ Brownlee 2010, стр. 95.
  29. ^ NASA (31. 05. 2012). „NASA's Hubble Shows Milky Way is Destined for Head-On Collision”. NASA. Приступљено 13. 10. 2012. 
  30. ^ Tayler, Roger John (1993). Galaxies, Structure and Evolution (2 изд.). Cambridge University Press. стр. 92. ISBN 978-0521367103. 
  31. 31,0 31,1 31,2 31,3 31,4 31,5 31,6 31,7 31,8 Adams, Fred C.; Laughlin, Gregory (април 1997). „A dying universe: the long-term fate and evolution of astrophysical objects”. Reviews of Modern Physics. 69 (2): 337—372. Bibcode:1997RvMP...69..337A. arXiv:astro-ph/9701131Слободан приступ. doi:10.1103/RevModPhys.69.337. 
  32. 32,0 32,1 32,2 32,3 Adams, Fred; Laughlin, Greg (1999). The Five Ages of the Universe. New York: The Free Press. ISBN 978-0684854229. 
  33. ^ Barrow, John D.; Tipler, Frank J. (19. 05. 1988). The Anthropic Cosmological Principle. foreword by John A. Wheeler. Oxford: Oxford University Press. ISBN 978-0192821478. LC 87-28148. Приступљено 31. 12. 2009. 
  34. ^ Adams, Fred; Laughlin, Greg (1999). The Five Ages of the Universe. New York: The Free Press. стр. 85—87. ISBN 978-0684854229. 
  35. 35,0 35,1 35,2 35,3 35,4 35,5 Dyson, Freeman J. (1979). „Time Without End: Physics and Biology in an Open Universe”. Reviews of Modern Physics. 51 (3): 447—460. Bibcode:1979RvMP...51..447D. doi:10.1103/RevModPhys.51.447. Приступљено 5. 7. 2008. 
  36. ^ Nishino, Super-K Collaboration, et al. (2009). „Search for Proton Decay via
    p+

    e+

    π0
    and
    p+

    μ+

    π0
    in a Large Water Cherenkov Detector”. Physical Review Letters. 102 (14): 141801. Bibcode:2009PhRvL.102n1801N. PMID 19392425. arXiv:0903.0676Слободан приступ. doi:10.1103/PhysRevLett.102.141801.
     
  37. 37,0 37,1 Tyson, Neil de Grasse; Tsun-Chu Liu, Charles; Irion, Robert (2000). One Universe: At Home in the Cosmos. Joseph Henry Press. ISBN 978-0309064880. 
  38. 38,0 38,1 38,2 Page 1976.
  39. 39,0 39,1 Linde, Andrei. (2007). „Sinks in the Landscape, Boltzmann Brains and the Cosmological Constant Problem”. Journal of Cosmology and Astroparticle Physics. 2007 (1): 022. Bibcode:2007JCAP...01..022L. arXiv:hep-th/0611043Слободан приступ. doi:10.1088/1475-7516/2007/01/022. 
  40. ^ Carroll, Sean M.; Chen, Jennifer (27. 10. 2004). „Spontaneous Inflation and the Origin of the Arrow of Time”. arXiv:hep-th/0410270Слободан приступ. 
  41. ^ Tegmark, Max (2003). „Parallel Universes”. In "Science and Ultimate Reality: from Quantum to Cosmos", honoring John Wheeler's 90th birthday. J. D. Barrow, P.C.W. Davies, & C.L. Harper eds. Cambridge University Press. 288 (5): 40—51. Bibcode:2003SciAm.288e..40T. PMID 12701329. arXiv:astro-ph/0302131Слободан приступ. doi:10.1038/scientificamerican0503-40. 
  42. ^ M. Douglas, "The statistics of string / M theory vacua", JHEP 0305, 46 (2003). arXiv:hep-th/0303194; S. Ashok and M. Douglas, "Counting flux vacua", JHEP 0401, 060 (2004).
  43. ^ Carter, Brandon; McCrea, W. H. (1983). „The anthropic principle and its implications for biological evolution”. Philosophical Transactions of the Royal Society of London. A310 (1512): 347—363. Bibcode:1983RSPTA.310..347C. doi:10.1098/rsta.1983.0096. 
  44. ^ Greenberg, Joseph (1987). Language in the Americas. Stanford University Press. стр. 341—342. Шаблон:ISBN missing
  45. ^ Kaku, Michio (2010). „The Physics of Interstellar Travel: To one day, reach the stars”. mkaku.org. Приступљено 29. 8. 2010. 
  46. ^ Avise, G. C.; Walker; Johns (22. 09. 1998). „Speciation durations and Pleistocene effects on vertebrate phylogeography” (PDF). Philosophical Transactions of the Royal Society B. 265 (1407): 1707—1712. PMC 1689361Слободан приступ. doi:10.1098/rspb.1998.0492.  Непознати параметар |pmisbn= игнорисан (помоћ)
  47. ^ Valentine, James W. (1985). „The Origins of Evolutionary Novelty And Galactic Colonization”. Ур.: Finney, Ben R.; Jones, Eric M. Interstellar Migration and the Human Experience. University of California Press. Шаблон:ISBN missing
  48. ^ J. Richard Gott, III (1993). „Implications of the Copernican principle for our future prospects”. Nature. 363 (6427): 315—319. Bibcode:1993Natur.363..315G. doi:10.1038/363315a0. 
  49. ^ Bignami, Giovanni F.; Sommariva, Andrea (2013). A Scenario for Interstellar Exploration and Its Financing. Springer. стр. 23. Шаблон:ISBN missing
  50. ^ Korycansky, D. G.; Laughlin, Gregory; Adams, Fred C. (2001). „Astronomical engineering: a strategy for modifying planetary orbits”. Astrophysics and Space Science. 275 (4): 349—366. doi:10.1023/A:1002790227314. Astrophys.Space Sci.275:349-366,2001. 

Грешка код цитирања: <ref> таг са именом „Nave” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „Komatsu” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „Matthews1993” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „Berger2002” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „Niagara Parks” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „arxiv1106_3141” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „Tapping 2005” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „Monnier Tuthill Lopez 1999” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „toba” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „havo” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „Bostrom 2002” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „beteldeath” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „betel” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „gliese” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „Bills” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „rift” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „trench” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „medi” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „kpg1” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „galyear” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „scotese” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „Williams Nield 2007” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „Heath Doyle 2009” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „600mil” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „bd2_6_1665” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „mnras386_1” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „abode” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „mars” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „ng4_264” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „compo” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „magnet” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „wander” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „chaos” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „venus” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „triton” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „cox” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „milk” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „Schroder 2008” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „Rybicki2001” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „powell2007” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „Titan” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „nebula” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „apj676_1_594” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „bigrip” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „chand” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „galaxy” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „temp” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „messier” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „bluedwarf” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „Page 1976” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „hayes07” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „time” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „glob” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „voyager” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „keo1” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „Pioneer 1st 7 billion” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „Pioneer 1st 7 billion2” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „Pioneer Ames” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „longnow” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „greg2” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „global1” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „lageos” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „pressure” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „natgeo” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „islam” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „greg” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „vega” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „plait” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „mini2” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „laskar” дефинисан у <references> није употребљен у претходном тексту.
Грешка код цитирања: <ref> таг са именом „Cohen” дефинисан у <references> није употребљен у претходном тексту.

Грешка код цитирања: <ref> таг са именом „hess5_4_569” дефинисан у <references> није употребљен у претходном тексту.


Грешка код цитирања: Постоје ознаке <ref> за групу с именом „note“, али нема одговарајуће ознаке <references group="note"/>, или затварајући </ref> недостаје