Receptor epidermalnog faktora rasta

Из Википедије, слободне енциклопедије
Jump to navigation Jump to search
EGFR
1NQL.png
Available structures
PDB Human UniProt search: PDBe RCSB
Identifikatori
Alijasi EGFR
Spoljašnji ID OMIM: 131550 HomoloGene: 74545 GeneCards: EGFR
Obrazac RNK izražavanja
PBB GE EGFR 201983 s at.png
More reference expression data
Ortolozi
Vrste Čovek Miš
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

RefSeq (protein)

n/a

Location (UCSC) n/a n/a
PubMed search [1] n/a
Wikidata
View/Edit Human

Receptor epidermalnog faktora rasta (EGFR; ErbB-1; HER1 kod ljudi) je receptor ćelijske površine članova familije epidermalnih faktora rasta (EGF-familija) ekstracelularnih proteina liganda.[2]

Receptor epidermalnog faktora rasta je član ErbB familije receptora, subfamilije sa četiri blisko srodna receptora tirozinske kinaze: EGFR (ErbB-1), HER2/c-neu (ErbB-2), Her 3 (ErbB-3) i Her 4 (ErbB-4). Mutacije koje utiču na izražavanje ili aktivnost EGFR mogu da dovedu do kancera.[3]

Epidermalni faktor rasta i njegov receptor je otkrio Stanli Kohen na Vanderbilt univerzitetu. Kohen je podelio Nobelovu nagradu za fiziologiju ili medicinu 1986. sa Ritom Levi-Montalcini za njihovo otkriće faktora rasta.

Patologija[уреди]

Mutacije zametka[уреди]

  • V843I : Predispozicija za rak pluća[4]

Interakcija[уреди]

Poznato je da receptor epidermalnog faktora rasta formira interakcije sa:

Reference[уреди]

  1. ^ „Human PubMed Reference:”. 
  2. ^ Herbst RS (2004). „Review of epidermal growth factor receptor biology”. Int. J. Radiat. Oncol. Biol. Phys. 59 (2 Suppl): 21—6. PMID 15142631. doi:10.1016/j.ijrobp.2003.11.041. 
  3. ^ Zhang H, Berezov A, Wang Q, Zhang G, Drebin J, Murali R, Greene MI (2007). „ErbB receptors: from oncogenes to targeted cancer therapies”. J. Clin. Invest. 117 (8): 2051—8. PMC 1934579Слободан приступ. PMID 17671639. 
  4. ^ Ikeda K, Nomori H, Mori T, Sasaki J, Kobayashi T (2008). „Novel germline mutation: EGFR V843I in patient with multiple lung adenocarcinomas and family members with lung cancer.”. Ann Thorac Surg. 85 (4): 1430—2. PMID 18355544. doi:10.1016/j.athoracsur.2007.10.012. 
  5. ^ Bonaccorsi L; Carloni Vinicio; Muratori Monica; Formigli Lucia; Zecchi Sandra; Forti Gianni; Baldi Elisabetta (2004). „EGF receptor (EGFR) signaling promoting invasion is disrupted in androgen-sensitive prostate cancer cells by an interaction between EGFR and androgen receptor (AR)”. Int. J. Cancer. 112 (1): 78—86. PMID 15305378. doi:10.1002/ijc.20362. 
  6. ^ Bonaccorsi L, Muratori M, Carloni V, Marchiani S, Formigli L, Forti G, Baldi E (2004). „The androgen receptor associates with the epidermal growth factor receptor in androgen-sensitive prostate cancer cells”. Steroids. 69 (8-9): 549—52. PMID 15288768. doi:10.1016/j.steroids.2004.05.011. 
  7. ^ Kim S-W; Hayashi Masaaki; Lo Jeng-Fan; Yang Young; Yoo Jin-San; Lee Jiing-Dwan (2003). „ADP-ribosylation factor 4 small GTPase mediates epidermal growth factor receptor-dependent phospholipase D2 activation”. J. Biol. Chem. 278 (4): 2661—8. PMID 12446727. doi:10.1074/jbc.M205819200. 
  8. 8,0 8,1 Couet J, Sargiacomo M, Lisanti MP (1997). „Interaction of a receptor tyrosine kinase, EGF-R, with caveolins. Caveolin binding negatively regulates tyrosine and serine/threonine kinase activities”. J. Biol. Chem. 272 (48): 30429—38. PMID 9374534. doi:10.1074/jbc.272.48.30429. 
  9. 9,0 9,1 Tvorogov D; Carpenter Graham (2002). „EGF-dependent association of phospholipase C-gamma1 with c-Cbl”. Exp. Cell Res. 277 (1): 86—94. PMID 12061819. doi:10.1006/excr.2002.5545. 
  10. 10,0 10,1 Ettenberg SA, Keane MM, Nau MM, Frankel M, Wang LM, Pierce JH, Lipkowitz S (1999). „cbl-b inhibits epidermal growth factor receptor signaling”. Oncogene. 18 (10): 1855—66. PMID 10086340. doi:10.1038/sj.onc.1202499. 
  11. 11,0 11,1 Pennock S, Wang Z (2008). „A tale of two Cbls: interplay of c-Cbl and Cbl-b in epidermal growth factor receptor downregulation”. Mol. Cell. Biol. 28 (9): 3020—37. PMC 2293090Слободан приступ. PMID 18316398. doi:10.1128/MCB.01809-07. 
  12. 12,0 12,1 Umebayashi K, Stenmark H, Yoshimori T (2008). „Ubc4/5 and c-Cbl continue to ubiquitinate EGF receptor after internalization to facilitate polyubiquitination and degradation”. Mol. Biol. Cell. 19 (8): 3454—62. PMC 2488299Слободан приступ. PMID 18508924. doi:10.1091/mbc.E07-10-0988. 
  13. ^ Ng C; Jackson Rebecca A; Buschdorf Jan P; Sun Qingxiang; Guy Graeme R; Sivaraman J (2008). „Structural basis for a novel intrapeptidyl H-bond and reverse binding of c-Cbl-TKB domain substrates”. EMBO J. 27 (5): 804—16. PMC 2265755Слободан приступ. PMID 18273061. doi:10.1038/emboj.2008.18. 
  14. 14,0 14,1 14,2 14,3 14,4 14,5 Schulze WX; Deng Lei; Mann Matthias (2005). „Phosphotyrosine interactome of the ErbB-receptor kinase family”. Mol. Syst. Biol. 1 (1): 2005.0008. PMC 1681463Слободан приступ. PMID 16729043. doi:10.1038/msb4100012. 
  15. ^ Kim M, Tezuka T, Suziki Y, Sugano S, Hirai M, Yamamoto T (1999). „Molecular cloning and characterization of a novel cbl-family gene, cbl-c”. Gene. 239 (1): 145—54. PMID 10571044. doi:10.1016/S0378-1119(99)00356-X. 
  16. ^ Keane MM, Ettenberg SA, Nau MM, Banerjee P, Cuello M, Penninger J, Lipkowitz S (1999). „cbl-3: a new mammalian cbl family protein”. Oncogene. 18 (22): 3365—75. PMID 10362357. doi:10.1038/sj.onc.1202753. 
  17. ^ Wang Z, Wang M, Lazo JS, Carr BI (2002). „Identification of epidermal growth factor receptor as a target of Cdc25A protein phosphatase”. J. Biol. Chem. 277 (22): 19470—5. PMID 11912208. doi:10.1074/jbc.M201097200. 
  18. ^ Hashimoto Y, Katayama H, Kiyokawa E, Ota S, Kurata T, Gotoh N, Otsuka N, Shibata M, Matsuda M (1998). „Phosphorylation of CrkII adaptor protein at tyrosine 221 by epidermal growth factor receptor”. J. Biol. Chem. 273 (27): 17186—91. PMID 9642287. doi:10.1074/jbc.273.27.17186. 
  19. ^ Hazan RB, Norton L (1998). „The epidermal growth factor receptor modulates the interaction of E-cadherin with the actin cytoskeleton”. J. Biol. Chem. 273 (15): 9078—84. PMID 9535896. doi:10.1074/jbc.273.15.9078. 
  20. ^ Schroeder JA; Adriance Melissa C; McConnell Elizabeth J; Thompson Melissa C; Pockaj Barbara; Gendler Sandra J (2002). „ErbB-beta-catenin complexes are associated with human infiltrating ductal breast and murine mammary tumor virus (MMTV)-Wnt-1 and MMTV-c-Neu transgenic carcinomas”. J. Biol. Chem. 277 (25): 22692—8. PMID 11950845. doi:10.1074/jbc.M201975200. 
  21. ^ Takahashi K, Suzuki K, Tsukatani Y (1997). „Induction of tyrosine phosphorylation and association of beta-catenin with EGF receptor upon tryptic digestion of quiescent cells at confluence”. Oncogene. 15 (1): 71—8. PMID 9233779. doi:10.1038/sj.onc.1201160. 
  22. ^ Santra M, Reed Charles C, Iozzo Renato V (2002). „Decorin binds to a narrow region of the epidermal growth factor (EGF) receptor, partially overlapping but distinct from the EGF-binding epitope”. J. Biol. Chem. 277 (38): 35671—81. PMID 12105206. doi:10.1074/jbc.M205317200. 
  23. ^ Iozzo RV, Moscatello DK, McQuillan DJ, Eichstetter I (1999). „Decorin is a biological ligand for the epidermal growth factor receptor”. J. Biol. Chem. 274 (8): 4489—92. PMID 9988678. doi:10.1074/jbc.274.8.4489. 
  24. 24,0 24,1 Wong L, Deb TB, Thompson SA, Wells A, Johnson GR (1999). „A differential requirement for the COOH-terminal region of the epidermal growth factor (EGF) receptor in amphiregulin and EGF mitogenic signaling”. J. Biol. Chem. 274 (13): 8900—9. PMID 10085134. doi:10.1074/jbc.274.13.8900. 
  25. ^ Stortelers C; Souriau Christelle; van Liempt Ellis; van de Poll Monique L M; van Zoelen Everardus J J (2002). „Role of the N-terminus of epidermal growth factor in ErbB-2/ErbB-3 binding studied by phage display”. Biochemistry. 41 (27): 8732—41. PMID 12093292. doi:10.1021/bi025878c. 
  26. 26,0 26,1 Daly RJ, Sanderson GM, Janes PW, Sutherland RL (1996). „Cloning and characterization of GRB14, a novel member of the GRB7 gene family”. J. Biol. Chem. 271 (21): 12502—10. PMID 8647858. doi:10.1074/jbc.271.21.12502. 
  27. 27,0 27,1 27,2 Braverman LE, Quilliam LA (1999). „Identification of Grb4/Nckbeta, a src homology 2 and 3 domain-containing adapter protein having similar binding and biological properties to Nck”. J. Biol. Chem. 274 (9): 5542—9. PMID 10026169. doi:10.1074/jbc.274.9.5542. 
  28. ^ Blagoev B; Kratchmarova Irina; Ong Shao-En; Nielsen Mogens; Foster Leonard J; Mann Matthias (2003). „A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling”. Nat. Biotechnol. 21 (3): 315—8. PMID 12577067. doi:10.1038/nbt790. 
  29. ^ Oneyama C; Nakano Hirofumi; Sharma Sreenath V (2002). „UCS15A, a novel small molecule, SH3 domain-mediated protein-protein interaction blocking drug”. Oncogene. 21 (13): 2037—50. PMID 11960376. doi:10.1038/sj.onc.1205271. 
  30. ^ Okutani T, Okabayashi Y, Kido Y, Sugimoto Y, Sakaguchi K, Matuoka K, Takenawa T, Kasuga M (1994). „Grb2/Ash binds directly to tyrosines 1068 and 1086 and indirectly to tyrosine 1148 of activated human epidermal growth factor receptors in intact cells”. J. Biol. Chem. 269 (49): 31310—4. PMID 7527043. 
  31. ^ Tortora G, Damiano V, Bianco C, Baldassarre G, Bianco AR, Lanfrancone L, Pelicci PG, Ciardiello F (1997). „The RIalpha subunit of protein kinase A (PKA) binds to Grb2 and allows PKA interaction with the activated EGF-receptor”. Oncogene. 14 (8): 923—8. PMID 9050991. doi:10.1038/sj.onc.1200906. 
  32. 32,0 32,1 Buday L, Egan SE, Rodriguez VP, Cantrell DA, Downward J (1994). „A complex of Grb2 adaptor protein, Sos exchange factor, and a 36-kDa membrane-bound tyrosine phosphoprotein is implicated in ras activation in T cells”. J. Biol. Chem. 269 (12): 9019—23. PMID 7510700. 
  33. ^ Lowenstein EJ, Daly RJ, Batzer AG, Li W, Margolis B, Lammers R, Ullrich A, Skolnik EY, Bar-Sagi D, Schlessinger J (1992). „The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signaling”. Cell. 70 (3): 431—42. PMID 1322798. doi:10.1016/0092-8674(92)90167-B. 
  34. 34,0 34,1 34,2 34,3 34,4 Olayioye MA, Beuvink I, Horsch K, Daly JM, Hynes NE (1999). „ErbB receptor-induced activation of stat transcription factors is mediated by Src tyrosine kinases”. J. Biol. Chem. 274 (24): 17209—18. PMID 10358079. doi:10.1074/jbc.274.24.17209. 
  35. ^ Schroeder JA, Thompson MC, Gardner MM, Gendler SJ (2001). „Transgenic MUC1 interacts with epidermal growth factor receptor and correlates with mitogen-activated protein kinase activation in the mouse mammary gland”. J. Biol. Chem. 276 (16): 13057—64. PMID 11278868. doi:10.1074/jbc.M011248200. 
  36. ^ Li Y, Ren J, Yu W, Li Q, Kuwahara H, Yin L, Carraway KL, Kufe D (2001). „The epidermal growth factor receptor regulates interaction of the human DF3/MUC1 carcinoma antigen with c-Src and beta-catenin”. J. Biol. Chem. 276 (38): 35239—42. PMID 11483589. doi:10.1074/jbc.C100359200. 
  37. ^ Tang J, Feng GS, Li W (1997). „Induced direct binding of the adapter protein Nck to the GTPase-activating protein-associated protein p62 by epidermal growth factor”. Oncogene. 15 (15): 1823—32. PMID 9362449. doi:10.1038/sj.onc.1201351. 
  38. ^ Li W, Hu P, Skolnik EY, Ullrich A, Schlessinger J (1992). „The SH2 and SH3 domain-containing Nck protein is oncogenic and a common target for phosphorylation by different surface receptors”. Mol. Cell. Biol. 12 (12): 5824—33. PMC 360522Слободан приступ. PMID 1333047. doi:10.1128/MCB.12.12.5824. 
  39. ^ Chen M, She H, Davis EM, Spicer CM, Kim L, Ren R, Le Beau MM, Li W (1998). „Identification of Nck family genes, chromosomal localization, expression, and signaling specificity”. J. Biol. Chem. 273 (39): 25171—8. PMID 9737977. doi:10.1074/jbc.273.39.25171. 
  40. ^ Tu Y, Li F, Wu C (1998). „Nck-2, a novel Src homology2/3-containing adaptor protein that interacts with the LIM-only protein PINCH and components of growth factor receptor kinase-signaling pathways”. Mol. Biol. Cell. 9 (12): 3367—82. PMC 25640Слободан приступ. PMID 9843575. 
  41. ^ Gauthier ML; Torretto Cheryl; Ly John; Francescutti Valerie; O'Day Danton H (2003). „Protein kinase Calpha negatively regulates cell spreading and motility in MDA-MB-231 human breast cancer cells downstream of epidermal growth factor receptor”. Biochem. Biophys. Res. Commun. 307 (4): 839—46. PMID 12878187. doi:10.1016/S0006-291X(03)01273-7. 
  42. ^ Bedrin MS, Abolafia CM, Thompson JF (1997). „Cytoskeletal association of epidermal growth factor receptor and associated signaling proteins is regulated by cell density in IEC-6 intestinal cells”. J. Cell. Physiol. 172 (1): 126—36. PMID 9207933. doi:10.1002/(SICI)1097-4652(199707)172:1<126::AID-JCP14>3.0.CO;2-A. 
  43. ^ Sun J; Nanjundan Meera; Pike Linda J; Wiedmer Therese; Sims Peter J (2002). „Plasma membrane phospholipid scramblase 1 is enriched in lipid rafts and interacts with the epidermal growth factor receptor”. Biochemistry. 41 (20): 6338—45. PMID 12009895. doi:10.1021/bi025610l. 
  44. ^ Sarmiento M, Puius YA, Vetter SW, Keng YF, Wu L, Zhao Y, Lawrence DS, Almo SC, Zhang ZY (2000). „Structural basis of plasticity in protein tyrosine phosphatase 1B substrate recognition”. Biochemistry. 39 (28): 8171—9. PMID 10889023. doi:10.1021/bi000319w. 
  45. ^ Zhang ZY, Walsh AB, Wu L, McNamara DJ, Dobrusin EM, Miller WT (1996). „Determinants of substrate recognition in the protein-tyrosine phosphatase, PTP1”. J. Biol. Chem. 271 (10): 5386—92. PMID 8621392. doi:10.1074/jbc.271.10.5386. 
  46. 46,0 46,1 Tomic S, Greiser U, Lammers R, Kharitonenkov A, Imyanitov E, Ullrich A, Böhmer FD (1995). „Association of SH2 domain protein tyrosine phosphatases with the epidermal growth factor receptor in human tumor cells. Phosphatidic acid activates receptor dephosphorylation by PTP1C”. J. Biol. Chem. 270 (36): 21277—84. PMID 7673163. doi:10.1074/jbc.270.36.21277. 
  47. ^ Keilhack H, Tenev T, Nyakatura E, Godovac-Zimmermann J, Nielsen L, Seedorf K, Böhmer FD (1998). „Phosphotyrosine 1173 mediates binding of the protein-tyrosine phosphatase SHP-1 to the epidermal growth factor receptor and attenuation of receptor signaling”. J. Biol. Chem. 273 (38): 24839—46. PMID 9733788. doi:10.1074/jbc.273.38.24839. 
  48. ^ {{cite journal| vauthors = Wang SE, Wu FY, Shin I, Qu S, Arteaga CL | title=Transforming growth factor {beta} (TGF-{beta})-Smad target gene protein tyrosine phosphatase receptor type kappa is required for TGF-{beta} function. | journal=Mol Cell Biol | year= 2005 | volume= 25 | issue= 11 | pages= 4703–15 | pmid=15899872 | doi=10.1128/MCB.25.11.4703-4715.2005 | pmc=1140650 | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=15899872 }}
  49. ^ Lu Y, Brush J, Stewart TA (1999). „NSP1 defines a novel family of adaptor proteins linking integrin and tyrosine kinase receptors to the c-Jun N-terminal kinase/stress-activated protein kinase signaling pathway”. J. Biol. Chem. 274 (15): 10047—52. PMID 10187783. doi:10.1074/jbc.274.15.10047. 
  50. ^ Soubeyran P; Kowanetz Katarzyna; Szymkiewicz Iwona; Langdon Wallace Y; Dikic Ivan (2002). „Cbl-CIN85-endophilin complex mediates ligand-induced downregulation of EGF receptors”. Nature. 416 (6877): 183—7. PMID 11894095. doi:10.1038/416183a. 
  51. ^ Szymkiewicz I; Kowanetz Katarzyna; Soubeyran Philippe; Dinarina Ana; Lipkowitz Stanley; Dikic Ivan (2002). „CIN85 participates in Cbl-b-mediated down-regulation of receptor tyrosine kinases”. J. Biol. Chem. 277 (42): 39666—72. PMID 12177062. doi:10.1074/jbc.M205535200. 
  52. ^ Sakaguchi K, Okabayashi Y, Kido Y, Kimura S, Matsumura Y, Inushima K, Kasuga M (1998). „Shc phosphotyrosine-binding domain dominantly interacts with epidermal growth factor receptors and mediates Ras activation in intact cells”. Mol. Endocrinol. 12 (4): 536—43. PMID 9544989. doi:10.1210/me.12.4.536. 
  53. ^ Qian X, Esteban L, Vass WC, Upadhyaya C, Papageorge AG, Yienger K, Ward JM, Lowy DR, Santos E (2000). „The Sos1 and Sos2 Ras-specific exchange factors: differences in placental expression and signaling properties”. EMBO J. 19 (4): 642—54. PMC 305602Слободан приступ. PMID 10675333. doi:10.1093/emboj/19.4.642. 
  54. ^ Qian X, Vass WC, Papageorge AG, Anborgh PH, Lowy DR (1998). „N terminus of Sos1 Ras exchange factor: critical roles for the Dbl and pleckstrin homology domains”. Mol. Cell. Biol. 18 (2): 771—8. PMC 108788Слободан приступ. PMID 9447973. 
  55. ^ Keely SJ, Calandrella SO, Barrett KE (2000). „Carbachol-stimulated transactivation of epidermal growth factor receptor and mitogen-activated protein kinase in T(84) cells is mediated by intracellular ca(2+), PYK-2, and p60(src)”. J. Biol. Chem. 275 (17): 12619—25. PMID 10777553. doi:10.1074/jbc.275.17.12619. 
  56. ^ Sato K, Kimoto M, Kakumoto M, Horiuchi D, Iwasaki T, Tokmakov AA, Fukami Y (2000). „Adaptor protein Shc undergoes translocation and mediates up-regulation of the tyrosine kinase c-Src in EGF-stimulated A431 cells”. Genes Cells. 5 (9): 749—64. PMID 10971656. doi:10.1046/j.1365-2443.2000.00358.x. 
  57. ^ Xia L; Wang Lijuan; Chung Alicia S; Ivanov Stanimir S; Ling Mike Y; Dragoi Ana M; Platt Adam; Gilmer Tona M; Fu Xin-Yuan; Chin Y Eugene (2002). „Identification of both positive and negative domains within the epidermal growth factor receptor COOH-terminal region for signal transducer and activator of transcription (STAT) activation”. J. Biol. Chem. 277 (34): 30716—23. PMID 12070153. doi:10.1074/jbc.M202823200. 
  58. ^ Yuan ZL, Guan YJ, Wang L, Wei W, Kane AB, Chin YE (2004). „Central role of the threonine residue within the p+1 loop of receptor tyrosine kinase in STAT3 constitutive phosphorylation in metastatic cancer cells”. Mol. Cell. Biol. 24 (21): 9390—400. PMC 522220Слободан приступ. PMID 15485908. doi:10.1128/MCB.24.21.9390-9400.2004. 
  59. ^ Sehat B; Andersson Sandra; Girnita Leonard; Larsson Olle (2008). „Identification of c-Cbl as a new ligase for insulin-like growth factor-I receptor with distinct roles from Mdm2 in receptor ubiquitination and endocytosis”. Cancer Res. 68 (14): 5669—77. PMID 18632619. doi:10.1158/0008-5472.CAN-07-6364. 
  60. ^ She HY, Rockow S, Tang J, Nishimura R, Skolnik EY, Chen M, Margolis B, Li W (1997). „Wiskott-Aldrich syndrome protein is associated with the adapter protein Grb2 and the epidermal growth factor receptor in living cells”. Mol. Biol. Cell. 8 (9): 1709—21. PMC 305731Слободан приступ. PMID 9307968. 

Literatura[уреди]

  • Carpenter G (1987). „Receptors for epidermal growth factor and other polypeptide mitogens”. Annual Review of Biochemistry. 56 (1): 881—914. PMID 3039909. doi:10.1146/annurev.bi.56.070187.004313. 
  • Boonstra J, Rijken P, Humbel B, Cremers F, Verkleij A, van Bergen en Henegouwen P (1995). „The epidermal growth factor”. Cell Biology International. 19 (5): 413—30. PMID 7640657. doi:10.1006/cbir.1995.1086. 
  • Carpenter G (2000). „The EGF receptor: a nexus for trafficking and signaling”. BioEssays. 22 (8): 697—707. PMID 10918300. doi:10.1002/1521-1878(200008)22:8<697::AID-BIES3>3.0.CO;2-1. 
  • Filardo EJ (2002). „Epidermal growth factor receptor (EGFR) transactivation by estrogen via the G-protein-coupled receptor, GPR30: a novel signaling pathway with potential significance for breast cancer”. The Journal of Steroid Biochemistry and Molecular Biology. 80 (2): 231—8. PMID 11897506. doi:10.1016/S0960-0760(01)00190-X. 
  • Tiganis T (2002). „Protein tyrosine phosphatases: dephosphorylating the epidermal growth factor receptor”. IUBMB Life. 53 (1): 3—14. PMID 12018405. doi:10.1080/15216540210811. 
  • Di Fiore PP, Scita G (2002). „Eps8 in the midst of GTPases”. The International Journal of Biochemistry & Cell Biology. 34 (10): 1178—83. PMID 12127568. doi:10.1016/S1357-2725(02)00064-X. 
  • Benaim G, Villalobo A (2002). „Phosphorylation of calmodulin. Functional implications”. European Journal of Biochemistry / FEBS. 269 (15): 3619—31. PMID 12153558. doi:10.1046/j.1432-1033.2002.03038.x. 
  • Leu TH, Maa MC (2003). „Functional implication of the interaction between EGF receptor and c-Src”. Frontiers in Bioscience. 8 (1-3): s28—38. PMID 12456372. doi:10.2741/980. 
  • Anderson NL, Anderson NG (2002). „The human plasma proteome: history, character, and diagnostic prospects”. Molecular & Cellular Proteomics. 1 (11): 845—67. PMID 12488461. doi:10.1074/mcp.R200007-MCP200. 
  • Kari C, Chan TO, Rocha de Quadros M, Rodeck U (2003). „Targeting the epidermal growth factor receptor in cancer: apoptosis takes center stage”. Cancer Research. 63 (1): 1—5. PMID 12517767. 
  • Bonaccorsi L, Muratori M, Carloni V, Zecchi S, Formigli L, Forti G, Baldi E (2003). „Androgen receptor and prostate cancer invasion”. International Journal of Andrology. 26 (1): 21—5. PMID 12534934. doi:10.1046/j.1365-2605.2003.00375.x. 
  • Reiter J, Maihle NJ (2003). „Characterization and expression of novel 60-kDa and 110-kDa EGFR isoforms in human placenta”. Annals of the New York Academy of Sciences. 995 (1): 39—47. PMID 12814937. doi:10.1111/j.1749-6632.2003.tb03208.x. 
  • Adams TE, McKern NM, Ward CW (2004). „Signalling by the type 1 insulin-like growth factor receptor: interplay with the epidermal growth factor receptor”. Growth Factors. 22 (2): 89—95. PMID 15253384. doi:10.1080/08977190410001700998. 
  • Ferguson KM (2004). „Active and inactive conformations of the epidermal growth factor receptor”. Biochemical Society Transactions. 32 (Pt 5): 742—5. PMID 15494003. doi:10.1042/BST0320742. 
  • Chao C, Hellmich MR (2004). „Bi-directional signaling between gastrointestinal peptide hormone receptors and epidermal growth factor receptor”. Growth Factors. 22 (4): 261—8. PMID 15621729. doi:10.1080/08977190412331286900. 
  • Carlsson J, Ren ZP, Wester K, Sundberg AL, Heldin NE, Hesselager G, Persson M, Gedda L, Tolmachev V, Lundqvist H, Blomquist E, Nistér M (2006). „Planning for intracavitary anti-EGFR radionuclide therapy of gliomas. Literature review and data on EGFR expression”. Journal of Neuro-Oncology. 77 (1): 33—45. PMID 16200342. doi:10.1007/s11060-005-7410-z. 
  • Scartozzi M, Pierantoni C, Berardi R, Antognoli S, Bearzi I, Cascinu S (2006). „Epidermal growth factor receptor: a promising therapeutic target for colorectal cancer”. Analytical and Quantitative Cytology and Histology / the International Academy of Cytology [And] American Society of Cytology. 28 (2): 61—8. PMID 16637508. 
  • Prudkin L, Wistuba II (2006). „Epidermal growth factor receptor abnormalities in lung cancer. Pathogenetic and clinical implications”. Annals of Diagnostic Pathology. 10 (5): 306—15. PMID 16979526. doi:10.1016/j.anndiagpath.2006.06.011. 
  • Ahmed SM, Salgia R (2006). „Epidermal growth factor receptor mutations and susceptibility to targeted therapy in lung cancer”. Respirology. 11 (6): 687—92. PMID 17052295. doi:10.1111/j.1440-1843.2006.00887.x. 
  • Zhang X, Chang A (2007). „Somatic mutations of the epidermal growth factor receptor and non-small-cell lung cancer”. Journal of Medical Genetics. 44 (3): 166—72. PMC 2598028Слободан приступ. PMID 17158592. doi:10.1136/jmg.2006.046102. 
  • Cohenuram M, Saif MW (2007). „Epidermal growth factor receptor inhibition strategies in pancreatic cancer: past, present and the future”. Jop. 8 (1): 4—15. PMID 17228128. 
  • Mellinghoff IK, Cloughesy TF, Mischel PS (2007). „PTEN-mediated resistance to epidermal growth factor receptor kinase inhibitors”. Clinical Cancer Research. 13 (2 Pt 1): 378—81. PMID 17255257. doi:10.1158/1078-0432.CCR-06-1992. 
  • Nakamura JL (2007). „The epidermal growth factor receptor in malignant gliomas: pathogenesis and therapeutic implications”. Expert Opinion on Therapeutic Targets. 11 (4): 463—72. PMID 17373877. doi:10.1517/14728222.11.4.463. 

Spoljašnje veze[уреди]