Чуло мириса — разлика између измена

С Википедије, слободне енциклопедије
Садржај обрисан Садржај додат
Преусмерење на Мирис
.
ознака: уклоњено преусмерење
Ред 1: Ред 1:
{{Short description|Чуло које открива мирисе}}{{рут}}
#Преусмери [[Мирис]]
{{infobox anatomy
| name = Мирис
| image = David Ryckaert (III) - Old women smelling a carnation (Allegory of smell).jpg
| caption = Painting of a woman smelling a [[carnation]]. Olfaction uses [[chemoreceptors]] that create signals processed in the [[brain]] that form the sense of smell.
| system = [[Olfactory system]]
| function = sense chemicals in the environment that are used to form the sense of smell
}}

The '''sense of smell''', or '''olfaction''', is the [[special sense]] through which smells (or odors) are perceived.<ref name="wol">{{cite book|last1=Wolfe|first1=J|title=Sensation & perception|last2=Kluender|first2=K|last3=Levi|first3=D|publisher=Sinauer Associates|year=2012|isbn=978-0-87893-572-7|edition=3rd|page=7}}</ref> The sense of smell has many functions, including detecting desirable foods, hazards, and [[pheromone]]s, and plays a role in [[taste]].

In humans it occurs when an [[odor]] binds to a [[olfactory receptor|receptor]] within the [[nasal cavity]], transmitting a signal through the [[olfactory system]].<ref name="Ryu">{{cite journal|last1=de March|first1=CA|last2=Ryu|first2=SE|last3=Sicard|first3=G|last4=Moon|first4=C|last5=Golebiowski|first5=J|year=2015|title=Structure–odour relationships reviewed in the postgenomic era|journal=Flavour and Fragrance Journal|volume=30|issue=5|pages=342–361|doi=10.1002/ffj.3249}}</ref> [[Glomerulus (olfaction)|Glomeruli]] aggregate signals from these receptors and transmit them to the [[olfactory bulb]], where the sensory input will start to interact with parts of the brain responsible for smell identification, [[memory]], and [[emotion]].<ref>{{cite book|last1=Schacter|first1=D|title=Psychology|last2=Gilbert|first2=D|last3=Wegner|first3=D|publisher=Worth Publishers|year=2011|isbn=978-1-4292-3719-2|pages=[https://archive.org/details/psychology0000scha/page/166 166–171]|chapter=Sensation and Perception|chapter-url=https://archive.org/details/psychology0000scha}}</ref>

There are many different causes for alteration, [[anosmia|lack]], or disturbance to a normal sense of smell, and can include damage to the [[nose]] or smell receptors, or central problems affecting the brain. Some causes include [[Upper respiratory tract infection|upper respiratory infections]], [[traumatic brain injury]], and [[Neurodegeneration|neurodegenerative disease]].<ref>{{cite journal |vauthors=Xydakis MS, Mulligan LP, Smith AB, Olsen CH, Lyon DM, Belluscio L |year=2015 |title=Olfactory impairment & traumatic brain injury in blast-injured combat troops |journal=Neurology |volume=84 |issue=15|pages=1559–67 |doi= 10.1212/WNL.0000000000001475|pmid=25788559 |pmc=4408285 |doi-access=free }}</ref><ref>{{cite journal |vauthors=Xydakis MS, Belluscio L|year=2017 |title= Detection of neurodegenerative disease using olfaction|url=https://www.thelancet.com/journals/laneur/article/PIIS1474-4422(17)30125-4/fulltext |journal=The Lancet Neurology |volume=16 |issue=6 |pages=415–416 |doi=10.1016/S1474-4422(17)30125-4|pmid=28504103 |s2cid=5121325 }}</ref>

== Историја студија ==
[[File:(Toulouse) L'Odorat (La Dame à la licorne) - Musée de Cluny Paris.jpg|thumb|''[[The Lady and the Unicorn]]'', a Flemish tapestry depicting the sense of smell, 1484–1500. ''[[Musée national du Moyen Âge]]'', Paris.]]

Early scientific study of the sense of smell includes the extensive doctoral dissertation of [[Eleanor Gamble]], published in 1898, which compared olfactory to other [[Stimulus modality|stimulus modalities]], and implied that smell had a lower intensity discrimination.<ref>{{cite book|author=Kimble, GA|title=Topics in the History of Psychology, Volume 1|author2=Schlesinger, K|date=1985|publisher=L. Erlbaum Associates}}</ref>

As the Epicurean and atomistic Roman philosopher [[Lucretius]] (1st{{nbsp}}century BCE) speculated, different odors are attributed to different shapes and sizes of "atoms" (odor molecules in the modern understanding) that stimulate the olfactory organ.<ref>{{Cite journal|last=Holtsmark|first=E|year=1978|title=Lucretius, the biochemistry of smell, and scientific discovery|url=https://www.academia.edu/321004|journal=Euphrosyne: Revista de Filologia Clássica|volume=9|pages=7–18|access-date=14 August 2020|via=academia.edu}}</ref>

A modern demonstration of that theory was the cloning of olfactory receptor proteins by [[Linda B. Buck]] and [[Richard Axel]] (who were awarded the [[Nobel Prize]] in 2004), and subsequent pairing of odor molecules to specific receptor proteins.<ref>{{cite journal|author=Ann-Sophie Barwich|author-link=Ann-Sophie Barwich|year=2020|title=What makes a discovery successful? The story of Linda Buck and the olfactory receptors|url=http://philsci-archive.pitt.edu/17181/1/Barwich2020_BuckReceptorDiscoveryCell_FINAL_KDeditsNN_editsASB.pdf|journal=Cell|volume=181|issue=4|pages=749–753|doi=10.1016/j.cell.2020.04.040|pmid=32413294|doi-access=free|s2cid=218627484}}</ref> Each odor receptor molecule recognizes only a particular molecular feature or class of odor molecules. [[Mammals]] have about a thousand [[gene]]s that code for [[Olfactory receptors|odor reception]].<ref>{{cite journal|vauthors= Buck L, Axel R|year=1991|title=A novel multigene family may encode odorant receptors: a molecular basis for odor recognition|journal=Cell|volume=65|issue=1|pages=175–187|doi=10.1016/0092-8674(91)90418-X|pmid=1840504|doi-access=free}}</ref> Of the genes that code for odor receptors, only a portion are functional. Humans have far fewer active odor receptor genes than other primates and other mammals.<ref>{{cite journal|vauthors=Gilad Y, Man O, Pääbo S, Lancet D|year=2003|title=Human specific loss of olfactory receptor genes|journal=PNAS|volume=100|issue=6|pages=3324–3327|bibcode=2003PNAS..100.3324G|doi=10.1073/pnas.0535697100|pmc=152291|pmid=12612342|doi-access=free}}</ref> In mammals, each [[olfactory receptor neuron]] expresses only one functional odor receptor.<ref>{{cite book|last=Pinel|first=JPJ|title=Biopsychology|date=2006|publisher=Pearson Education Inc.|isbn=0-205-42651-4|page=178}}</ref> Odor receptor nerve cells function like a key–lock system: if the airborne molecules of a certain chemical can fit into the lock, the nerve cell will respond.

There are, at present, a number of competing theories regarding the mechanism of odor coding and perception. According to the [[Shape theory of olfaction|shape theory]], each receptor detects a feature of the odor [[molecule]]. The weak-shape theory, known as the [[odotope theory]], suggests that different receptors detect only small pieces of molecules, and these minimal inputs are combined to form a larger olfactory perception (similar to the way visual perception is built up of smaller, information-poor sensations, combined and refined to create a detailed overall perception).<ref>{{cite journal|author=Rinaldi, A|year=2007|title=The scent of life. The exquisite complexity of the sense of smell in animals and humans|journal=EMBO Reports|volume=8|issue=7|pages=629–33|doi=10.1038/sj.embor.7401029|pmc=1905909|pmid=17603536}}</ref>

According to a new study, researchers have found that a functional relationship exists between molecular volume of odorants and the olfactory neural response.<ref>{{cite journal|vauthors=Saberi M, Seyed-allaei H|year=2016|title=Odorant receptors of Drosophila are sensitive to the molecular volume of odorants|journal=Scientific Reports|volume=6|pages=25103|bibcode=2016NatSR...625103S|doi=10.1038/srep25103|pmc=4844992|pmid=27112241}}</ref> An alternative theory, the [[vibration theory]] proposed by [[Luca Turin]],<ref>{{cite journal|author=Turin, L|year=1996|title=A spectroscopic mechanism for primary olfactory reception|journal=Chemical Senses|volume=21|issue=6|pages=773–791|doi=10.1093/chemse/21.6.773|pmid=8985605|doi-access=free}}</ref><ref>{{cite journal|author=Turin, L|year=2002|title=A method for the calculation of odor character from molecular structure|journal=Journal of Theoretical Biology|volume=216|issue=3|pages=367–385|doi=10.1006/jtbi.2001.2504|pmid=12183125|bibcode=2002JThBi.216..367T}}</ref> posits that odor receptors detect the frequencies of vibrations of odor molecules in the infrared range by [[quantum tunnelling]]. However, the behavioral predictions of this theory have been called into question.<ref>{{cite journal|vauthors=Keller A, Vosshall LB|year=2004|title=A psychophysical test of the vibration theory of olfaction|journal=Nature Neuroscience|volume=7|issue=4|pages=337–338|doi=10.1038/nn1215|pmid=15034588|s2cid=1073550}} See also the editorial on p. 315.</ref> There is no theory yet that explains olfactory perception completely.

== Функције ==

=== Укус ===
Flavor perception is an aggregation of [[Hearing|auditory]], [[taste]], [[Haptic perception|haptic]], and smell sensory information.<ref name=":0" /> [[Retronasal smell]] plays the biggest role in the sensation of flavor. During the process of [[mastication]], the tongue manipulates food to release odorants. These odorants enter the nasal cavity during exhalation.<ref name=":1">{{cite journal|vauthors=Masaoka Y, Satoh H, Akai L, Homma I|year=2010|title=Expiration: The moment we experience retronasal olfaction in flavor|journal=Neuroscience Letters|volume=473|issue=2|pages=92–96|doi=10.1016/j.neulet.2010.02.024|pmid=20171264|s2cid=2671577}}</ref> The smell of food has the sensation of being in the mouth because of co-activation of the motor cortex and olfactory epithelium during mastication.<ref name=":0">{{Cite book|title=Neurogastronomy: how the brain creates flavor and why it matters|last=Shepherd|first=GM|isbn=9780231159111|oclc=882238865|date = 2013}}</ref>

Smell, [[taste]], and [[trigeminal nerve|trigeminal]] receptors (also called [[chemesthesis]]) together contribute to [[Flavor (taste)|flavor]]. The human [[tongue]] can distinguish only among five distinct qualities of taste, while the nose can distinguish among hundreds of substances, even in minute quantities. It is during [[exhalation]] that the smell's contribution to flavor occurs, in contrast to that of proper smell, which occurs during the [[inhalation]] phase of breathing.<ref name=":1" /> The olfactory system is the only human sense that bypasses the [[thalamus]] and connects directly to the [[forebrain]].<ref name="Doty">{{cite journal |last=Doty |first=RL|year=2001 |title=Olfaction |journal=Annual Review of Psychology |volume=52 |issue=1 |pages=423–452 |doi=10.1146/annurev.psych.52.1.423|pmid=11148312}}</ref>

=== Слух ===
Smell and [[sound]] information has been shown to converge in the olfactory tubercles of [[rodents]].<ref>{{cite journal|vauthors=Wesson DW, Wilson DA|year=2010|title=Smelling sounds: olfactory-auditory convergence in the olfactory tubercle|journal=Journal of Neuroscience|volume=30|issue=8|pages=3013–3021|doi=10.1523/JNEUROSCI.6003-09.2010|pmc=2846283|pmid=20181598}}</ref> This neural convergence is proposed to give rise to a perception termed [[smound]].<ref name="Scientific American">{{cite news|last=Peeples|first=L|date=23 February 2010|title=Making scents of sounds: noises may alter how we perceive odors|work=Scientific American|url=http://www.scientificamerican.com/article.cfm?id=making-scents-of-sounds-n|access-date=2012-12-30}}</ref> Whereas a [[Flavor (taste)|flavor]] results from interactions between smell and taste, a smound may result from interactions between smell and sound.

=== Избегавање инбридинга ===
The [[major histocompatibility complex|MHC]] genes (known as [[human leukocyte antigen|HLA]] in humans) are a group of genes present in many animals and important for the [[immune system]]; in general, offspring from parents with differing MHC genes have a stronger immune system. Fish, mice, and female humans are able to smell some aspect of the MHC genes of potential sex partners and prefer partners with MHC genes different from their own.<ref>{{cite journal|vauthors=Boehm T, Zufall F|year=2006|title=MHC peptides and the sensory evaluation of genotype|journal=Trends in Neurosciences|volume=29|issue=2|pages=100–107|doi=10.1016/j.tins.2005.11.006|pmid=16337283|s2cid=15621496}}</ref><ref>{{cite journal|vauthors=Santos PS, Schinemann JA, Gabardo J, da Graça Bicalho M|year=2005|title=New evidence that the MHC influences odor perception in humans: a study with 58 Southern Brazilian students|journal=Hormones and Behavior|volume=47|issue=4|pages=384–388|doi=10.1016/j.yhbeh.2004.11.005|pmid=15777804|s2cid=8568275}}</ref>

Humans can detect blood relatives from olfaction.<ref>{{cite journal|vauthors=Porter RH, Cernoch JM, Balogh RD|year=1985|title=Odor signatures and kin recognition|journal=Physiology & Behavior|volume=34|issue=3|pages=445–448|doi=10.1016/0031-9384(85)90210-0|pmid=4011726|s2cid=42316168}}</ref> Mothers can identify by body odor their biological children but not their stepchildren. Pre-adolescent children can olfactorily detect their full siblings but not half-siblings or step siblings, and this might explain [[inbreeding avoidance|incest avoidance]] and the [[Westermarck effect]].<ref>{{cite journal|vauthors=Weisfeld GE, Czilli T, Phillips KA, Gall JA, Lichtman CM|year=2003|title=Possible olfaction-based mechanisms in human kin recognition and inbreeding avoidance|journal=Journal of Experimental Child Psychology|volume=85|issue=3|pages=279–295|doi=10.1016/S0022-0965(03)00061-4|pmid=12810039}}</ref> Functional imaging shows that this olfactory kinship detection process involves the frontal-temporal junction, the [[insular cortex|insula]], and the dorsomedial [[prefrontal cortex]], but not the primary or secondary olfactory cortices, or the related [[piriform cortex]] or [[orbitofrontal cortex]].<ref>{{cite journal|vauthors=Lundström JN, Boyle JA, Zatorre RJ, Jones-Gotman M |year=2009|title=The neuronal substrates of human olfactory based kin recognition|journal=Human Brain Mapping|volume=30|issue=8|pages=2571–2580|doi=10.1002/hbm.20686|pmc=6870682|pmid=19067327}}</ref>

Since [[Inbreeding depression|inbreeding]] is detrimental, it tends to be avoided. In the house mouse, the [[Major urinary proteins|major urinary protein]] (MUP) gene cluster provides a highly polymorphic scent signal of genetic identity that appears to underlie [[kin recognition]] and inbreeding avoidance. Thus, there are fewer matings between mice sharing MUP haplotypes than would be expected if there were random mating.<ref name="pmid17997307">{{cite journal|vauthors=Sherborne AL, Thom MD, Paterson S, Jury F, Ollier WE, Stockley P, Beynon RJ, Hurst JL|year=2007|title=The genetic basis of inbreeding avoidance in house mice|journal=Current Biology|volume=17|issue=23|pages=2061–2066|doi=10.1016/j.cub.2007.10.041|pmc=2148465|pmid=17997307}}</ref>

== Генетика ==

Different people smell different odors, and most of these differences are caused by genetic differences.<ref>{{cite news|last=Howgego|first=J|date=1 August 2013|title=Sense for scents traced down to genes|work=Nature News|url=http://www.nature.com/news/sense-for-scents-traced-down-to-genes-1.13493}}</ref> Although [[olfactory receptor|odorant receptor]] genes make up one of the largest gene families in the human genome, only a handful of genes have been linked conclusively to particular smells. For instance, the odorant receptor [[OR5A1]] and its genetic variants (alleles) are responsible for our ability (or failure) to smell β-[[ionone]], a key aroma in foods and beverages.<ref name="=McRae2013">{{cite journal|vauthors=Jaeger SR, McRae JF, Bava CM, Beresford MK, Hunter D, Jia Y, Chheang SL, Jin D, Peng M, Gamble JC, Atkinson KR, Axten LG, Paisley AG, Tooman L, Pineau B, Rouse SA, Newcomb RD|year=2013|title=A mendelian trait for olfactory sensitivity affects odor experience and food selection|journal=Current Biology|volume=23|issue=16|pages=1601–1605|doi=10.1016/j.cub.2013.07.030|pmid=23910657|doi-access=free}}</ref> Similarly, the odorant receptor [[OR2J3]] is associated with the ability to detect the "grassy" odor, cis-3-hexen-1-ol.<ref name="McRae2012">{{cite journal|vauthors=McRae JF, Mainland JD, Jaeger SR, Adipietro KA, Matsunami H, Newcomb RD|year=2012|title=Genetic variation in the odorant receptor OR2J3 is associated with the ability to detect the "grassy" smelling odor, cis-3-hexen-1-ol|journal=Chemical Senses|volume=37|issue=7|pages=585–593|doi=10.1093/chemse/bjs049|pmc=3408771|pmid=22714804}}</ref> The preference (or dislike) of [[cilantro]] (coriander) has been linked to the olfactory receptor [[OR6A2]].<ref>{{cite news|last=Callaway|first=E|date=12 September 2012|title=Soapy taste of coriander linked to genetic variants|work=Nature News|url=http://www.nature.com/news/soapy-taste-of-coriander-linked-to-genetic-variants-1.11398}}</ref>

== Референце ==
{{Reflist}}

== Спољашње везе ==
{{Commons category|Sense of smell}}
*[http://www.cf.ac.uk/biosi/staff/jacob/teaching/sensory/olfact1.html Olfaction at cf.ac.uk]
*[https://web.archive.org/web/20080628205106/http://people.bu.edu/dmattw/ Olfactory Systems Laboratory at Boston University]
*[http://chemconnections.org/Smells/ Smells Database]
*[http://nba.uth.tmc.edu/neuroscience/s2/chapter09.html Olfaction and Gustation], ''Neuroscience Online'' (electronic neuroscience textbook by UT Houston Medical School)
*[http://www.digital-olfaction.com/ Digital Olfaction Society]

{{Authority control}}

[[Категорија:Чуло мириса| ]]

Верзија на датум 8. мај 2022. у 20:07

Мирис
Painting of a woman smelling a carnation. Olfaction uses chemoreceptors that create signals processed in the brain that form the sense of smell.
Детаљи
СистемOlfactory system
Функцијаsense chemicals in the environment that are used to form the sense of smell
Идентификатори
MeSHD012903
Анатомска терминологија

The sense of smell, or olfaction, is the special sense through which smells (or odors) are perceived.[1] The sense of smell has many functions, including detecting desirable foods, hazards, and pheromones, and plays a role in taste.

In humans it occurs when an odor binds to a receptor within the nasal cavity, transmitting a signal through the olfactory system.[2] Glomeruli aggregate signals from these receptors and transmit them to the olfactory bulb, where the sensory input will start to interact with parts of the brain responsible for smell identification, memory, and emotion.[3]

There are many different causes for alteration, lack, or disturbance to a normal sense of smell, and can include damage to the nose or smell receptors, or central problems affecting the brain. Some causes include upper respiratory infections, traumatic brain injury, and neurodegenerative disease.[4][5]

Историја студија

The Lady and the Unicorn, a Flemish tapestry depicting the sense of smell, 1484–1500. Musée national du Moyen Âge, Paris.

Early scientific study of the sense of smell includes the extensive doctoral dissertation of Eleanor Gamble, published in 1898, which compared olfactory to other stimulus modalities, and implied that smell had a lower intensity discrimination.[6]

As the Epicurean and atomistic Roman philosopher Lucretius (1st century BCE) speculated, different odors are attributed to different shapes and sizes of "atoms" (odor molecules in the modern understanding) that stimulate the olfactory organ.[7]

A modern demonstration of that theory was the cloning of olfactory receptor proteins by Linda B. Buck and Richard Axel (who were awarded the Nobel Prize in 2004), and subsequent pairing of odor molecules to specific receptor proteins.[8] Each odor receptor molecule recognizes only a particular molecular feature or class of odor molecules. Mammals have about a thousand genes that code for odor reception.[9] Of the genes that code for odor receptors, only a portion are functional. Humans have far fewer active odor receptor genes than other primates and other mammals.[10] In mammals, each olfactory receptor neuron expresses only one functional odor receptor.[11] Odor receptor nerve cells function like a key–lock system: if the airborne molecules of a certain chemical can fit into the lock, the nerve cell will respond.

There are, at present, a number of competing theories regarding the mechanism of odor coding and perception. According to the shape theory, each receptor detects a feature of the odor molecule. The weak-shape theory, known as the odotope theory, suggests that different receptors detect only small pieces of molecules, and these minimal inputs are combined to form a larger olfactory perception (similar to the way visual perception is built up of smaller, information-poor sensations, combined and refined to create a detailed overall perception).[12]

According to a new study, researchers have found that a functional relationship exists between molecular volume of odorants and the olfactory neural response.[13] An alternative theory, the vibration theory proposed by Luca Turin,[14][15] posits that odor receptors detect the frequencies of vibrations of odor molecules in the infrared range by quantum tunnelling. However, the behavioral predictions of this theory have been called into question.[16] There is no theory yet that explains olfactory perception completely.

Функције

Укус

Flavor perception is an aggregation of auditory, taste, haptic, and smell sensory information.[17] Retronasal smell plays the biggest role in the sensation of flavor. During the process of mastication, the tongue manipulates food to release odorants. These odorants enter the nasal cavity during exhalation.[18] The smell of food has the sensation of being in the mouth because of co-activation of the motor cortex and olfactory epithelium during mastication.[17]

Smell, taste, and trigeminal receptors (also called chemesthesis) together contribute to flavor. The human tongue can distinguish only among five distinct qualities of taste, while the nose can distinguish among hundreds of substances, even in minute quantities. It is during exhalation that the smell's contribution to flavor occurs, in contrast to that of proper smell, which occurs during the inhalation phase of breathing.[18] The olfactory system is the only human sense that bypasses the thalamus and connects directly to the forebrain.[19]

Слух

Smell and sound information has been shown to converge in the olfactory tubercles of rodents.[20] This neural convergence is proposed to give rise to a perception termed smound.[21] Whereas a flavor results from interactions between smell and taste, a smound may result from interactions between smell and sound.

Избегавање инбридинга

The MHC genes (known as HLA in humans) are a group of genes present in many animals and important for the immune system; in general, offspring from parents with differing MHC genes have a stronger immune system. Fish, mice, and female humans are able to smell some aspect of the MHC genes of potential sex partners and prefer partners with MHC genes different from their own.[22][23]

Humans can detect blood relatives from olfaction.[24] Mothers can identify by body odor their biological children but not their stepchildren. Pre-adolescent children can olfactorily detect their full siblings but not half-siblings or step siblings, and this might explain incest avoidance and the Westermarck effect.[25] Functional imaging shows that this olfactory kinship detection process involves the frontal-temporal junction, the insula, and the dorsomedial prefrontal cortex, but not the primary or secondary olfactory cortices, or the related piriform cortex or orbitofrontal cortex.[26]

Since inbreeding is detrimental, it tends to be avoided. In the house mouse, the major urinary protein (MUP) gene cluster provides a highly polymorphic scent signal of genetic identity that appears to underlie kin recognition and inbreeding avoidance. Thus, there are fewer matings between mice sharing MUP haplotypes than would be expected if there were random mating.[27]

Генетика

Different people smell different odors, and most of these differences are caused by genetic differences.[28] Although odorant receptor genes make up one of the largest gene families in the human genome, only a handful of genes have been linked conclusively to particular smells. For instance, the odorant receptor OR5A1 and its genetic variants (alleles) are responsible for our ability (or failure) to smell β-ionone, a key aroma in foods and beverages.[29] Similarly, the odorant receptor OR2J3 is associated with the ability to detect the "grassy" odor, cis-3-hexen-1-ol.[30] The preference (or dislike) of cilantro (coriander) has been linked to the olfactory receptor OR6A2.[31]

Референце

  1. ^ Wolfe, J; Kluender, K; Levi, D (2012). Sensation & perception (3rd изд.). Sinauer Associates. стр. 7. ISBN 978-0-87893-572-7. 
  2. ^ de March, CA; Ryu, SE; Sicard, G; Moon, C; Golebiowski, J (2015). „Structure–odour relationships reviewed in the postgenomic era”. Flavour and Fragrance Journal. 30 (5): 342—361. doi:10.1002/ffj.3249. 
  3. ^ Schacter, D; Gilbert, D; Wegner, D (2011). „Sensation and Perception”. Psychology. Worth Publishers. стр. 166–171. ISBN 978-1-4292-3719-2. 
  4. ^ Xydakis MS, Mulligan LP, Smith AB, Olsen CH, Lyon DM, Belluscio L (2015). „Olfactory impairment & traumatic brain injury in blast-injured combat troops”. Neurology. 84 (15): 1559—67. PMC 4408285Слободан приступ. PMID 25788559. doi:10.1212/WNL.0000000000001475Слободан приступ. 
  5. ^ Xydakis MS, Belluscio L (2017). „Detection of neurodegenerative disease using olfaction”. The Lancet Neurology. 16 (6): 415—416. PMID 28504103. S2CID 5121325. doi:10.1016/S1474-4422(17)30125-4. 
  6. ^ Kimble, GA; Schlesinger, K (1985). Topics in the History of Psychology, Volume 1. L. Erlbaum Associates. 
  7. ^ Holtsmark, E (1978). „Lucretius, the biochemistry of smell, and scientific discovery”. Euphrosyne: Revista de Filologia Clássica. 9: 7—18. Приступљено 14. 8. 2020 — преко academia.edu. 
  8. ^ Ann-Sophie Barwich (2020). „What makes a discovery successful? The story of Linda Buck and the olfactory receptors” (PDF). Cell. 181 (4): 749—753. PMID 32413294. S2CID 218627484. doi:10.1016/j.cell.2020.04.040Слободан приступ. 
  9. ^ Buck L, Axel R (1991). „A novel multigene family may encode odorant receptors: a molecular basis for odor recognition”. Cell. 65 (1): 175—187. PMID 1840504. doi:10.1016/0092-8674(91)90418-XСлободан приступ. 
  10. ^ Gilad Y, Man O, Pääbo S, Lancet D (2003). „Human specific loss of olfactory receptor genes”. PNAS. 100 (6): 3324—3327. Bibcode:2003PNAS..100.3324G. PMC 152291Слободан приступ. PMID 12612342. doi:10.1073/pnas.0535697100Слободан приступ. 
  11. ^ Pinel, JPJ (2006). Biopsychology. Pearson Education Inc. стр. 178. ISBN 0-205-42651-4. 
  12. ^ Rinaldi, A (2007). „The scent of life. The exquisite complexity of the sense of smell in animals and humans”. EMBO Reports. 8 (7): 629—33. PMC 1905909Слободан приступ. PMID 17603536. doi:10.1038/sj.embor.7401029. 
  13. ^ Saberi M, Seyed-allaei H (2016). „Odorant receptors of Drosophila are sensitive to the molecular volume of odorants”. Scientific Reports. 6: 25103. Bibcode:2016NatSR...625103S. PMC 4844992Слободан приступ. PMID 27112241. doi:10.1038/srep25103. 
  14. ^ Turin, L (1996). „A spectroscopic mechanism for primary olfactory reception”. Chemical Senses. 21 (6): 773—791. PMID 8985605. doi:10.1093/chemse/21.6.773Слободан приступ. 
  15. ^ Turin, L (2002). „A method for the calculation of odor character from molecular structure”. Journal of Theoretical Biology. 216 (3): 367—385. Bibcode:2002JThBi.216..367T. PMID 12183125. doi:10.1006/jtbi.2001.2504. 
  16. ^ Keller A, Vosshall LB (2004). „A psychophysical test of the vibration theory of olfaction”. Nature Neuroscience. 7 (4): 337—338. PMID 15034588. S2CID 1073550. doi:10.1038/nn1215.  See also the editorial on p. 315.
  17. ^ а б Shepherd, GM (2013). Neurogastronomy: how the brain creates flavor and why it matters. ISBN 9780231159111. OCLC 882238865. 
  18. ^ а б Masaoka Y, Satoh H, Akai L, Homma I (2010). „Expiration: The moment we experience retronasal olfaction in flavor”. Neuroscience Letters. 473 (2): 92—96. PMID 20171264. S2CID 2671577. doi:10.1016/j.neulet.2010.02.024. 
  19. ^ Doty, RL (2001). „Olfaction”. Annual Review of Psychology. 52 (1): 423—452. PMID 11148312. doi:10.1146/annurev.psych.52.1.423. 
  20. ^ Wesson DW, Wilson DA (2010). „Smelling sounds: olfactory-auditory convergence in the olfactory tubercle”. Journal of Neuroscience. 30 (8): 3013—3021. PMC 2846283Слободан приступ. PMID 20181598. doi:10.1523/JNEUROSCI.6003-09.2010. 
  21. ^ Peeples, L (23. 2. 2010). „Making scents of sounds: noises may alter how we perceive odors”. Scientific American. Приступљено 2012-12-30. 
  22. ^ Boehm T, Zufall F (2006). „MHC peptides and the sensory evaluation of genotype”. Trends in Neurosciences. 29 (2): 100—107. PMID 16337283. S2CID 15621496. doi:10.1016/j.tins.2005.11.006. 
  23. ^ Santos PS, Schinemann JA, Gabardo J, da Graça Bicalho M (2005). „New evidence that the MHC influences odor perception in humans: a study with 58 Southern Brazilian students”. Hormones and Behavior. 47 (4): 384—388. PMID 15777804. S2CID 8568275. doi:10.1016/j.yhbeh.2004.11.005. 
  24. ^ Porter RH, Cernoch JM, Balogh RD (1985). „Odor signatures and kin recognition”. Physiology & Behavior. 34 (3): 445—448. PMID 4011726. S2CID 42316168. doi:10.1016/0031-9384(85)90210-0. 
  25. ^ Weisfeld GE, Czilli T, Phillips KA, Gall JA, Lichtman CM (2003). „Possible olfaction-based mechanisms in human kin recognition and inbreeding avoidance”. Journal of Experimental Child Psychology. 85 (3): 279—295. PMID 12810039. doi:10.1016/S0022-0965(03)00061-4. 
  26. ^ Lundström JN, Boyle JA, Zatorre RJ, Jones-Gotman M (2009). „The neuronal substrates of human olfactory based kin recognition”. Human Brain Mapping. 30 (8): 2571—2580. PMC 6870682Слободан приступ. PMID 19067327. doi:10.1002/hbm.20686. 
  27. ^ Sherborne AL, Thom MD, Paterson S, Jury F, Ollier WE, Stockley P, Beynon RJ, Hurst JL (2007). „The genetic basis of inbreeding avoidance in house mice”. Current Biology. 17 (23): 2061—2066. PMC 2148465Слободан приступ. PMID 17997307. doi:10.1016/j.cub.2007.10.041. 
  28. ^ Howgego, J (1. 8. 2013). „Sense for scents traced down to genes”. Nature News. 
  29. ^ Jaeger SR, McRae JF, Bava CM, Beresford MK, Hunter D, Jia Y, Chheang SL, Jin D, Peng M, Gamble JC, Atkinson KR, Axten LG, Paisley AG, Tooman L, Pineau B, Rouse SA, Newcomb RD (2013). „A mendelian trait for olfactory sensitivity affects odor experience and food selection”. Current Biology. 23 (16): 1601—1605. PMID 23910657. doi:10.1016/j.cub.2013.07.030Слободан приступ. 
  30. ^ McRae JF, Mainland JD, Jaeger SR, Adipietro KA, Matsunami H, Newcomb RD (2012). „Genetic variation in the odorant receptor OR2J3 is associated with the ability to detect the "grassy" smelling odor, cis-3-hexen-1-ol”. Chemical Senses. 37 (7): 585—593. PMC 3408771Слободан приступ. PMID 22714804. doi:10.1093/chemse/bjs049. 
  31. ^ Callaway, E (12. 9. 2012). „Soapy taste of coriander linked to genetic variants”. Nature News. 

Спољашње везе