Пређи на садржај

Амплитуда — разлика између измена

С Википедије, слободне енциклопедије
Садржај обрисан Садржај додат
Autobot (разговор | доприноси)
м razne izmene; козметичке измене
.
Ред 1: Ред 1:
{{Short description|Мера промене у периодичној променљивој}}{{рут}}
[[Датотека:Sine voltage.svg|Синусоидални талас.1)Амплитуда(вршна амплитуда).2)Врх-врх амплитуда.3)Ефективна вредност променљиве величине.4)Период(периода)осцилације.|мини|десно|300п]]
[[Датотека:Sine voltage.svg|Синусоидални талас.1)Амплитуда(вршна амплитуда).2)Врх-врх амплитуда.3)Ефективна вредност променљиве величине.4)Период(периода)осцилације.|мини|десно|300п]]


'''Амплитуда''' је у [[физика|физици]] највећа вредност коју достиже [[период]]ички променљива величина у времену једног полупериода.Код [[осцилација]] у [[Механика|механици]], то је највећа удаљеност од равнотежног положаја.При електричним осцилацијама променљиве [[Електрична струја|струје]] или [[напон]]а то је највећа вршна вредност струје или напона.Код [[звук|звучних]] [[талас]]а то је највећа промена [[притисак|притиска]] средине.
'''Амплитуда''' је у [[физика|физици]] највећа вредност коју достиже [[Период осциловања|период]]ички променљива величина у времену једног полупериода.Код [[осцилација]] у [[Механика|механици]], то је највећа удаљеност од равнотежног положаја. При електричним осцилацијама променљиве [[Електрична струја|струје]] или [[Електрични напон|напон]]а то је највећа вршна вредност струје или напона.Код [[звук|звучних]] [[талас (физика)|талас]]а то је највећа промена [[притисак|притиска]] средине.

There are various definitions of amplitude (see below), which are all [[function (mathematics)|function]]s of the magnitude of the differences between the variable's [[Maxima and minima|extreme values]]. In older texts, the [[Phase (waves)|phase]] of a periodic function is sometimes called the amplitude.<ref>{{Cite book | author1=Knopp, Konrad| author2= Bagemihl, Frederick | author-link1=Konrad Knopp | title=Theory of Functions Parts I and II | year=1996 | publisher=Dover Publications | isbn=978-0-486-69219-7 | page=3}}</ref>

== Дефиниције ==
[[File:Sine voltage.svg|thumb|A [[sine wave|sinusoidal]] curve
{{ordered list|
| list_style=list-style-position:inside; margin:0;
| Peak amplitude (<math>\scriptstyle\hat u</math>),
| Peak-to-peak amplitude (<math>\scriptstyle2\hat u</math>),
| Root mean square amplitude (<math>\scriptstyle\hat u/\sqrt{2}</math>),
| [[Wave period]] (not an amplitude)
}}]]

===Peak amplitude & semi-amplitude===
Symmetric periodic waves, like [[sine wave]]s, [[square wave]]s or [[triangle wave]]s ''peak amplitude'' and ''semi amplitude'' are the same.

====Peak amplitude====
{{anchor|Peak amplitude}}In [[audio system measurements]], [[telecommunication]]s and others where the [[wikt:measurand|measurand]] is a signal that swings above and below a reference value but is not [[Sine wave|sinusoidal]], peak amplitude is often used. If the reference is zero, this is the maximum [[absolute value]] of the signal; if the reference is a mean value ([[DC component]]), the peak amplitude is the maximum absolute value of the difference from that reference.

====Semi-amplitude====
{{anchor|Semi-amplitude}}<!-- This section is the target of [[Semi-amplitude]].-->Semi-amplitude means half of the peak-to-peak amplitude.<ref name="Tatum">Tatum, J. B. ''[http://orca.phys.uvic.ca/~tatum/celmechs/celm18.pdf Physics &nbsp;– Celestial Mechanics].'' Paragraph 18.2.12. 2007. Retrieved 2008-08-22.</ref>
The majority of scientific literature<ref>Regents of the [[University of California]]. ''[http://cse.ssl.berkeley.edu/light/measure_amp.html#measure4 Universe of Light: What is the Amplitude of a Wave?]'' 1996. Retrieved 2008-08-22.</ref> employs the term ''amplitude'' or ''peak amplitude'' to mean semi-amplitude.

It is the most widely used measure of orbital wobble in [[astronomy]] and the measurement of small [[radial velocity]] semi-amplitudes of nearby stars is important in the search for [[exoplanet]]s (see [[Doppler spectroscopy]]).<ref>Goldvais, Uriel A. [http://img2.tapuz.co.il/forums/1_109580628.pdf Exoplanets], pp. 2–3. Retrieved 2008-08-22.</ref>

==== Двосмисленост ====
In general, the use of ''peak amplitude'' is simple and unambiguous only for symmetric periodic waves, like a sine wave, a square wave, or a triangle wave. For an asymmetric wave (periodic pulses in one direction, for example), the peak amplitude becomes ambiguous. This is because the value is different depending on whether the maximum positive signal is measured relative to the mean, the maximum negative signal is measured relative to the mean, or the maximum positive signal is measured relative to the maximum negative signal (the ''peak-to-peak amplitude'') and then divided by two (the ''semi-amplitude''). In electrical engineering, the usual solution to this ambiguity is to measure the amplitude from a defined reference potential (such as [[ground (electricity)|ground]] or 0&nbsp;V). Strictly speaking, this is no longer amplitude since there is the possibility that a constant ([[DC component]]) is included in the measurement.

===Peak-to-peak amplitude{{anchor|Peak-to-peak}}===
'''Peak-to-peak amplitude''' (abbreviated '''p–p''') is the change between peak (highest amplitude value) and [[Crest and trough|trough]] (lowest amplitude value, which can be negative). With appropriate circuitry, peak-to-peak amplitudes of electric oscillations can be measured by meters or by viewing the waveform on an [[oscilloscope]]. Peak-to-peak is a straightforward measurement on an oscilloscope, the peaks of the waveform being easily identified and measured against the [[Oscilloscope#Graticule|graticule]]. This remains a common way of specifying amplitude, but sometimes other measures of amplitude are more appropriate.

=== Средњи квадратни корен амплитуде ===

[[Root mean square]] (RMS) amplitude is used especially in [[electrical engineering]]: the RMS is defined as the [[square root]] of the [[mean]] over time of the square of the vertical distance of the graph from the rest state;<ref>Department of Communicative Disorders [[University of Wisconsin–Madison]]. ''[http://www.comdis.wisc.edu/vcd202/rms.html RMS Amplitude]''. Retrieved 2008-08-22.</ref>
i.e. the RMS of the [[AC waveform]] (with no [[DC component]]).

For complicated waveforms, especially non-repeating signals like noise, the RMS amplitude is usually used because it is both unambiguous and has physical significance. For example, the ''average'' [[power (physics)|power]] transmitted by an acoustic or [[electromagnetic wave]] or by an electrical signal is proportional to the square of the RMS amplitude (and not, in general, to the square of the peak amplitude).<ref>Ward, ''Electrical Engineering Science'', pp. 141–142, McGraw-Hill, 1971.</ref>

For [[alternating current]] [[electric power]], the universal practice is to specify RMS values of a sinusoidal waveform. One property of root mean square voltages and currents is that they produce the same heating effect as a [[direct current]] in a given resistance.

The peak-to-peak value is used, for example, when choosing rectifiers for power supplies, or when estimating the maximum voltage that insulation must withstand. Some common [[voltmeter]]s are calibrated for RMS amplitude, but respond to the average value of a rectified waveform. Many digital voltmeters and all moving coil meters are in this category. The RMS calibration is only correct for a sine wave input since the ratio between peak, average and RMS values is dependent on [[waveform]]. If the wave shape being measured is greatly different from a sine wave, the relationship between RMS and average value changes. True RMS-responding meters were used in [[radio frequency]] measurements, where instruments measured the heating effect in a resistor to measure a current. The advent of [[microprocessor]] controlled meters capable of calculating RMS by [[Sampling (signal processing)|sampling]] the waveform has made true RMS measurement commonplace.

=== Амплитуда пулса ===
In [[telecommunication]], ''pulse amplitude'' is the magnitude of a [[pulse (signal processing)|pulse]] parameter, such as the [[voltage]] level, [[Electric current|current]] level, [[field intensity]], or [[Power (physics)|power]] level.

Pulse amplitude is measured with respect to a specified reference and therefore should be modified by qualifiers, such as ''average'', ''instantaneous'', ''peak'', or ''root-mean-square''.

Pulse amplitude also applies to the amplitude of [[frequency]]- and [[phase (waves)|phase]]-modulated [[waveform]] envelopes.<ref>{{FS1037C}}</ref>

== Формална репрезентација ==

In this simple [[wave equation]]
:<math>x = A \sin(\omega [t - K]) + b \ ,</math>

*<math>A</math> is the amplitude (or [[#Peak amplitude|peak amplitude]]),
*<math>x</math> is the oscillating variable,
*<math>\omega</math> is [[angular frequency]],
*<math>t</math> is time,
*<math>K</math> and <math>b</math> are arbitrary constants representing time and displacement offsets respectively.

== Јединице ==
The units of the amplitude depend on the type of wave, but are always in the same units as the oscillating variable. A more general representation of the wave equation is more complex, but the role of amplitude remains analogous to this simple case.

For waves on a [[string vibration|string]], or in a medium such as [[water]], the amplitude is a [[Displacement (geometry)|displacement]].

The amplitude of sound waves and audio signals (which relates to the volume) conventionally refers to the amplitude of the [[Sound#Sound Pressure Level|air pressure]] in the wave, but sometimes the amplitude of the [[Particle displacement|displacement]] (movements of the air or the diaphragm of a [[loudspeaker|speaker]]) is described. The [[logarithm]] of the amplitude squared is usually quoted in [[decibel|dB]], so a null amplitude corresponds to −[[infinity|∞]]&nbsp;dB. [[Loudness]] is related to amplitude and [[Sound intensity|intensity]] and is one of the most salient qualities of a sound, although in general sounds it can be recognized [[Neuroscience of music|independently of amplitude]]. The square of the amplitude is proportional to the intensity of the wave.

For [[electromagnetic radiation]], the amplitude of a [[photon]] corresponds to the changes in the [[electric field]] of the wave. However, radio signals may be carried by electromagnetic radiation; the intensity of the radiation ([[amplitude modulation]]) or the frequency of the radiation ([[frequency modulation]]) is oscillated and then the individual oscillations are varied (modulated) to produce the signal.

== Пролазни амплитудни омотачи ==
A steady state amplitude remains constant during time, thus is represented by a scalar. Otherwise, the amplitude is transient and must be represented as either a continuous function or a discrete vector. For audio, transient amplitude envelopes model signals better because many common sounds have a transient loudness attack, decay, sustain, and release.

Other parameters can be assigned steady state or transient amplitude envelopes: high/low frequency/amplitude modulation, Gaussian noise, overtones, etc.<ref name="pitt.edu">{{cite web|url=http://www.pitt.edu/~rdb37/synthparentwebpage_main.html|title=Additive Sound Synthesizer Project with CODE!|website=www.pitt.edu}}</ref>

== Нормализација амплитуде ==
With waveforms containing many overtones, complex transient timbres can be achieved by assigning each overtone to its own distinct transient amplitude envelope. Unfortunately, this has the effect of modulating the loudness of the sound as well. It makes more sense to separate loudness and harmonic quality to be parameters controlled independently of each other.

To do so, harmonic amplitude envelopes are frame-by-frame normalized to become amplitude ''proportion'' envelopes, where at each time frame all the harmonic amplitudes will add to 100% (or 1). This way, the main loudness-controlling envelope can be cleanly controlled.<ref name="pitt.edu"/>

In Sound Recognition, max amplitude normalization can be used to help align the key harmonic features of 2 alike sounds, allowing similar timbres to be recognized independent of loudness.<ref>{{cite web|url=http://www.pitt.edu/~rdb37/ssar.html|title=Sound Sampling, Analysis, and Recognition|website=www.pitt.edu}}</ref><ref>{{cite web|url=https://www.youtube.com/watch?v=ZtWGXyYcs-A| archive-url=https://ghostarchive.org/varchive/youtube/20211108/ZtWGXyYcs-A| archive-date=2021-11-08 | url-status=live|title=I wrote a Sound Recognition Application|last=rblack37|date=2 January 2018|via=YouTube}}{{cbignore}}</ref>


== Види још ==
== Види још ==
* [[Талас]]
* [[талас (физика)|Талас]]
* [[Фреквенција]]
* [[Фреквенција]]
* [[Таласна дужина]]
* [[Таласна дужина]]
* [[Период]]
* [[Период осциловања|Период]]
* [[Звук]]
* [[Звук]]
* [[Електротехника]]
* [[Електротехника]]

== Референце ==
{{Reflist}}


== Литература ==
== Литература ==
{{Refbegin|30em}}
* {{Cite encyclopedia |last= |first= |title= [[Војна енциклопедија]] |year= 1970 |publisher= Војноиздавачки завод |location= Београд |volume= Први том|pages=стране 137 и 138.|id=}}
* {{Cite encyclopedia |last= |first= |title= [[Војна енциклопедија]] |year= 1970 |publisher= Војноиздавачки завод |location= Београд |volume= Први том|pages=стране 137 и 138.|id=}}
* {{cite book |last1=Thompson |first1=Sylvanus P. |title=Calculus Made Easy |date=1965 |publisher=Macmillan International Higher Education |isbn=9781349004874 |page=185 |url=https://books.google.com/books?id=6VJdDwAAQBAJ&pg=PA185 |access-date=5 July 2020}}
* {{cite book |last1=Jones |first1=Alan R. |title=Probability, Statistics and Other Frightening Stuff |date=2018 |publisher=Routledge |isbn=9781351661386 |page=48 |url=https://books.google.com/books?id=OvtsDwAAQBAJ&pg=PA48 |access-date=5 July 2020}}
* {{cite journal |last=Cartwright|first=Kenneth V|title=Determining the Effective or RMS Voltage of Various Waveforms without Calculus|journal=Technology Interface|volume=8|issue=1|pages=20 pages|date=Fall 2007|url=http://tiij.org/issues/issues/fall2007/30_Cartwright/Cartwright-Waveforms.pdf}}
* {{cite book | title=Digital signal transmission | edition=2nd | author1=Chris C. Bissell | author2=David A. Chapman | publisher=Cambridge University Press | year=1992 | isbn=978-0-521-42557-5 | page=64 }}
* M. F. Atiyah, R. Bott, L. Garding, "[https://projecteuclid.org/download/pdf_1/euclid.acta/1485889652 Lacunas for hyperbolic differential operators with constant coefficients I]", ''Acta Math.'', '''124''' (1970), 109–189.
* M.F. Atiyah, R. Bott, and L. Garding, "[https://projecteuclid.org/download/pdf_1/euclid.acta/1485889790 Lacunas for hyperbolic differential operators with constant coefficients II]", ''Acta Math.'', '''131''' (1973), 145–206.
* R. Courant, D. Hilbert, ''Methods of Mathematical Physics, vol II''. Interscience (Wiley) New York, 1962.
* L. Evans, "Partial Differential Equations". American Mathematical Society Providence, 1998.
* "[http://eqworld.ipmnet.ru/en/solutions/lpde/wave-toc.pdf Linear Wave Equations]", ''EqWorld: The World of Mathematical Equations.''
* "[http://eqworld.ipmnet.ru/en/solutions/npde/npde-toc2.pdf Nonlinear Wave Equations]", ''EqWorld: The World of Mathematical Equations.''
* William C. Lane, "[http://www.physnet.org/modules/pdf_modules/m201.pdf <small>MISN-0-201</small> The Wave Equation and Its Solutions]", ''[http://www.physnet.org Project PHYSNET]''.
* {{cite book|last1= Cannon | first1=John T.|last2=Dostrovsky|first2=Sigalia|title=The evolution of dynamics, vibration theory from 1687 to 1742| year=1981| volume= 6|series=Studies in the History of Mathematics and Physical Sciences|isbn= 978-0-3879-0626-3|publisher=Springer-Verlag| location=New York|pages=ix + 184 pp}}
* {{cite journal|last= GRAY|first=JW|title=BOOK REVIEWS |journal=Bulletin of the American Mathematical Society |series=New Series |date=July 1983 |volume= 9| issue = 1}}
* {{Cite journal|last1=Bschorr|first1=Oskar|last2=Raida|first2=Hans-Joachim|date=March 2020| title=One-Way Wave Equation Derived from Impedance Theorem|journal=Acoustics|language=en| volume=2|issue=1| pages=164–170| doi=10.3390/acoustics2010012| doi-access=free}}
{{Refend}}

== Спољашње везе ==
{{Commons category|Amplitude}}
* [http://demonstrations.wolfram.com/NonlinearWaveEquations/ Nonlinear Wave Equations] by [[Stephen Wolfram]] and Rob Knapp, [http://demonstrations.wolfram.com/NonlinearWaveEquationExplorer/ Nonlinear Wave Equation Explorer] by [[Wolfram Demonstrations Project]].
* Mathematical aspects of wave equations are discussed on the [http://tosio.math.toronto.edu/wiki/index.php/Main_Page Dispersive PDE Wiki].
* Graham W Griffiths and William E. Schiesser (2009). [http://www.scholarpedia.org/article/Linear_and_nonlinear_waves Linear and nonlinear waves]. [http://www.scholarpedia.org/ Scholarpedia], 4(7):4308. [https://dx.doi.org/10.4249/scholarpedia.4308 doi:10.4249/scholarpedia.4308]
* {{cite web | last1=Nastase |first1=Adrian S. | title=How to Derive the RMS Value of Pulse and Square Waveforms | url=https://masteringelectronicsdesign.com/how-to-derive-the-rms-value-of-pulse-and-square-waveforms/ | website=MasteringElectronicsDesign.com | access-date=21 January 2015 }}

{{Authority control}}

[[Категорија:Осцилације]]
[[Категорија:Осцилације]]
[[Категорија:Фундаментални концепти физике]]
[[Категорија:Фундаментални концепти физике]]

Верзија на датум 11. децембар 2021. у 23:57

Синусоидални талас.1)Амплитуда(вршна амплитуда).2)Врх-врх амплитуда.3)Ефективна вредност променљиве величине.4)Период(периода)осцилације.

Амплитуда је у физици највећа вредност коју достиже периодички променљива величина у времену једног полупериода.Код осцилација у механици, то је највећа удаљеност од равнотежног положаја. При електричним осцилацијама променљиве струје или напона то је највећа вршна вредност струје или напона.Код звучних таласа то је највећа промена притиска средине.

There are various definitions of amplitude (see below), which are all functions of the magnitude of the differences between the variable's extreme values. In older texts, the phase of a periodic function is sometimes called the amplitude.[1]

Дефиниције

A sinusoidal curve
  1. Peak amplitude (),
  2. Peak-to-peak amplitude (),
  3. Root mean square amplitude (),
  4. Wave period (not an amplitude)

Peak amplitude & semi-amplitude

Symmetric periodic waves, like sine waves, square waves or triangle waves peak amplitude and semi amplitude are the same.

Peak amplitude

In audio system measurements, telecommunications and others where the measurand is a signal that swings above and below a reference value but is not sinusoidal, peak amplitude is often used. If the reference is zero, this is the maximum absolute value of the signal; if the reference is a mean value (DC component), the peak amplitude is the maximum absolute value of the difference from that reference.

Semi-amplitude

Semi-amplitude means half of the peak-to-peak amplitude.[2] The majority of scientific literature[3] employs the term amplitude or peak amplitude to mean semi-amplitude.

It is the most widely used measure of orbital wobble in astronomy and the measurement of small radial velocity semi-amplitudes of nearby stars is important in the search for exoplanets (see Doppler spectroscopy).[4]

Двосмисленост

In general, the use of peak amplitude is simple and unambiguous only for symmetric periodic waves, like a sine wave, a square wave, or a triangle wave. For an asymmetric wave (periodic pulses in one direction, for example), the peak amplitude becomes ambiguous. This is because the value is different depending on whether the maximum positive signal is measured relative to the mean, the maximum negative signal is measured relative to the mean, or the maximum positive signal is measured relative to the maximum negative signal (the peak-to-peak amplitude) and then divided by two (the semi-amplitude). In electrical engineering, the usual solution to this ambiguity is to measure the amplitude from a defined reference potential (such as ground or 0 V). Strictly speaking, this is no longer amplitude since there is the possibility that a constant (DC component) is included in the measurement.

Peak-to-peak amplitude

Peak-to-peak amplitude (abbreviated p–p) is the change between peak (highest amplitude value) and trough (lowest amplitude value, which can be negative). With appropriate circuitry, peak-to-peak amplitudes of electric oscillations can be measured by meters or by viewing the waveform on an oscilloscope. Peak-to-peak is a straightforward measurement on an oscilloscope, the peaks of the waveform being easily identified and measured against the graticule. This remains a common way of specifying amplitude, but sometimes other measures of amplitude are more appropriate.

Средњи квадратни корен амплитуде

Root mean square (RMS) amplitude is used especially in electrical engineering: the RMS is defined as the square root of the mean over time of the square of the vertical distance of the graph from the rest state;[5] i.e. the RMS of the AC waveform (with no DC component).

For complicated waveforms, especially non-repeating signals like noise, the RMS amplitude is usually used because it is both unambiguous and has physical significance. For example, the average power transmitted by an acoustic or electromagnetic wave or by an electrical signal is proportional to the square of the RMS amplitude (and not, in general, to the square of the peak amplitude).[6]

For alternating current electric power, the universal practice is to specify RMS values of a sinusoidal waveform. One property of root mean square voltages and currents is that they produce the same heating effect as a direct current in a given resistance.

The peak-to-peak value is used, for example, when choosing rectifiers for power supplies, or when estimating the maximum voltage that insulation must withstand. Some common voltmeters are calibrated for RMS amplitude, but respond to the average value of a rectified waveform. Many digital voltmeters and all moving coil meters are in this category. The RMS calibration is only correct for a sine wave input since the ratio between peak, average and RMS values is dependent on waveform. If the wave shape being measured is greatly different from a sine wave, the relationship between RMS and average value changes. True RMS-responding meters were used in radio frequency measurements, where instruments measured the heating effect in a resistor to measure a current. The advent of microprocessor controlled meters capable of calculating RMS by sampling the waveform has made true RMS measurement commonplace.

Амплитуда пулса

In telecommunication, pulse amplitude is the magnitude of a pulse parameter, such as the voltage level, current level, field intensity, or power level.

Pulse amplitude is measured with respect to a specified reference and therefore should be modified by qualifiers, such as average, instantaneous, peak, or root-mean-square.

Pulse amplitude also applies to the amplitude of frequency- and phase-modulated waveform envelopes.[7]

Формална репрезентација

In this simple wave equation

  • is the amplitude (or peak amplitude),
  • is the oscillating variable,
  • is angular frequency,
  • is time,
  • and are arbitrary constants representing time and displacement offsets respectively.

Јединице

The units of the amplitude depend on the type of wave, but are always in the same units as the oscillating variable. A more general representation of the wave equation is more complex, but the role of amplitude remains analogous to this simple case.

For waves on a string, or in a medium such as water, the amplitude is a displacement.

The amplitude of sound waves and audio signals (which relates to the volume) conventionally refers to the amplitude of the air pressure in the wave, but sometimes the amplitude of the displacement (movements of the air or the diaphragm of a speaker) is described. The logarithm of the amplitude squared is usually quoted in dB, so a null amplitude corresponds to − dB. Loudness is related to amplitude and intensity and is one of the most salient qualities of a sound, although in general sounds it can be recognized independently of amplitude. The square of the amplitude is proportional to the intensity of the wave.

For electromagnetic radiation, the amplitude of a photon corresponds to the changes in the electric field of the wave. However, radio signals may be carried by electromagnetic radiation; the intensity of the radiation (amplitude modulation) or the frequency of the radiation (frequency modulation) is oscillated and then the individual oscillations are varied (modulated) to produce the signal.

Пролазни амплитудни омотачи

A steady state amplitude remains constant during time, thus is represented by a scalar. Otherwise, the amplitude is transient and must be represented as either a continuous function or a discrete vector. For audio, transient amplitude envelopes model signals better because many common sounds have a transient loudness attack, decay, sustain, and release.

Other parameters can be assigned steady state or transient amplitude envelopes: high/low frequency/amplitude modulation, Gaussian noise, overtones, etc.[8]

Нормализација амплитуде

With waveforms containing many overtones, complex transient timbres can be achieved by assigning each overtone to its own distinct transient amplitude envelope. Unfortunately, this has the effect of modulating the loudness of the sound as well. It makes more sense to separate loudness and harmonic quality to be parameters controlled independently of each other.

To do so, harmonic amplitude envelopes are frame-by-frame normalized to become amplitude proportion envelopes, where at each time frame all the harmonic amplitudes will add to 100% (or 1). This way, the main loudness-controlling envelope can be cleanly controlled.[8]

In Sound Recognition, max amplitude normalization can be used to help align the key harmonic features of 2 alike sounds, allowing similar timbres to be recognized independent of loudness.[9][10]

Види још

Референце

  1. ^ Knopp, Konrad; Bagemihl, Frederick (1996). Theory of Functions Parts I and II. Dover Publications. стр. 3. ISBN 978-0-486-69219-7. 
  2. ^ Tatum, J. B. Physics  – Celestial Mechanics. Paragraph 18.2.12. 2007. Retrieved 2008-08-22.
  3. ^ Regents of the University of California. Universe of Light: What is the Amplitude of a Wave? 1996. Retrieved 2008-08-22.
  4. ^ Goldvais, Uriel A. Exoplanets, pp. 2–3. Retrieved 2008-08-22.
  5. ^ Department of Communicative Disorders University of Wisconsin–Madison. RMS Amplitude. Retrieved 2008-08-22.
  6. ^ Ward, Electrical Engineering Science, pp. 141–142, McGraw-Hill, 1971.
  7. ^  Овај чланак садржи материјал у јавном власништву из документа General Services Administration („Federal Standard 1037C”).
  8. ^ а б „Additive Sound Synthesizer Project with CODE!”. www.pitt.edu. 
  9. ^ „Sound Sampling, Analysis, and Recognition”. www.pitt.edu. 
  10. ^ rblack37 (2. 1. 2018). „I wrote a Sound Recognition Application”. Архивирано из оригинала 2021-11-08. г. — преко YouTube. 

Литература

Спољашње везе