Бернулијеви бројеви — разлика између измена

С Википедије, слободне енциклопедије
Садржај обрисан Садржај додат
Нема описа измене
Нема описа измене
Ред 51: Ред 51:


==Својства==
==Својства==
** <math>x\;\operatorname{ctg} x=\sum_{n=0}^\infty (-1)^nB_{2n}\frac{2^{2n}}{(2n)!}x^{2n}, |x|<\pi</math>,
*<math>x\;\operatorname{ctg} x=\sum_{n=0}^\infty (-1)^nB_{2n}\frac{2^{2n}}{(2n)!}x^{2n}, |x|<\pi</math>,
** <math>\operatorname{tg} x=\sum_{n=1}^\infty|B_{2n}|\frac{2^{2n}(2^{2n}-1)}{(2n)!}x^{2n-1}, |x|<\pi/2</math>.
*<math>\operatorname{tg} x=\sum_{n=1}^\infty|B_{2n}|\frac{2^{2n}(2^{2n}-1)}{(2n)!}x^{2n-1}, |x|<\pi/2</math>.
* Леонард Ојлер је нашао везу између Бернулијевих бројева и Риманова зета-функцијаРиманове зета-функције ζ(''s'') за парне ''s'' = 2''k'':
* [[Леонард Ојлер]] је нашао везу између Бернулијевих бројева и [[Риманова зета-функција|Риманове зета-функције]] ζ(''s'') за парне ''s'' = 2''k'':
:: <math>B_{2k}=2(-1)^{k+1}\frac {\zeta(2k)\; (2k)!} {(2\pi)^{2k}}. </math>
:: <math>B_{2k}=2(-1)^{k+1}\frac {\zeta(2k)\; (2k)!} {(2\pi)^{2k}}. </math>
: Одатле следи:
: Одатле следи:

Верзија на датум 17. август 2012. у 23:57

Бернулијеви бројеви представљају низ рационалних бројева, које је открио Јакоб Бернули, а везани су за суму:

Неколико првих Бернулијевих бројева дано је табелом:

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Bn 1 0 0 0 0 0 0

Генерирајућа функција

Рекурзивна формула

Својства

  • ,
  • .
  • Леонард Ојлер је нашао везу између Бернулијевих бројева и Риманове зета-функције ζ(s) за парне s = 2k:
Одатле следи:
за све n.

Осим тога Бернулијеви бројеви повезани су и са следећим интегралом: