Livenje pod pritiskom — разлика између измена

С Википедије, слободне енциклопедије
Садржај обрисан Садржај додат
Autobot (разговор | доприноси)
м Разне исправке; козметичке измене
.
Ред 1: Ред 1:
{{L|rut}}{{short description|Postupak livenja metala koji se odlikuje unosom rastopljenog metala pod visokim pritiskom u šupljinu kalupa}}
{{početnik|21|6|2018}}
[[File:BMW 6-cylinder block Al-Mg.jpg|thumb|[[Blok motora]] napravljen kalupnim livenjem aluminijuma i magnezijuma]]
Rastopljeni metal se ulije pod visokim pritiskom u tačno izrađenu šupljinu čeličnog alata koju se u potpunosti ispunjava. Metal se nalazi sve vreme pod dejstvom visokog pritiska sve do stvrdnjavanja. Odlivci imaju glatku površinu, dobru strukturu i tačne dimenzije.


'''Kalupno livenje''' je [[casting (metalworking)|metal casting]] process that is characterized by forcing [[molten]] [[metal]] under high pressure into a [[mould cavity]]. The mould cavity is created using two hardened [[tool steel]] [[die (manufacturing)|die]]s which have been machined into shape and work similarly to an [[injection moulding|injection mould]] during the process. Most die castings are made from [[non-ferrous metal]]s, specifically [[zinc]], [[copper]], [[aluminium]], [[magnesium]], [[lead]], [[pewter]], and [[tin]]-based alloys. Depending on the type of metal being cast, a hot- or cold-chamber machine is used.
Livenjem pod pritiskom odlivci se izrađuju brzo jedan iza drugog i tako se dobije serija odlivaka koji po karakteristikama i dimenzijama kao i po obliku su isti.


The casting equipment and the metal dies represent large capital costs and this tends to limit the process to high-volume production. Manufacture of parts using die casting is relatively simple, involving only four main steps, which keeps the incremental cost per item low. It is especially suited for a large quantity of small- to medium-sized castings, which is why die casting produces more castings than any other casting process.<ref>{{cite web|url=http://www.diecastingdesign.org/advantages|title=Die Casting vs Other Processes|last=|first=|date=|website=|publisher=|language=en-US|access-date=2016-09-16}}</ref> Die castings are characterized by a very good [[surface finish]] (by casting standards) and dimensional consistency.
Mašine za livenje pod pritiskom mogu biti:


== Istorija ==
Sa toplom komorom , pritisna komora se nalazi uronjena u liv. Pritisak se u komori prizvodi pomoću klipa ili komprinovanim vazduhom, koji potiskuje liv u kokile. U ovakve mašine tope se legure kalaja, cinka, olova i drugih, čije temperature ne prelaze 450&nbsp;°C.
Die casting equipment was invented in 1838 for the purpose of producing [[movable type]] for the [[printing industry]]. The first die casting-related [[patent]] was granted in 1849 for a small hand-operated machine for the purpose of mechanized printing type production. In 1885 Otto Mergenthaler invented the [[Linotype machine]], which cast an entire line of type as a single unit, using a [[Linotype machine#Mold disk and pot|die casting process]]. It nearly completely replaced setting type by hand in the publishing industry. The Soss die-casting machine, manufactured in Brooklyn, NY, was the first machine to be sold in the open market in North America.<ref>{{Citation |title= Machinery's reference series |url= https://books.google.com/books?id=pF0PAQAAIAAJ&pg=PA9 |publisher=The Industrial Press |accessdate= 2013-11-18 |postscript= .|year = 1913}}</ref> Other applications grew rapidly, with die casting facilitating the growth of consumer goods, and appliances, by greatly reducing the production cost of intricate parts in high volumes.<ref>{{Citation|title=About die casting |url=http://www.diecasting.org/faq/ |publisher=The North American Die Casting Association |accessdate=15 October 2010 |archiveurl=https://web.archive.org/web/20101021064505/http://diecasting.org/faq/ |archivedate=21 October 2010 |postscript=. |url-status=dead }}</ref> In 1966,<ref name="liu"/> General Motors released the ''[[#Acurad|Acurad]]'' process.<ref name="jorstad">{{Citation|last=John L. |first=Jorstad |title=Aluminum Future Technology in Die Casting |pages=18–25 |url=http://www.wpi.edu/Images/CMS/MPI/Jorstad.pdf |journal=Die Casting Engineering |date=September 2006 |archiveurl=https://web.archive.org/web/20110614015740/http://www.wpi.edu/Images/CMS/MPI/Jorstad.pdf |archivedate=2011-06-14 |postscript=. |url-status=dead }}</ref>


== Livni metal ==
Sa hladnom komorom (kada je topljenje metala odvojeno) – nemaju toplotnu komoru, pa se rastopljeni metal može ohladiti i preći u testasto stanje. Liv ulazi pod velikim pritiskom u ulazni kanal u kokilu, zatim se potiskuje testasti liv u kokilu, pa se nakraju pomoću izbacivača i klipa vadi odlivak iz kokile.


The main die casting alloys are: zinc, aluminium, magnesium, copper, lead, and tin; although uncommon, [[ferrous]] die casting is also possible.<ref name=D328>Degarmo, p. 328.</ref> Specific die casting alloys include: [[zinc aluminium]]; aluminium to, e.g. [[The Aluminum Association]] (AA) standards: AA 380, AA 384, AA 386, AA 390; and AZ91D magnesium.<ref>{{Citation|title= Die Casting |publisher=efunda Inc|url= http://www.efunda.com/processes/metal_processing/die_casting.cfm |accessdate=2008-04-12}}.</ref> The following is a summary of the advantages of each alloy:<ref name="NADCA">{{Citation|title=FAQ About Die Casting |url=http://www.diecasting.org/faq/ |accessdate=12 April 2008 |url-status=dead |archiveurl=https://web.archive.org/web/20101021064505/http://diecasting.org/faq/ |archivedate=21 October 2010 }}.</ref>
Legure sa niskim temperaturama topljenja (legure Zn i Pb) liju se najčešće na mašinama sa toplom komorom, dok ostale legure (legure Al i Cu) se liju na mašinama sa hladnom komorom.

*[[Zinc]]: the easiest metal to cast; high ductility; high impact strength; easily plated; economical for small parts; promotes long die life.
*[[Aluminium]]: lightweight; high dimensional stability for very complex shapes and thin walls; good corrosion resistance; good mechanical properties; high thermal and electrical conductivity; retains strength at high temperatures.
*[[Magnesium]]: the easiest metal to machine; excellent strength-to-weight ratio; lightest alloy commonly die cast.
*[[Copper]]: high hardness; high corrosion resistance; highest mechanical properties of alloys die cast; excellent wear resistance; excellent dimensional stability; strength approaching that of steel parts.
*[[Silicon tombac]]: high-strength alloy made of copper, zinc and silicon. Often used as an alternative for investment cast steel parts.
*[[Lead]] and [[tin]]: high density; extremely close dimensional accuracy; used for special forms of corrosion resistance. Such alloys are not used in [[foodservice]] applications for [[Lead poisoning|public health]] reasons. Type metal, an alloy of lead, tin and [[antimony]] (with sometimes traces of copper) is used for casting hand-set type in [[letterpress printing]] and hot foil blocking. Traditionally cast in hand jerk moulds now predominantly die cast after the industrialisation of the type foundries. Around 1900 the [[Hot metal typesetting|slug casting machines]] came onto the market and added further automation, with sometimes dozens of casting machines at one newspaper office.

Maximum weight limits for aluminium, [[brass]], magnesium, and zinc castings are approximately {{convert|70|lb|kg}}, {{convert|10|lb|kg|abbr=on}}, {{convert|44|lb|kg|abbr=on}}, and {{convert|75|lb|kg|abbr=on}}, respectively.<ref>{{Citation|title= Alloy Properties|url= http://www.diecasting.org/faq/alloy_prop.htm|publisher= The North American Die Casting Association|accessdate= 2008-04-12|url-status= dead|archiveurl= https://web.archive.org/web/20130606062843/http://www.diecasting.org/faq/alloy_prop.htm|archivedate= 2013-06-06}}.</ref>

The material used defines the minimum section thickness and minimum [[draft (engineering)|draft]] required for a casting as outlined in the table below. The thickest section should be less than {{convert|13|mm|in|1|abbr=on}}, but can be greater.<ref name=D331/>

{| class="wikitable"
|-
! Metal
! Minimum section
! Minimum draft
|-
| Aluminium alloys
| {{convert|0.89|mm|in|3|abbr=on}}
| 1:100 (0.6°)
|-
| Brass and [[bronze]]
| {{convert|1.27|mm|in|3|abbr=on}}
| 1:80 (0.7°)
|-
| Magnesium alloys
| {{convert|1.27|mm|in|3|abbr=on}}
| 1:100 (0.6°)
|-
| Zinc alloys
| {{convert|0.63|mm|in|3|abbr=on}}
| 1:200 (0.3°)
|}

== Reference ==
{{Reflist|refs=
<ref name="liu">{{Citation |last= Liu |first= Wen-Hai |title= The Progress and Trends of Die Casting Process and Application |date= 2009-10-08 |url= http://www.fastener-world.com.tw/en/article_detail.php?id=21&topage= |accessdate= 2010-10-19 |archiveurl= https://web.archive.org/web/20120314004142/http://www.fastener-world.com.tw/en/article_detail.php?id=21&topage= |archivedate= 2012-03-14 |postscript= . |url-status= dead }}</ref>
<ref name=D331>Degarmo, p. 331.</ref>

}}

== Literatura ==
{{Refbegin|}}
* {{Citation |last= Davis |first= J. |title= Tool Materials |publisher= ASM International |location= Materials Park |year= 1995 |isbn= 978-0-87170-545-7 |postscript= .}}
* {{Citation|last=Degarmo|first=E. Paul|last2=Black|first2=J T.|last3=Kohser|first3=Ronald A.|title=Materials and Processes in Manufacturing|publisher= Wiley|year= 2003|edition= 9th|isbn= 0-471-65653-4 |postscript= .}}
* {{Citation |last= Andresen |first= Bill |title= Die Casting Engineering |publisher= Marcel Dekker |location= New York |year= 2005 |url= https://books.google.com/books?id=QDPLgfCSoqoC |isbn= 978-0-8247-5935-3 |postscript= .}}
* {{Citation | last = Blair | first = Malcolm | last2 = Stevens | first2 = Thomas L. | title = Steel castings handbook | publisher = ASM International | year = 1995 | edition = 6th | url = https://books.google.com/books?id=QG3_QqmPZ_AC | isbn = 978-0-87170-556-3 | postscript =.}}
* {{Citation | last = Degarmo | first = E. Paul | last2 = Black | first2 = J T. | last3 = Kohser | first3 = Ronald A. | title = Materials and Processes in Manufacturing | publisher = Wiley | year = 2003 | edition = 9th | isbn = 0-471-65653-4}}.
* {{Citation | last = Kalpakjian | first = Serope | last2 = Schmid | first2 = Steven | title = Manufacturing Engineering and Technology | publisher = Pearson | year = 2006 | edition = 5th | isbn = 0-13-148965-8}}.
* {{Citation | last = Kissell | first = J. Randolph | last2 = Ferry | first2 = Robert L. | title = Aluminum structures: a guide to their specifications and design | publisher = John Wiley and Sons | year = 2002 | edition = 2nd | url = https://books.google.com/books?id=NJh8Y9bV-hEC | isbn = 978-0-471-01965-7 | postscript =.}}
* {{Citation | last = Schleg | first = Frederick P. | last2 = Kohloff | first2 = Frederick H. | last3 = Sylvia | first3 = J. Gerin | last4 = American Foundry Society | title = Technology of Metalcasting | publisher = American Foundry Society | year = 2003 | isbn = 978-0-87433-257-5}}.
* {{Citation | last = Stefanescu | first = Doru Michael | title = Science and Engineering of Casting Solidification | publisher = Springer | year = 2008 | edition = 2nd | url = https://books.google.com/books?id=JVTJi30phCwC | isbn = 978-0-387-74609-8}}.
* {{Citation | last = Ravi | first = B | title = Metal Casting: Computer-aided Design and Analysis | publisher = PHI | year = 2010 | edition = 1st | url = https://books.google.com/books?id=d_A2o4YXfUAC | isbn = 81-203-2726-8}}.

{{Refend}}

== Spoljašnje veze ==
{{Commons category-lat|Die casting}}
* -{[http://diecasting.org North American Die Casting Association]}-
* -{[http://www.gwp-ag.com/media/www.gwp-ag.com/org/med_646/1541_tolerances_for_aluminium_die_castings.pdf Tolerances for die casting (according to DIN 1688 GTA 13, German Standards)]}-
* -{[https://web.archive.org/web/20120611082810/http://www.diecasting.com/general-die-casting-design-data-sheet General Die Casting Design Data Sheet]}-

{{Authority control-lat}}

{{DEFAULTSORT:Калупно ливење}}
[[Категорија:Ливење]]

Верзија на датум 14. септембар 2020. у 07:57

Blok motora napravljen kalupnim livenjem aluminijuma i magnezijuma

Kalupno livenje je metal casting process that is characterized by forcing molten metal under high pressure into a mould cavity. The mould cavity is created using two hardened tool steel dies which have been machined into shape and work similarly to an injection mould during the process. Most die castings are made from non-ferrous metals, specifically zinc, copper, aluminium, magnesium, lead, pewter, and tin-based alloys. Depending on the type of metal being cast, a hot- or cold-chamber machine is used.

The casting equipment and the metal dies represent large capital costs and this tends to limit the process to high-volume production. Manufacture of parts using die casting is relatively simple, involving only four main steps, which keeps the incremental cost per item low. It is especially suited for a large quantity of small- to medium-sized castings, which is why die casting produces more castings than any other casting process.[1] Die castings are characterized by a very good surface finish (by casting standards) and dimensional consistency.

Istorija

Die casting equipment was invented in 1838 for the purpose of producing movable type for the printing industry. The first die casting-related patent was granted in 1849 for a small hand-operated machine for the purpose of mechanized printing type production. In 1885 Otto Mergenthaler invented the Linotype machine, which cast an entire line of type as a single unit, using a die casting process. It nearly completely replaced setting type by hand in the publishing industry. The Soss die-casting machine, manufactured in Brooklyn, NY, was the first machine to be sold in the open market in North America.[2] Other applications grew rapidly, with die casting facilitating the growth of consumer goods, and appliances, by greatly reducing the production cost of intricate parts in high volumes.[3] In 1966,[4] General Motors released the Acurad process.[5]

Livni metal

The main die casting alloys are: zinc, aluminium, magnesium, copper, lead, and tin; although uncommon, ferrous die casting is also possible.[6] Specific die casting alloys include: zinc aluminium; aluminium to, e.g. The Aluminum Association (AA) standards: AA 380, AA 384, AA 386, AA 390; and AZ91D magnesium.[7] The following is a summary of the advantages of each alloy:[8]

  • Zinc: the easiest metal to cast; high ductility; high impact strength; easily plated; economical for small parts; promotes long die life.
  • Aluminium: lightweight; high dimensional stability for very complex shapes and thin walls; good corrosion resistance; good mechanical properties; high thermal and electrical conductivity; retains strength at high temperatures.
  • Magnesium: the easiest metal to machine; excellent strength-to-weight ratio; lightest alloy commonly die cast.
  • Copper: high hardness; high corrosion resistance; highest mechanical properties of alloys die cast; excellent wear resistance; excellent dimensional stability; strength approaching that of steel parts.
  • Silicon tombac: high-strength alloy made of copper, zinc and silicon. Often used as an alternative for investment cast steel parts.
  • Lead and tin: high density; extremely close dimensional accuracy; used for special forms of corrosion resistance. Such alloys are not used in foodservice applications for public health reasons. Type metal, an alloy of lead, tin and antimony (with sometimes traces of copper) is used for casting hand-set type in letterpress printing and hot foil blocking. Traditionally cast in hand jerk moulds now predominantly die cast after the industrialisation of the type foundries. Around 1900 the slug casting machines came onto the market and added further automation, with sometimes dozens of casting machines at one newspaper office.

Maximum weight limits for aluminium, brass, magnesium, and zinc castings are approximately 70 lb (32 kg), 10 lb (4,5 kg), 44 lb (20 kg), and 75 lb (34 kg), respectively.[9]

The material used defines the minimum section thickness and minimum draft required for a casting as outlined in the table below. The thickest section should be less than 13 mm (0,5 in), but can be greater.[10]

Metal Minimum section Minimum draft
Aluminium alloys 089 mm (3,504 in) 1:100 (0.6°)
Brass and bronze 127 mm (5,000 in) 1:80 (0.7°)
Magnesium alloys 127 mm (5,000 in) 1:100 (0.6°)
Zinc alloys 063 mm (2,480 in) 1:200 (0.3°)

Reference

  1. ^ „Die Casting vs Other Processes” (на језику: енглески). Приступљено 2016-09-16. 
  2. ^ Machinery's reference series, The Industrial Press, 1913, Приступљено 2013-11-18. 
  3. ^ About die casting, The North American Die Casting Association, Архивирано из оригинала 21. 10. 2010. г., Приступљено 15. 10. 2010. 
  4. ^ Liu, Wen-Hai (2009-10-08), The Progress and Trends of Die Casting Process and Application, Архивирано из оригинала 2012-03-14. г., Приступљено 2010-10-19. 
  5. ^ John L., Jorstad (септембар 2006), „Aluminum Future Technology in Die Casting” (PDF), Die Casting Engineering: 18—25, Архивирано из оригинала (PDF) 2011-06-14. г.. 
  6. ^ Degarmo, p. 328.
  7. ^ Die Casting, efunda Inc, Приступљено 2008-04-12 .
  8. ^ FAQ About Die Casting, Архивирано из оригинала 21. 10. 2010. г., Приступљено 12. 4. 2008 .
  9. ^ Alloy Properties, The North American Die Casting Association, Архивирано из оригинала 2013-06-06. г., Приступљено 2008-04-12 .
  10. ^ Degarmo, p. 331.

Literatura

Spoljašnje veze