Линеарно пресликавање — разлика између измена

С Википедије, слободне енциклопедије
Садржај обрисан Садржај додат
м Бот: Селим 32 међујезичких веза, које су сад на Википодацима на d:q207643
м Бот: Селим 1 међујезичких веза, које су сад на Википодацима на d:q207643
Ред 43: Ред 43:
[[Категорија:Апстрактна алгебра]]
[[Категорија:Апстрактна алгебра]]
[[Категорија:Линеарна алгебра]]
[[Категорија:Линеарна алгебра]]

[[fa:نگاشت خطی]]

Верзија на датум 14. март 2013. у 23:34

У математици, линеарно пресликавање (такође линеарна трансформација или линеарни оператор) је функција између два векторска простора, која очувава операције сабирања вектора и скаларног множења. Израз линеарна трансформација се често користи, посебно за линеарна пресликавање из неког векторског простора у самог себе (ендоморфизми).

У језику апстрактне алгебре, линеарно пресликавање је хомоморфизам векторских простора, или морфизам у категорији векторских простора над датим пољем.

Дефиниција и директне последице

Нека су V и W векторски простори над истим пољем K. Функција f : VW је линеарно пресликавање ако за свака два вектора x и y из V и сваки скалар a из K, важе следећа два услова:

адитивност
хомогеност

Ово је еквивалентно захтеву да за све векторе x1, ..., xm и скаларе a1, ..., am, важи једнакост

Понекад може да се узме да су V и W векторски простори над различитим пољима. Тада је неопходно одредити које од ових поља се узима у дефиницији линеарности. Ако су V и W векторски простори над пољем K као у горњем случају, ради се о K-линеарним пресликавањима. На пример конјугација комплексних бројева је R-линеарно пресликавање CC, али није C-линеарно.

ЛИнеарно пресликавање из V у K (где се K посматра као векторски простор над самим собом) се назива линеарни функционал.

Из дефиниције директно следи да је f(0) = 0. Стога се линеарна пресликавања понекад називају хомогеним линеарним пресликавањима (види: линеарна функција).

Примери

  • За реалне бројеве, пресликавање није линеарно.
  • За реалне бројеве, пресликавање није линеарно.
  • Ако је A m × n матрица, онда A дефинише линеарно пресликавање из Rn у Rm тако што шаље вектор колона xRn у вектор колона AxRm. Обратно, свако линеарно пресликавање између коначно-димензионих векторских простора се може представити на овај начин.
  • Интеграл даје линеарно пресликавање из простора свих интеграбилних функција реалне вредности на неком интервалу у R
  • Диференцирање је линеарно пресликавање из простора свих диференцијабилних функција у простор свих функција.

Литература

  • Ayres, Frank, Schaum's Outline of Modern Abstract Algebra, McGraw-Hill; 1st edition (June 1, 1965). ISBN 0070026556.