Тачне тригонометријске константе — разлика између измена

С Википедије, слободне енциклопедије
Садржај обрисан Садржај додат
Нова страница: {{3БГД022014}} Image:Unit circle angles color.svg|250px|thumb|The primary solution angles{{clarifyme | reason = What are 'primary solution angles'?|date=August 201…
(нема разлике)

Верзија на датум 8. фебруар 2014. у 17:00

The primary solution anglesШаблон:Clarifyme on the unit circle are at multiples of 30 and 45 degrees.

Тачни алгебарски изрази за тригонометријске вредности су понекад корисни, углавном за поједностављење решења у сложеним облицима који омогућавају даље поједностављење.

Све вредности синуса, косинуса и тангенса углова са корацима од по 3° могу се у потпуности извести користећи формуле за полууглове, двоструке углове и адиционе формуле за вредности за 0 °, 30 °, 36 °, и 45 °. Треба уочити да је 1° = π/180 радијана.

Према Нивеновој теореми, једине рационалне вредности синусне функције за коју је аргумент степена угла рационалан број су вредности 0, 1/2, 1.

Ферматови бројеви

Списак у овом чланку је непотпун због најмање два разлога. Прво, увек је могуће применити формулу за полууглове да бисмо пронашли тачан резултат косинуса једне половине сваког угла на листи, онда половину тог угла, итд. Друго, у овом чланку обухвата само прва два од пет познатих Ферматових простих бројева: 3 и 5, док алгебарске вредности такође постоје и за косинус од 2π/17, 2π/257 и 2π/65537 . У пракси, све вредности синуса, косинуса и тангенса које нису нађене у овом чланку се приближно одређују помоћу техника описаних у Генерисању тригонометријских табела.

Табела константи

Вредности углова ван опсега [0 °, 45 °] су изведени тривијално од ових вредности, користећи круг рефлексије осе симетрије. (Видети тригонометријске идентитете.)

In the entries below, when a certain number of degrees is related to a regular polygon, the relation is that the number of degrees in each angle of the polygon is (n–2) times the indicated number of degrees (where n is the number of sides). This is because the sum of the angles of any n-gon is 180°×(n–2) and so the measure of each angle of any regular n-gon is 180°×(n–2)÷n. Thus for example the entry "45°: square" means that, with n=4, 180°÷n = 45°, and the number of degrees in each angle of a square is (n–2)×45° = 90°.

0°: fundamental

3°: regular 60-sided polygon

6°: regular 30-sided polygon

9°: regular 20-sided polygon

12°: regular 15-sided polygon

15°: regular dodecagon (12-sided polygon)

18°: regular decagon (10-sided polygon)

21°: sum 9° + 12°

22.5°: regular octagon

(Silver ratio)/(Bronze ratio)

24°: sum 12° + 12°

27°: sum 12° + 15°

30°: regular hexagon

33°: sum 15° + 18°

36°: regular pentagon

where is the golden ratio;

39°: sum 18° + 21°

42°: sum 21° + 21°

45°: square

60°: equilateral triangle

Notes

Uses for constants

As an example of the use of these constants, consider a dodecahedron with the following volume, where a is the length of an edge:

Using

this can be simplified to:

Derivation triangles

Regular polygon (N-sided) and its fundamental right triangle. Angle: a=180/n °

The derivation of sine, cosine, and tangent constants into radial forms is based upon the constructibility of right triangles.

Here right triangles made from symmetry sections of regular polygons are used to calculate fundamental trigonometric ratios. Each right triangle represents three points in a regular polygon: a vertex, an edge center containing that vertex, and the polygon center. An n-gon can be divided into 2n right triangles with angles of {180/n, 90−180/n, 90} degrees, for n in 3, 4, 5, ...

Constructibility of 3, 4, 5, and 15-sided polygons are the basis, and angle bisectors allow multiples of two to also be derived.

  • Constructible
    • 3×2n-sided regular polygons, for n in 0, 1, 2, 3, ...
    • 4×2n-sided
      • 45°-45°-90° triangle: square (4-sided)
      • 67.5°-22.5°-90° triangle: octagon (8-sided)
      • 78.75°-11.25°-90° triangle: hexakaidecagon (16-sided)
      • ...
    • 5×2n-sided
      • 54°-36°-90° triangle: pentagon (5-sided)
      • 72°-18°-90° triangle: decagon (10-sided)
      • 81°-9°-90° triangle: icosagon (20-sided)
      • 85.5°-4.5°-90° triangle: tetracontagon (40-sided)
      • 87.75°-2.25°-90° triangle: octacontagon (80-sided)
      • ...
    • 15×2n-sided
    • ... (Higher constructible regular polygons don't make whole degree angles: 17, 51, 85, 255, 257...)
  • Nonconstructible (with whole or half degree angles) – No finite radical expressions involving real numbers for these triangle edge ratios are possible, therefore its multiples of two are also not possible.

Calculated trigonometric values for sine and cosine

The trivial ones

In degree format: 0, 30, 45, 60, and 90 can be calculated from their triangles, using the Pythagorean theorem.

n × π/(5 × 2m)

Chord(36°) = a/b = 1/f, from Ptolemy's theorem

Geometrical method

Applying Ptolemy's theorem to the cyclic quadrilateral ABCD defined by four successive vertices of the pentagon, we can find that:

which is the reciprocal 1/φ of the golden ratio. Crd is the Chord function,

Thus

(Alternatively, without using Ptolemy's theorem, label as X the intersection of AC and BD, and note by considering angles that triangle AXB is isosceles, so AX = AB = a. Triangles AXD and CXB are similar, because AD is parallel to BC. So XC = a·(a/b). But AX + XC = AC, so a + a2/b = b. Solving this gives a/b = 1/φ, as above).

Similarly

so

Algebraic method

The multiple angle formulas for functions of , where and , can be solved for the functions of , since we know the function values of . The multiple angle formulas are:

,
.
  • When or , we let or and solve for :
.
One solution is zero, and the resulting 4th degree equation can be solved as a quadratic in .
  • When or , we again let or and solve for :
,
which factors into:
.

n × π/20

9° is 45-36, and 27° is 45−18; so we use the subtraction formulas for sine and cosine.

n × π/30

6° is 36-30, 12° is 30−18, 24° is 54−30, and 42° is 60−18; so we use the subtraction formulas for sine and cosine.

n × π/60

3° is 18−15, 21° is 36−15, 33° is 18+15, and 39° is 54−15, so we use the subtraction (or addition) formulas for sine and cosine.

Strategies for simplifying expressions

Rationalize the denominator

If the denominator is a square root, multiply the numerator and denominator by that radical.
If the denominator is the sum or difference of two terms, multiply the numerator and denominator by the conjugate of the denominator. The conjugate is the identical, except the sign between the terms is changed.
Sometimes you need to rationalize the denominator more than once.

Split a fraction in two

Sometimes it helps to split the fraction into the sum of two fractions and then simplify both separately.

Squaring and square rooting

If there is a complicated term, with only one kind of radical in a term, this plan may help. Square the term, combine like terms, and take the square root. This may leave a big radical with a smaller radical inside, but it is often better than the original.

Simplification of nested radical expressions

In general nested radicals cannot be reduced.

But if for ,

is rational, and both

are rational, with the appropriate choice of the four ± signs, then

For example,

See also

References

External links