Ваздушна маса — разлика између измена

С Википедије, слободне енциклопедије
Садржај обрисан Садржај додат
мНема описа измене
.
Ред 1: Ред 1:
{{Short description|Запремина ваздуха дефинисана његовом температуром и садржајем водене паре}}
[[Датотека:Airmassesorigin.png|мини|десно|Различите ваздушне масе које утичу на [[Северна Америка|Сјеверну Америку]], као и друге континенте, имају тенденцију да буду раздвојене фронталном границом]]
[[Датотека:Airmassesorigin.png|мини|десно|250п|Различите ваздушне масе које утичу на [[Северна Америка|Сјеверну Америку]], као и друге континенте, имају тенденцију да буду раздвојене фронталном границом]]

'''Ваздушна маса''' у [[метеорологија|метеорологији]] је запремина ваздуха дефинисана својом температуром и садржајем водене паре. Ваздушне масе покривају више стотина или хиљада километара квадратних и прилагођавају се особинама површине испод њих. Класификоване су према географској ширини и својим континенталним или поморским изворним регионима. Хладније ваздушне масе се називају арктичке или поларне, док се топлије ваздушне масе сматрају тропским. Континенталне и више ваздушне масе су суве, док су поморске и монсунске ваздушне масе влажне. [[Атмосферски фронт]] раздваја ваздушне масе различите густине (температуре и/или влаге). Када се ваздушна маса удаљава од свог изворног региона, основна вегетација и водена тијела могу брзо промијенити свог карактер.
'''Ваздушна маса''' у [[метеорологија|метеорологији]] је запремина ваздуха дефинисана својом температуром и садржајем водене паре. Ваздушне масе покривају више стотина или хиљада километара квадратних и прилагођавају се особинама површине испод њих. Класификоване су према географској ширини и својим континенталним или поморским изворним регионима. Хладније ваздушне масе се називају арктичке или поларне, док се топлије ваздушне масе сматрају тропским. Континенталне и више ваздушне масе су суве, док су поморске и монсунске ваздушне масе влажне. [[Атмосферски фронт]] раздваја ваздушне масе различите густине (температуре и/или влаге). Када се ваздушна маса удаљава од свог изворног региона, основна вегетација и водена тијела могу брзо промијенити свог карактер.


== Класификација и нотација ==
{{Клица-метеорологија}}
[[File:Air_masses.svg|thumb|upright=1.85|Изворни региони глобалних ваздушних маса]]
{{рут}}
The [[Tor Bergeron|Bergeron]] classification is the most widely accepted form of air mass classification, though others have produced more refined versions of this scheme over different regions of the globe.<ref>{{cite journal|url=https://darchive.mblwhoilibrary.org/bitstream/handle/1912/1142/Vol%202%20No%202.pdf?sequence=1|journal=Papers in Physical Oceanography and Meteorology|title=American Air Mass Properties|author =H. C. Willett|volume=2|issue=2|publisher=[[Massachusetts Institute of Technology]]|date=June 1933|access-date=2009-10-28}}</ref> Air mass classification involves three letters. The first letter describes its moisture properties--"c" represents [[continental air mass|continental air masses (dry)]], and "m" represents maritime air masses (moist). Its source region follows: "T" stands for [[Tropics|Tropical]], "P" stands for [[Polar region|Polar]], "A" stands for [[Arctic]] or [[Antarctic]], "M" stands for [[monsoon]], "E" stands for [[Equator]]ial, and "S" stands for [[adiabatic]]ally drying and warming air formed by significant downward motion in the atmosphere. For instance, an air mass originating over the desert southwest of the United States in summer may be designated "cT". An air mass originating over northern Siberia in winter may be indicated as "cA".<ref name="airmassclass"/>

The stability of an air mass may be shown using a third letter, either "k" (air mass colder than the surface below it) or "w" (air mass warmer than the surface below it).<ref name="airmassclass">{{cite web|author =Glossary of Meteorology|url=http://amsglossary.allenpress.com/glossary/search?id=airmass-classification1|title=Airmass Classification|access-date=2008-05-22|publisher=[[American Meteorological Society]]|date=June 2000| archive-url= https://web.archive.org/web/20080611072053/http://amsglossary.allenpress.com/glossary/search?id=airmass-classification1| archive-date= 11 June 2008 | url-status= live}}</ref> An example of this might be a polar air mass blowing over the [[Gulf Stream]], denoted as "cPk". Occasionally, one may also encounter the use of an apostrophe or "degree tick" denoting that a given air mass having the same notation as another it is replacing is colder than the replaced air mass (usually for polar air masses). For example, a series of fronts over the Pacific might show an air mass denoted mPk followed by another denoted mPk'.<ref name="airmassclass"/>

Another convention utilizing these symbols is the indication of modification or transformation of one type to another. For instance, an Arctic air mass blowing out over the Gulf of Alaska may be shown as "cA-mPk". Yet another convention indicates the layering of air masses in certain situations. For instance, the overrunning of a polar air mass by an air mass from the Gulf of Mexico over the Central United States might be shown with the notation "mT/cP" (sometimes using a horizontal line as in fraction notation).<ref>{{cite web|url=http://docs.lib.noaa.gov/rescue/dwm/1950/19500201.djvu|title=Daily Weather Maps: February 1, 1950|author =United States Weather Bureau|date=1950-02-01|publisher=[[United States Department of Commerce]]|access-date=2009-10-28}}</ref>

== Карактеристике ==

Tropical and equatorial air masses are hot as they develop over lower latitudes. Those that develop over land (continental) are drier and hotter than those that develop over oceans, and travel poleward on the southern periphery of the [[subtropical ridge]].<ref>{{cite web|url=http://amsglossary.allenpress.com/glossary/search?p=1&query=tropical+air&submit=Search|title=Tropical air|author=Glossary of Meteorology|date=June 2000|publisher=[[American Meteorological Society]]|access-date=2009-10-28|url-status=dead|archive-url=https://web.archive.org/web/20110606104145/http://amsglossary.allenpress.com/glossary/search?p=1&query=tropical+air&submit=Search|archive-date=2011-06-06}}</ref> Maritime tropical air masses are sometimes referred to as trade air masses. Maritime tropical air masses that affect the United States originate in the [[Caribbean Sea]], southern [[Gulf of Mexico]], and tropical Atlantic east of [[Florida]] through the [[Bahamas]].<ref>{{cite web|url=http://amsglossary.allenpress.com/glossary/search?id=trade-air1|title=Trade air|author=Glossary of Meteorology|date=June 2000|publisher=[[American Meteorological Society]]|access-date=2009-10-28|url-status=dead|archive-url=https://web.archive.org/web/20110606104210/http://amsglossary.allenpress.com/glossary/search?id=trade-air1|archive-date=2011-06-06}}</ref> Monsoon air masses are moist and unstable. Superior air masses are dry, and rarely reach the ground. They normally reside over maritime tropical air masses, forming a warmer and drier layer over the more moderate moist air mass below, forming what is known as a [[trade wind]] inversion over the maritime tropical air mass.

Continental Polar air masses (cP) are air masses that are cold and dry due to their continental source region. Continental polar air masses that affect North America form over interior Canada. Continental Tropical air masses (cT) are a type of tropical air produced by the subtropical ridge over large areas of land and typically originate from low-latitude deserts such as the [[Sahara Desert]] in northern Africa, which is the major source of these air masses. Other less important sources producing cT air masses are the [[Arabian Peninsula]], the central arid/semi-arid part of [[Australia]] and deserts lying in the [[Southwestern United States]]. Continental tropical air masses are extremely hot and dry.<ref>{{cite web|url=http://amsglossary.allenpress.com/glossary/search?p=1&query=superior+air&submit=Search|title=Superior air|author=Glossary of Meteorology|date=June 2000|publisher=[[American Meteorological Society]]|access-date=2009-10-28|url-status=dead|archive-url=https://web.archive.org/web/20110606104219/http://amsglossary.allenpress.com/glossary/search?p=1&query=superior+air&submit=Search|archive-date=2011-06-06}}</ref> Arctic, Antarctic, and polar air masses are cold. The qualities of arctic air are developed over ice and snow-covered ground. Arctic air is deeply cold, colder than polar air masses. Arctic air can be shallow in the summer, and rapidly modify as it moves equatorward.<ref>{{cite web|url=http://amsglossary.allenpress.com/glossary/search?id=arctic-air1|title=Arctic air|author=Glossary of Meteorology|date=June 2000|publisher=[[American Meteorological Society]]|access-date=2009-10-28|archive-url=https://web.archive.org/web/20120315161524/http://amsglossary.allenpress.com/glossary/search?id=arctic-air1|archive-date=2012-03-15|url-status=dead}}</ref> Polar air masses develop over higher latitudes over the land or ocean, are very stable, and generally shallower than arctic air. Polar air over the ocean (maritime) loses its stability as it gains moisture over warmer ocean waters.<ref>{{cite web|url=http://amsglossary.allenpress.com/glossary/search?id=polar-air1|title=Polar air|author=Glossary of Meteorology|date=June 2000|publisher=[[American Meteorological Society]]|access-date=2009-10-28|archive-url=https://web.archive.org/web/20121002032637/http://amsglossary.allenpress.com/glossary/search?id=polar-air1|archive-date=2012-10-02|url-status=dead}}</ref>

== Кретање и фронтови ==
[[File:Cold front (left) above Zdiměřice in Czechia, 2017.jpg|thumb|Picture of cold front (left part of the image) moving over the Czech Republic]]
{{Main|Атмосферски фронт}}

A '''weather front''' is a boundary separating two masses of air of different [[density|densities]], and is the principal cause of [[meteorological phenomenon|meteorological phenomena]]. In [[surface weather analysis|surface weather analyses]], fronts are depicted using various colored lines and symbols, depending on the type of front. The air masses separated by a front usually differ in [[temperature]] and [[humidity]].
[[Cold front]]s may feature narrow bands of [[thunderstorm]]s and [[severe weather]], and may on occasion be preceded by [[squall line]]s or [[dry line]]s. [[Warm front]]s are usually preceded by [[Stratus cloud|stratiform]] [[Precipitation (meteorology)|precipitation]] and [[fog]]. The weather usually clears quickly after a front's passage. Some fronts produce no precipitation and little cloudiness, although there is invariably a wind shift.<ref name=stm>{{cite web|author =Climate Change Research Center |title=Lesson 7: Clouds and Precipitation |access-date=2007-04-29 |url=http://www.ccrc.sr.unh.edu/~stm/AS/Teaching/STEC521/STEC521_7.html |date=2000-11-10 |publisher=[[University of New Hampshire]] |url-status=dead |archive-url=https://web.archive.org/web/20050111070558/http://www.ccrc.sr.unh.edu/~stm/AS/Teaching/STEC521/STEC521_7.html |archive-date=January 11, 2005 }}</ref>

Cold fronts and [[occluded front]]s generally move from west to east, while warm fronts move [[Geographical pole|poleward]]. Because of the greater density of air in their wake, cold fronts and cold occlusions move faster than warm fronts and warm occlusions. [[Mountain]]s and warm bodies of water can slow the movement of fronts.<ref name="DR">{{cite web|author =David Roth|date=2006-12-14|title=Unified Surface Analysis Manual|access-date=2006-10-22|publisher=[[Hydrometeorological Prediction Center]]|url= http://www.wpc.ncep.noaa.gov/sfc/UASfcManualVersion1.pdf| archive-url= https://web.archive.org/web/20060929004553/http://www.hpc.ncep.noaa.gov/sfc/UASfcManualVersion1.pdf| archive-date= 29 September 2006 | url-status= live}}</ref> When a front becomes [[stationary front|stationary]], and the density contrast across the frontal boundary vanishes, the front can degenerate into a line which separates regions of differing wind velocity, known as a shearline.<ref>{{cite web|author=Glossary of Meteorology|date=June 2000|title=Shear Line|access-date=2006-10-22|url=http://amsglossary.allenpress.com/glossary/search?p=1&query=shear+line|publisher=[[American Meteorological Society]]|url-status=dead|archive-url=https://web.archive.org/web/20070314081220/http://amsglossary.allenpress.com/glossary/search?p=1&query=shear+line|archive-date=2007-03-14}}</ref> This is most common over the open ocean...

== Модификација ==
[[File:Snow Clouds in Korea.jpg|thumb|Lake-effect snow bands near the [[Korean Peninsula]]]]
{{See also|Падавине|језерски-ефекат снега}}

Air masses can be modified in a variety of ways. Surface flux from underlying vegetation, such as forest, acts to moisten the overlying air mass.<ref>{{cite journal|url=http://sequoia.asrc.cestm.albany.edu/PDFfiles/PostfrontalAirmassMod.pdf |archive-url=https://web.archive.org/web/20051113131655/http://sequoia.asrc.cestm.albany.edu/PDFfiles/PostfrontalAirmassMod.pdf |url-status=dead |archive-date=2005-11-13 |title=Postfrontal Airmass Modification |author1=Jeffrey M. Freedman |author2=David R. Fitzjarrald |date=August 2001 |access-date=2009-08-22 |publisher=[[American Meteorological Society]] |pages=419–437 |journal=Journal of Hydrometeorology |volume=2 |issue=4 |doi=10.1175/1525-7541(2001)002<0419:PAM>2.0.CO;2 |bibcode=2001JHyMe...2..419F }}</ref> Heat from underlying warmer waters can significantly modify an air mass over distances as short as {{convert|35|km|mi}} to {{convert|40|km|mi}}.<ref>{{cite journal|author1=Jun Inoue |author2=Masayuki Kawashima |author3=Yasushi Fujiyoshi |author4=Masaaki Wakatsuchi |title=Aircraft Observations of Air-mass Modification Over the Sea of Okhotsk during Sea-ice Growth|issue=1|date=October 2005|doi=10.1007/s10546-004-3407-y|pages=111–129|volume=117|bibcode = 2005BoLMe.117..111I| journal=Boundary-Layer Meteorology |s2cid=121768400 }}</ref> For example, southwest of [[extratropical cyclone]]s, curved cyclonic flow bringing cold air across the relatively warm water bodies can lead to narrow [[lake-effect snow]] bands. Those bands bring strong localized precipitation since large water bodies such as lakes efficiently store heat that results in significant temperature differences (larger than 13&nbsp;°C or 23&nbsp;°F) between the water surface and the air above.<ref>{{cite news|author =B. Geerts |year=1998|url=http://www-das.uwyo.edu/~geerts/cwx/notes/chap10/lake_effect_snow.html |title=Lake Effect Snow.| access-date= 2008-12-24|publisher=[[University of Wyoming]]}}</ref> Because of this temperature difference, warmth and moisture are transported upward, condensing into vertically oriented clouds (see satellite picture) which produce snow showers. The temperature decrease with height and cloud depth are directly affected by both the water temperature and the large-scale environment. The stronger the temperature decrease with height, the deeper the clouds get, and the greater the precipitation rate becomes.<ref>{{cite web|url=http://www.comet.ucar.edu/class/smfaculty/byrd/sld010.htm |publisher=[[University Corporation for Atmospheric Research]] |title=Lake Effect Snows, |date=1998-06-03 |access-date=2009-07-12 |author=Greg Byrd |archive-url=https://web.archive.org/web/20090617013142/http://www.comet.ucar.edu/class/smfaculty/byrd/sld010.htm |archive-date=17 June 2009 |url-status=dead }}</ref>

== Види још ==
* [[Сунчева радијација]]
* [[Систем просторне синоптичке класификације]]

== Референце ==
{{Reflist}}

== Литература ==
{{Refbegin|30em}}
* {{cite book|url=https://books.google.com/books?id=SpGfKb23Y9QC&pg=PA296|title=Meteorology today: an introduction to weather, climate, and the environment|page= |author=C. Donald Ahrens|year=2007|publisher=Cengage Learning|isbn=978-0-495-01162-0}}
* {{cite book |first=Mark S. |last=Monmonier |year=1999 |title=Air Apparent: How Meteorologists Learned to Map, Predict, and Dramatize Weather |publisher=University of Chicago Press |location=Chicago |isbn=0-226-53422-7 }}
* {{cite book|url=https://books.google.com/books?id=Ew3MBjbw4OAC&pg=PA309|title=The environment: principles and applications|author=Chris C. Park|page=309|publisher=Psychology Press|year=2001|isbn=978-0-415-21771-2}}
* {{cite book |first=Mark S. |last=Monmonier |year=1999 |title=Air Apparent: How Meteorologists Learned to Map, Predict, and Dramatize Weather |publisher=University of Chicago Press |location=Chicago |isbn=0-226-53422-7 }}
* {{cite journal|last1=Adler|first1=Robert F.|display-authors=etal|title=The Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–Present)|journal=Journal of Hydrometeorology|date=December 2003|volume=4|issue=6|pages=1147–1167|doi=10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2|bibcode=2003JHyMe...4.1147A|citeseerx=10.1.1.1018.6263}}
* {{Cite book|last1=Seneviratne|first1=Sonia I.|title={{Harvnb|IPCC AR6 WG1|2021}}|last2=Zhang|first2=Xuebin|last3=Adnan|first3=M.|last4=Badi|first4=W.|last5=Dereczynski|first5=Claudine|last6=Di Luca|first6=Alejandro|last7=Ghosh|first7=S.|year=2021|chapter=Chapter 11: Weather and climate extreme events in a changing climate|ref={{harvid|IPCC AR6 WG1 Ch11|2021}}|display-authors=4|chapter-url=https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Chapter_11.pdf}}
* {{Cite journal|last1=Graves|first1=S. D. B.|last2=McKay|first2=C. P.|last3=Griffith|first3=C. A.|last4=Ferri|first4=F.|last5=Fulchignoni|first5=M.|date=2008-03-01|title=Rain and hail can reach the surface of Titan|url=http://www.sciencedirect.com/science/article/pii/S0032063307003182|journal=Planetary and Space Science|language=en|volume=56|issue=3|pages=346–357|doi=10.1016/j.pss.2007.11.001|bibcode=2008P&SS...56..346G|issn=0032-0633}}
* {{cite journal |title=A convective/stratiform precipitation classification algorithm for volume scanning weather radar observations|author=Emmanouil N. Anagnostou|journal=[[Meteorological Applications]]|year=2004|volume=11|pages=291–300|doi=10.1017/S1350482704001409|issue=4|bibcode = 2004MeApp..11..291A |doi-access=free}}
* {{cite journal |title=A model of annual orographic precipitation and acid deposition and its application to Snowdonia|author1=A.J. Dore |author2=M. Mousavi-Baygi |author3=R.I. Smith |author4=J. Hall |author5=D. Fowler |author6=T.W. Choularton |journal=Atmospheric Environment|volume=40|date=June 2006|pages=3316–3326|doi=10.1016/j.atmosenv.2006.01.043|issue=18|bibcode = 2006AtmEn..40.3316D }}
* {{cite book|url=https://books.google.com/books?id=5DKWGZwBBEYC&pg=PA348|title=Cloud Dynamics|author=Robert A. Houze, Jr.|publisher=Academic Press|date=1994|isbn=978-0-08-050210-6 |page=348}
{{Refend}}

== Спољашње везе ==
* {{Commons category-inline|Air mass}}
* [http://www.wpc.ncep.noaa.gov/sfc/UASfcManualVersion1.pdf Surface Analysis Manual]
* [http://ww2010.atmos.uiuc.edu/(Gh)/guides/mtr/af/frnts/home.rxml Fronts: the boundaries between air masses]


{{нормативна контрола}}
{{нормативна контрола}}

Верзија на датум 23. мај 2022. у 22:20

Различите ваздушне масе које утичу на Сјеверну Америку, као и друге континенте, имају тенденцију да буду раздвојене фронталном границом

Ваздушна маса у метеорологији је запремина ваздуха дефинисана својом температуром и садржајем водене паре. Ваздушне масе покривају више стотина или хиљада километара квадратних и прилагођавају се особинама површине испод њих. Класификоване су према географској ширини и својим континенталним или поморским изворним регионима. Хладније ваздушне масе се називају арктичке или поларне, док се топлије ваздушне масе сматрају тропским. Континенталне и више ваздушне масе су суве, док су поморске и монсунске ваздушне масе влажне. Атмосферски фронт раздваја ваздушне масе различите густине (температуре и/или влаге). Када се ваздушна маса удаљава од свог изворног региона, основна вегетација и водена тијела могу брзо промијенити свог карактер.

Класификација и нотација

Изворни региони глобалних ваздушних маса

The Bergeron classification is the most widely accepted form of air mass classification, though others have produced more refined versions of this scheme over different regions of the globe.[1] Air mass classification involves three letters. The first letter describes its moisture properties--"c" represents continental air masses (dry), and "m" represents maritime air masses (moist). Its source region follows: "T" stands for Tropical, "P" stands for Polar, "A" stands for Arctic or Antarctic, "M" stands for monsoon, "E" stands for Equatorial, and "S" stands for adiabatically drying and warming air formed by significant downward motion in the atmosphere. For instance, an air mass originating over the desert southwest of the United States in summer may be designated "cT". An air mass originating over northern Siberia in winter may be indicated as "cA".[2]

The stability of an air mass may be shown using a third letter, either "k" (air mass colder than the surface below it) or "w" (air mass warmer than the surface below it).[2] An example of this might be a polar air mass blowing over the Gulf Stream, denoted as "cPk". Occasionally, one may also encounter the use of an apostrophe or "degree tick" denoting that a given air mass having the same notation as another it is replacing is colder than the replaced air mass (usually for polar air masses). For example, a series of fronts over the Pacific might show an air mass denoted mPk followed by another denoted mPk'.[2]

Another convention utilizing these symbols is the indication of modification or transformation of one type to another. For instance, an Arctic air mass blowing out over the Gulf of Alaska may be shown as "cA-mPk". Yet another convention indicates the layering of air masses in certain situations. For instance, the overrunning of a polar air mass by an air mass from the Gulf of Mexico over the Central United States might be shown with the notation "mT/cP" (sometimes using a horizontal line as in fraction notation).[3]

Карактеристике

Tropical and equatorial air masses are hot as they develop over lower latitudes. Those that develop over land (continental) are drier and hotter than those that develop over oceans, and travel poleward on the southern periphery of the subtropical ridge.[4] Maritime tropical air masses are sometimes referred to as trade air masses. Maritime tropical air masses that affect the United States originate in the Caribbean Sea, southern Gulf of Mexico, and tropical Atlantic east of Florida through the Bahamas.[5] Monsoon air masses are moist and unstable. Superior air masses are dry, and rarely reach the ground. They normally reside over maritime tropical air masses, forming a warmer and drier layer over the more moderate moist air mass below, forming what is known as a trade wind inversion over the maritime tropical air mass.

Continental Polar air masses (cP) are air masses that are cold and dry due to their continental source region. Continental polar air masses that affect North America form over interior Canada. Continental Tropical air masses (cT) are a type of tropical air produced by the subtropical ridge over large areas of land and typically originate from low-latitude deserts such as the Sahara Desert in northern Africa, which is the major source of these air masses. Other less important sources producing cT air masses are the Arabian Peninsula, the central arid/semi-arid part of Australia and deserts lying in the Southwestern United States. Continental tropical air masses are extremely hot and dry.[6] Arctic, Antarctic, and polar air masses are cold. The qualities of arctic air are developed over ice and snow-covered ground. Arctic air is deeply cold, colder than polar air masses. Arctic air can be shallow in the summer, and rapidly modify as it moves equatorward.[7] Polar air masses develop over higher latitudes over the land or ocean, are very stable, and generally shallower than arctic air. Polar air over the ocean (maritime) loses its stability as it gains moisture over warmer ocean waters.[8]

Кретање и фронтови

Picture of cold front (left part of the image) moving over the Czech Republic

A weather front is a boundary separating two masses of air of different densities, and is the principal cause of meteorological phenomena. In surface weather analyses, fronts are depicted using various colored lines and symbols, depending on the type of front. The air masses separated by a front usually differ in temperature and humidity. Cold fronts may feature narrow bands of thunderstorms and severe weather, and may on occasion be preceded by squall lines or dry lines. Warm fronts are usually preceded by stratiform precipitation and fog. The weather usually clears quickly after a front's passage. Some fronts produce no precipitation and little cloudiness, although there is invariably a wind shift.[9]

Cold fronts and occluded fronts generally move from west to east, while warm fronts move poleward. Because of the greater density of air in their wake, cold fronts and cold occlusions move faster than warm fronts and warm occlusions. Mountains and warm bodies of water can slow the movement of fronts.[10] When a front becomes stationary, and the density contrast across the frontal boundary vanishes, the front can degenerate into a line which separates regions of differing wind velocity, known as a shearline.[11] This is most common over the open ocean...

Модификација

Lake-effect snow bands near the Korean Peninsula

Air masses can be modified in a variety of ways. Surface flux from underlying vegetation, such as forest, acts to moisten the overlying air mass.[12] Heat from underlying warmer waters can significantly modify an air mass over distances as short as 35 km (22 mi) to 40 km (25 mi).[13] For example, southwest of extratropical cyclones, curved cyclonic flow bringing cold air across the relatively warm water bodies can lead to narrow lake-effect snow bands. Those bands bring strong localized precipitation since large water bodies such as lakes efficiently store heat that results in significant temperature differences (larger than 13 °C or 23 °F) between the water surface and the air above.[14] Because of this temperature difference, warmth and moisture are transported upward, condensing into vertically oriented clouds (see satellite picture) which produce snow showers. The temperature decrease with height and cloud depth are directly affected by both the water temperature and the large-scale environment. The stronger the temperature decrease with height, the deeper the clouds get, and the greater the precipitation rate becomes.[15]

Види још

Референце

  1. ^ H. C. Willett (јун 1933). „American Air Mass Properties” (PDF). Papers in Physical Oceanography and Meteorology. Massachusetts Institute of Technology. 2 (2). Приступљено 2009-10-28. 
  2. ^ а б в Glossary of Meteorology (јун 2000). „Airmass Classification”. American Meteorological Society. Архивирано из оригинала 11. 6. 2008. г. Приступљено 2008-05-22. 
  3. ^ United States Weather Bureau (1950-02-01). „Daily Weather Maps: February 1, 1950”. United States Department of Commerce. Приступљено 2009-10-28. 
  4. ^ Glossary of Meteorology (јун 2000). „Tropical air”. American Meteorological Society. Архивирано из оригинала 2011-06-06. г. Приступљено 2009-10-28. 
  5. ^ Glossary of Meteorology (јун 2000). „Trade air”. American Meteorological Society. Архивирано из оригинала 2011-06-06. г. Приступљено 2009-10-28. 
  6. ^ Glossary of Meteorology (јун 2000). „Superior air”. American Meteorological Society. Архивирано из оригинала 2011-06-06. г. Приступљено 2009-10-28. 
  7. ^ Glossary of Meteorology (јун 2000). „Arctic air”. American Meteorological Society. Архивирано из оригинала 2012-03-15. г. Приступљено 2009-10-28. 
  8. ^ Glossary of Meteorology (јун 2000). „Polar air”. American Meteorological Society. Архивирано из оригинала 2012-10-02. г. Приступљено 2009-10-28. 
  9. ^ Climate Change Research Center (2000-11-10). „Lesson 7: Clouds and Precipitation”. University of New Hampshire. Архивирано из оригинала 11. 1. 2005. г. Приступљено 2007-04-29. 
  10. ^ David Roth (2006-12-14). „Unified Surface Analysis Manual” (PDF). Hydrometeorological Prediction Center. Архивирано (PDF) из оригинала 29. 9. 2006. г. Приступљено 2006-10-22. 
  11. ^ Glossary of Meteorology (јун 2000). „Shear Line”. American Meteorological Society. Архивирано из оригинала 2007-03-14. г. Приступљено 2006-10-22. 
  12. ^ Jeffrey M. Freedman; David R. Fitzjarrald (август 2001). „Postfrontal Airmass Modification” (PDF). Journal of Hydrometeorology. American Meteorological Society. 2 (4): 419—437. Bibcode:2001JHyMe...2..419F. doi:10.1175/1525-7541(2001)002<0419:PAM>2.0.CO;2. Архивирано из оригинала (PDF) 2005-11-13. г. Приступљено 2009-08-22. 
  13. ^ Jun Inoue; Masayuki Kawashima; Yasushi Fujiyoshi; Masaaki Wakatsuchi (октобар 2005). „Aircraft Observations of Air-mass Modification Over the Sea of Okhotsk during Sea-ice Growth”. Boundary-Layer Meteorology. 117 (1): 111—129. Bibcode:2005BoLMe.117..111I. S2CID 121768400. doi:10.1007/s10546-004-3407-y. 
  14. ^ B. Geerts (1998). „Lake Effect Snow.”. University of Wyoming. Приступљено 2008-12-24. 
  15. ^ Greg Byrd (1998-06-03). „Lake Effect Snows,”. University Corporation for Atmospheric Research. Архивирано из оригинала 17. 6. 2009. г. Приступљено 2009-07-12. 

Литература

Спољашње везе