Променљива (математика) — разлика између измена

С Википедије, слободне енциклопедије
Садржај обрисан Садржај додат
.
Ред 1: Ред 1:
{{Short description|Симбол који представља математички објекат}}{{rut}}
У математици, променљива је услован наслов за [[скуп]] значења. Такође, променљива је број представљен словом који се добија када се од приказаног резултата бројевног израза одузме резултат свих бројева без променљиве. Свака променљива може постојати само у контексту, јер свака променљива је сама по себи асоцирана са датим скупом значења, изван којег она ништа не значи. Променљиве су инструменти логике који чине основицу савремене математике; оне су тамо, можда, најважнији прибор [[апстракција|апстракције]]. Појам променљива је постао део математичког језика током развоја [[аналитичка геометрија|аналитичке геометрије]].


У [[mathematics|математици]], '''променљива''' је услован наслов за [[скуп]] значења. Такође, променљива је број представљен словом који се добија када се од приказаног резултата бројевног израза одузме резултат свих бројева без променљиве. Свака променљива може постојати само у контексту, јер свака променљива је сама по себи асоцирана са датим скупом значења, изван којег она ништа не значи. Променљиве су инструменти логике који чине основицу савремене математике; оне су тамо, можда, најважнији прибор [[апстракција|апстракције]]. Појам променљива је постао део математичког језика током развоја [[аналитичка геометрија|аналитичке геометрије]]. In particular, a variable may represent a [[number]], a [[Vector (mathematics)|vector]], a [[Matrix (mathematics)|matrix]], a [[Function (mathematics)|function]], the [[argument of a function]], a [[Set (mathematics)|set]], or an [[Element (mathematics)|element]] of a set.<ref>[[#SW|Stover & Weisstein]].</ref>
== Библиографија ==

* {{Cite book| author=J. Edwards | title=Differential Calculus
[[Algebra#Algebra as a branch of mathematics|Algebraic computations]] with variables as if they were explicit numbers solve a range of problems in a single computation.<ref name="CRC Press">{{cite book |url=https://books.google.com/books?id=3mlQDwAAQBAJ&q=bonesetting+algebra&pg=PA722 |title=Abstract Algebra: A Comprehensive Treatment |last1=Menini|first1=Claudia |last2=Oystaeyen|first2=Freddy Van |date=2017-11-22 |publisher=[[CRC Press]] |isbn=978-1-4822-5817-2 |language=en |access-date=2020-10-15 |archive-date=2021-02-21 |archive-url=https://web.archive.org/web/20210221075950/https://books.google.com/books?id=3mlQDwAAQBAJ&q=bonesetting+algebra&pg=PA722 |url-status=live}}</ref> For example, the [[quadratic formula]] solves every [[quadratic equation]] by substituting the numeric values of the coefficients of the given [[equation]] for the variables that represent them. In [[mathematical logic]], a ''variable'' is either a symbol representing an unspecified [[Term (logic)|term]] of the theory (a [[Metavariable|meta-variable]]), or a basic object of the theory that is manipulated without referring to its possible intuitive interpretation.<ref>{{Cite web|title=Computability Theory and Foundations of Mathematics / February, 17th – 20th, 2014 / Tokyo Institute of Technology, Tokyo, Japan|url=http://www.jaist.ac.jp/CTFM/CTFM2014/submissions/CTFM2014_booklet.pdf}}</ref>
| publisher= MacMillan and Co.| location=London | pages=1 ff.| year=1892

|url=https://books.google.com/books?id=unltAAAAMAAJ&pg=PA1}}
== Нотација ==

Variables are generally denoted by a single letter, most often from the [[Latin alphabet]] and less often from the [[Greek alphabet|Greek]], which may be lowercase or capitalized. The letter may be followed by a subscript: a number (as in {{math|''x''<sub>2</sub>}}), another variable ({{math|''x''<sub>''i''</sub>}}), a word or abbreviation of a word ({{math|''x''<sub>total</sub>}}) or a [[mathematical expression]] ({{math|''x''<sub>2''i'' + 1</sub>}}). Under the influence of [[Variable (computer science)|computer science]], some variable names in pure mathematics consist of several letters and digits. Following [[René Descartes]] (1596–1650), letters at the beginning of the alphabet such as (''a'', ''b'', ''c'') are commonly used for known values and parameters, and letters at the end of the alphabet such as (''x'', ''y'', ''z'') are commonly used for unknowns and variables of functions.<ref name=E004>Edwards Art. 4</ref> In printed mathematics, the norm is to set variables and constants in an italic typeface.<ref>{{Harvnb|Hosch|2010|page=[https://books.google.com/books?id=ad0P0elU1_0C&pg=PA71 71].}}</ref>

For example, a general [[quadratic function]] is conventionally written as <math>a x^2 + b x + c\,</math>, where ''a'', ''b'' and ''c'' are parameters (also called [[Constant (mathematics)|constants]], because they are [[constant function]]s), while ''x'' is the variable of the function. A more explicit way to denote this function is <math>x\mapsto a x^2 + b x + c \,</math>, which clarifies the function-argument status of ''x'' and the constant status of ''a'', ''b'' and ''c''. Since ''c'' occurs in a term that is a constant function of ''x'', it is called the [[constant term]].<ref>{{Harvnb|Foerster|2006|page=[https://archive.org/details/algebratrigonome00paul_0/page/18/mode/2up 18]}}.</ref>

Specific branches and applications of mathematics have specific [[naming conventions]] for variables. Variables with similar roles or meanings are often assigned consecutive letters or the same letter with different subscripts. For example, the three axes in 3D [[coordinate space]] are conventionally called ''x'', ''y'', and ''z''. In physics, the names of variables are largely determined by the [[physical quantity]] they describe, but various naming conventions exist. A convention often followed in [[probability]] and [[statistics]] is to use ''X'', ''Y'', ''Z'' for the names of [[random variable]]s, keeping ''x'', ''y'', ''z'' for variables representing corresponding better-defined values.

== Специфичне врсте варијабли ==
It is common for variables to play different roles in the same mathematical formula, and names or qualifiers have been introduced to distinguish them. For example, the general [[cubic equation]]
:<math>ax^3+bx^2+cx+d=0,</math>
is interpreted as having five variables: four, {{math|''a'', ''b'', ''c'', ''d''}}, which are taken to be given numbers and the fifth variable, {{math|''x'',}} is understood to be an ''unknown'' number. To distinguish them, the variable {{math|''x''}} is called ''an unknown'', and the other variables are called ''parameters'' or ''[[coefficient]]s'', or sometimes ''constants'', although this last terminology is incorrect for an equation, and should be reserved for the [[function (mathematics)|function]] defined by the left-hand side of this equation.

In the context of functions, the term ''variable'' refers commonly to the arguments of the functions. This is typically the case in sentences like "[[function of a real variable]]", "{{math|''x''}} is the variable of the function {{math|1=''f'': ''x'' ↦ ''f''(''x'')}}", "{{math|''f''}} is a function of the variable {{math|''x''}}" (meaning that the argument of the function is referred to by the variable {{math|''x''}}).

In the same context, variables that are independent of {{math|''x''}} define [[constant function]]s and are therefore called ''constant''. For example, a ''[[constant of integration]]'' is an arbitrary constant function that is added to a particular [[antiderivative]] to obtain the other antiderivatives. Because the strong relationship between [[polynomial]]s and [[polynomial function]], the term "constant" is often used to denote the coefficients of a polynomial, which are constant functions of the indeterminates.

This use of "constant" as an abbreviation of "constant function" must be distinguished from the normal meaning of the word in mathematics. A '''constant''', or '''[[mathematical constant]]''' is a well and unambiguously defined number or other mathematical object, as, for example, the numbers 0, 1, {{math|[[Pi|''π'']]}} and the [[identity element]] of a [[group (mathematics)|group]]. Since a variable may represent any mathematical object, a letter that represents a constant is often called a variable. This is, in particular, the case of {{mvar|e}} and {{pi}}, even when they represents [[Euler's number]] and {{math|3.14159...}}

Other specific names for variables are:
* An '''unknown''' is a variable in an [[equation]] which has to be solved for.
* An '''[[indeterminate (variable)|indeterminate]]''' is a symbol, commonly called variable, that appears in a [[polynomial]] or a [[formal power series]]. Formally speaking, an indeterminate is not a variable, but a [[constant (mathematics)|constant]] in the [[polynomial ring]] or the ring of [[formal power series]]. However, because of the strong relationship between polynomials or power series and the [[function (mathematics)|functions]] that they define, many authors consider indeterminates as a special kind of variables.
* A '''[[parameter]]''' is a quantity (usually a number) which is a part of the input of a problem, and remains constant during the whole solution of this problem. For example, in [[mechanics]] the mass and the size of a solid body are ''parameters'' for the study of its movement. In [[computer science]], ''parameter'' has a different meaning and denotes an argument of a function.
* '''[[Free variables and bound variables]]'''
* A '''[[random variable]]''' is a kind of variable that is used in [[probability theory]] and its applications.

All these denominations of variables are of [[semantics|semantic]] nature, and the way of computing with them ([[syntax (logic)|syntax]]) is the same for all.

===Dependent and independent variables===
{{main|Dependent and independent variables}}
In [[calculus]] and its application to [[physics]] and other sciences, it is rather common to consider a variable, say {{math|''y''}}, whose possible values depend on the value of another variable, say {{math|''x''}}. In mathematical terms, the ''dependent'' variable {{math|''y''}} represents the value of a [[function (mathematics)|function]] of {{math|''x''}}. To simplify formulas, it is often useful to use the same symbol for the dependent variable {{math|''y''}} and the function mapping {{math|''x''}} onto {{math|''y''}}. For example, the state of a physical system depends on measurable quantities such as the [[pressure]], the [[temperature]], the spatial position, ..., and all these quantities vary when the system evolves, that is, they are function of the time. In the formulas describing the system, these quantities are represented by variables which are dependent on the time, and thus considered implicitly as functions of the time.<ref>{{cite book|author1=Aris, Rutherford|title=Mathematical modelling techniques|publisher=Courier Corporation|year=1994}}</ref><ref>{{cite book|author1=Boyce, William E.|author2=Richard C. DiPrima|title=Elementary differential equations|publisher=John Wiley & Sons|year=2012}}</ref><ref name=":0">{{cite book|author1=Alligood, Kathleen T.|author2=Sauer, Tim D.|author3=Yorke, James A.|title=Chaos an introduction to dynamical systems|publisher=Springer New York|year=1996}}</ref>

Therefore, in a formula, a '''dependent variable''' is a variable that is implicitly a function of another (or several other) variables. An '''independent variable''' is a variable that is not dependent.<ref>Edwards Art. 5</ref>

The property of a variable to be dependent or independent depends often of the point of view and is not intrinsic. For example, in the notation {{math|''f''(''x'', ''y'', ''z'')}}, the three variables may be all independent and the notation represents a function of three variables. On the other hand, if {{math|''y''}} and {{math|''z''}} depend on {{math|''x''}} (are ''dependent variables'') then the notation represents a function of the single ''independent variable'' {{math|''x''}}.<ref>Edwards Art. 6</ref>

===Examples===
If one defines a function ''f'' from the [[real number]]s to the real numbers by

:<math>f(x) = x^2+\sin(x+4)</math>

then ''x'' is a variable standing for the [[argument of a function|argument]] of the function being defined, which can be any real number.

In the identity

:<math>\sum_{i=1}^n i = \frac{n^2+n}2</math>

the variable ''i'' is a summation variable which designates in turn each of the integers 1, 2, ..., ''n'' (it is also called '''index''' because its variation is over a discrete set of values) while ''n'' is a parameter (it does not vary within the formula).

In the theory of [[polynomials]], a polynomial of degree 2 is generally denoted as ''ax''<sup>2</sup> + ''bx'' + ''c'', where ''a'', ''b'' and ''c'' are called [[coefficient]]s (they are assumed to be fixed, i.e., parameters of the problem considered) while ''x'' is called a variable. When studying this polynomial for its [[polynomial function]] this ''x'' stands for the function argument. When studying the polynomial as an object in itself, ''x'' is taken to be an indeterminate, and would often be written with a capital letter instead to indicate this status.

== Референце ==
{{reflist|}}

== Литература ==
{{refbegin|30em}}
* {{Cite book| author=J. Edwards | title=Differential Calculus | publisher= MacMillan and Co.| location=London | pages=1 ff.| year=1892 |url=https://books.google.com/books?id=unltAAAAMAAJ&pg=PA1}}
* Karl Menger, "On Variables in Mathematics and in Natural Science", ''The British Journal for the Philosophy of Science'' '''5''':18:134–142 (August 1954) {{JSTOR|685170}}
* Karl Menger, "On Variables in Mathematics and in Natural Science", ''The British Journal for the Philosophy of Science'' '''5''':18:134–142 (August 1954) {{JSTOR|685170}}
* Jaroslav Peregrin, "Variables in Natural Language: Where do they come from?", in M. Boettner, W. Thümmel, eds., ''Variable-Free Semantics'', 2000, pp.&nbsp;46–65.
* Jaroslav Peregrin, "Variables in Natural Language: Where do they come from?", in M. Boettner, W. Thümmel, eds., ''Variable-Free Semantics'', 2000, pp.&nbsp;46–65.
* W.V. Quine, "Variables Explained Away", ''Proceedings of the American Philosophical Society'' '''104''':343–347 (1960).
* W.V. Quine, "Variables Explained Away", ''Proceedings of the American Philosophical Society'' '''104''':343–347 (1960).
* {{citation|title=A modern introduction to probability and statistics: understanding why and how|last=Dekking|first=Frederik Michel|date=2005|publisher=Springer|isbn=1-85233-896-2|oclc=783259968}}
* {{cite book |last1=Gujarati |first1=Damodar N. |last2=Porter |first2=Dawn C. |title=Basic Econometrics |location=New York |publisher=McGraw-Hill |year=2009 |edition=Fifth international |isbn=978-007-127625-2 |chapter=Terminology and Notation |pages=21 }}
* {{cite book |last=Wooldridge |first=Jeffrey |year=2012 |title=Introductory Econometrics: A Modern Approach |location=Mason, OH |publisher=South-Western Cengage Learning |edition=Fifth |isbn=978-1-111-53104-1 |pages=22–23 }}
* {{cite book |title=A Dictionary of Epidemiology |edition=Fourth |editor-first=John M. |editor-last=Last |publisher=Oxford UP |year=2001 |isbn=0-19-514168-7 }}
* {{cite book |title=The Cambridge Dictionary of Statistics |edition=2nd |first=B. S. |last=Everitt |publisher=Cambridge UP |year=2002 |isbn=0-521-81099-X }}
* {{cite journal |last=Woodworth |first=P. L. |year=1987 |title=Trends in U.K. mean sea level |journal=Marine Geodesy |volume=11 |issue=1 |pages=57–87 |doi=10.1080/15210608709379549 }}
* Everitt, B.S. (2002) Cambridge Dictionary of Statistics, CUP. {{ISBN|0-521-81099-X}}
* {{cite book |last= Boyer |first= Carl B. |author-link= Carl Benjamin Boyer |title= A History of Mathematics |edition= 2nd |publisher= John Wiley & Sons |year= 1991 |isbn= 978-0-471-54397-8 |url= https://archive.org/details/historyofmathema00boye }}
* {{cite journal |last=Gandz |first=S. |title= The Sources of Al-Khowārizmī's Algebra |journal= [[Osiris (journal)|Osiris]] |volume= 1 |date=January 1936 |pages=263–277 |jstor=301610 |doi=10.1086/368426|s2cid=60770737 }}
* {{cite book |last=Herstein |first=I. N. |year=1964 |title=Topics in Algebra |publisher=Ginn and Company |isbn=0-471-02371-X }}
* {{cite book|ref=none |last= Allenby |first= R. B. J. T. |title= Rings, Fields and Groups |isbn= 0-340-54440-6 |year= 1991 }}
* {{cite book|ref=none |last=Asimov|first=Isaac |title=Realm of Algebra|year=1961|publisher=Houghton Mifflin|author-link=Isaac Asimov}}
* {{cite book|ref=none |last= Euler |first=Leonhard |author-link= Leonhard Euler |url= http://web.mat.bham.ac.uk/C.J.Sangwin/euler/ |title= Elements of Algebra |isbn= 978-1-899618-73-6 |archive-url=https://web.archive.org/web/20110413234352/http://web.mat.bham.ac.uk/C.J.Sangwin/euler/ |archive-date=2011-04-13 |date=November 2005 }}
* {{cite book|ref=none |last= Herstein |first=I. N. |title= Topics in Algebra |url= https://archive.org/details/topicsinalgebra00hers |url-access= registration |isbn= 0-471-02371-X |year=1975 }}
* {{cite book|ref=none |last= Hill |first= Donald R. |title= Islamic Science and Engineering |publisher= Edinburgh University Press |year= 1994}}
* {{cite book|ref=none |last= Joseph |first= George Gheverghese |title= The Crest of the Peacock: Non-European Roots of Mathematics |publisher= [[Penguin Books]] |year= 2000}}
* {{cite web |ref=none |last1= O'Connor |first1= John J. |last2= Robertson |first2= Edmund F. |year= 2005 |title= History Topics: Algebra Index |url= http://www-history.mcs.st-andrews.ac.uk/Indexes/Algebra.html |department= MacTutor History of Mathematics archive |publisher= [[University of St Andrews]] |access-date= 2011-12-10 |archive-url= https://web.archive.org/web/20160303180029/http://www-history.mcs.st-andrews.ac.uk/Indexes/Algebra.html |archive-date= 2016-03-03 |url-status= dead }}
* {{cite book|ref=none |last1=Sardar |first1=Ziauddin |last2=Ravetz |first2=Jerry |last3=Loon |first3=Borin Van |year=1999 |title=Introducing Mathematics |publisher=Totem Books}}
* {{Cite book |last=Walicki |first=Michał |date=2011 |title=Introduction to Mathematical Logic |location=[[Singapore]] |publisher=[[World Scientific Publishing]] |isbn=9789814343879 }}
* {{Cite book |last1=Boolos |first1=George |author1-link=George Boolos |last2=Burgess |first2=John |last3=Jeffrey |first3=Richard |author3-link=Richard Jeffrey |date=2002 |title=Computability and Logic |edition=4th |publisher=[[Cambridge University Press]] |isbn=9780521007580 }}
* {{Cite book |last1=Crossley |first1=J.N. |last2=Ash |first2=C.J. |last3=Brickhill |first3=C.J. |last4=Stillwell |first4=J.C. |last5=Williams |first5=N.H. |date=1972 |title=What is mathematical logic? |location=London, Oxford, New York City |publisher=[[Oxford University Press]] |isbn=9780198880875 |zbl=0251.02001 }}
* {{Cite book |last=Enderton |first=Herbert |date=2001 |title=A mathematical introduction to logic |edition=2nd |location=[[Boston]] MA |publisher=[[Academic Press]] |isbn=978-0-12-238452-3 }}
* {{Cite book |last=Fisher |first=Alec |date=1982 |title=Formal Number Theory and Computability: A Workbook |edition=1st |others=(suitable as a first course for independent study) |publisher=Oxford University Press |isbn=978-0-19-853188-3 }}
* {{Cite book |last=Hamilton |first=A.G. |date=1988 |title=Logic for Mathematicians |edition=2nd |publisher=Cambridge University Press |isbn=978-0-521-36865-0 }}
* {{Cite book |last1=Ebbinghaus |first1=H.-D. |last2=Flum |first2=J. |last3=Thomas |first3=W. |date=1994 |title=Mathematical Logic |edition=2nd |location=[[New York City]] |publisher=[[Springer Science+Business Media|Springer]] |isbn=9780387942582 |url=https://www.springer.com/mathematics/book/978-0-387-94258-2 }}
* {{Cite book |last1=Katz |first1=Robert |date=1964 |title=Axiomatic Analysis |location=[[Boston]] MA |publisher=[[D. C. Heath and Company]] }}
* {{Cite book |last=Mendelson |first=Elliott |author-link=Elliott Mendelson |date=1997 |title=Introduction to Mathematical Logic |edition=4th |location=London |publisher=[[Chapman & Hall]] |isbn=978-0-412-80830-2 }}
* {{Cite book |last=Rautenberg |first=Wolfgang |author-link=Wolfgang Rautenberg |date=2010 |title=A Concise Introduction to Mathematical Logic |edition=3rd |location=[[New York City]] |publisher=[[Springer Science+Business Media|Springer]] |doi=10.1007/978-1-4419-1221-3 |isbn=9781441912206 }}
* {{Cite book |last=Schwichtenberg |first=Helmut |author-link=Helmut Schwichtenberg |year=2003–2004 |title=Mathematical Logic |location=[[Munich]] |publisher=Mathematisches Institut der Universität München |access-date=2016-02-24 |url=http://www.mathematik.uni-muenchen.de/~schwicht/lectures/logic/ws03/ml.pdf }}
* Shawn Hedman, ''A first course in logic: an introduction to model theory, proof theory, computability, and complexity'', [[Oxford University Press]], 2004, {{isbn|0-19-852981-3}}. Covers logics in close relation with [[computability theory]] and [[Computational complexity theory|complexity theory]]
* {{Cite book |last=van Dalen |first=Dirk |date=2013 |title=Logic and Structure |series=Universitext |location=Berlin |publisher=[[Springer Science+Business Media|Springer]] |doi=10.1007/978-1-4471-4558-5 |isbn=978-1-4471-4557-8 }}

{{refend}}


== Спољашње везе ==
{{клица-мат}}
{{Commons category-lat|Variable (mathematics)}}
* [http://www.khanacademy.org/math/algebra Khan Academy: Conceptual videos and worked examples]
* [https://www.khanacademy.org/math/algebra/introduction-to-algebra/overview_hist_alg/v/origins-of-algebra Khan Academy: Origins of Algebra, free online micro lectures]
* [http://algebrarules.com Algebrarules.com: An open source resource for learning the fundamentals of Algebra]
* [http://www.quantrelog.se/pvlmatrix/index_main.htm Polyvalued logic and Quantity Relation Logic]
* ''[http://www.fecundity.com/logic/ forall x: an introduction to formal logic]'', a free textbook by {{nowrap|P. D. Magnus}}.
* ''[http://euclid.trentu.ca/math/sb/pcml/ A Problem Course in Mathematical Logic]'', a free textbook by Stefan Bilaniuk.
{{нормативна контрола}}
{{нормативна контрола}}



Верзија на датум 17. јул 2022. у 18:29

У математици, променљива је услован наслов за скуп значења. Такође, променљива је број представљен словом који се добија када се од приказаног резултата бројевног израза одузме резултат свих бројева без променљиве. Свака променљива може постојати само у контексту, јер свака променљива је сама по себи асоцирана са датим скупом значења, изван којег она ништа не значи. Променљиве су инструменти логике који чине основицу савремене математике; оне су тамо, можда, најважнији прибор апстракције. Појам променљива је постао део математичког језика током развоја аналитичке геометрије. In particular, a variable may represent a number, a vector, a matrix, a function, the argument of a function, a set, or an element of a set.[1]

Algebraic computations with variables as if they were explicit numbers solve a range of problems in a single computation.[2] For example, the quadratic formula solves every quadratic equation by substituting the numeric values of the coefficients of the given equation for the variables that represent them. In mathematical logic, a variable is either a symbol representing an unspecified term of the theory (a meta-variable), or a basic object of the theory that is manipulated without referring to its possible intuitive interpretation.[3]

Нотација

Variables are generally denoted by a single letter, most often from the Latin alphabet and less often from the Greek, which may be lowercase or capitalized. The letter may be followed by a subscript: a number (as in x2), another variable (xi), a word or abbreviation of a word (xtotal) or a mathematical expression (x2i + 1). Under the influence of computer science, some variable names in pure mathematics consist of several letters and digits. Following René Descartes (1596–1650), letters at the beginning of the alphabet such as (a, b, c) are commonly used for known values and parameters, and letters at the end of the alphabet such as (x, y, z) are commonly used for unknowns and variables of functions.[4] In printed mathematics, the norm is to set variables and constants in an italic typeface.[5]

For example, a general quadratic function is conventionally written as , where a, b and c are parameters (also called constants, because they are constant functions), while x is the variable of the function. A more explicit way to denote this function is , which clarifies the function-argument status of x and the constant status of a, b and c. Since c occurs in a term that is a constant function of x, it is called the constant term.[6]

Specific branches and applications of mathematics have specific naming conventions for variables. Variables with similar roles or meanings are often assigned consecutive letters or the same letter with different subscripts. For example, the three axes in 3D coordinate space are conventionally called x, y, and z. In physics, the names of variables are largely determined by the physical quantity they describe, but various naming conventions exist. A convention often followed in probability and statistics is to use X, Y, Z for the names of random variables, keeping x, y, z for variables representing corresponding better-defined values.

Специфичне врсте варијабли

It is common for variables to play different roles in the same mathematical formula, and names or qualifiers have been introduced to distinguish them. For example, the general cubic equation

is interpreted as having five variables: four, a, b, c, d, which are taken to be given numbers and the fifth variable, x, is understood to be an unknown number. To distinguish them, the variable x is called an unknown, and the other variables are called parameters or coefficients, or sometimes constants, although this last terminology is incorrect for an equation, and should be reserved for the function defined by the left-hand side of this equation.

In the context of functions, the term variable refers commonly to the arguments of the functions. This is typically the case in sentences like "function of a real variable", "x is the variable of the function f: xf(x)", "f is a function of the variable x" (meaning that the argument of the function is referred to by the variable x).

In the same context, variables that are independent of x define constant functions and are therefore called constant. For example, a constant of integration is an arbitrary constant function that is added to a particular antiderivative to obtain the other antiderivatives. Because the strong relationship between polynomials and polynomial function, the term "constant" is often used to denote the coefficients of a polynomial, which are constant functions of the indeterminates.

This use of "constant" as an abbreviation of "constant function" must be distinguished from the normal meaning of the word in mathematics. A constant, or mathematical constant is a well and unambiguously defined number or other mathematical object, as, for example, the numbers 0, 1, π and the identity element of a group. Since a variable may represent any mathematical object, a letter that represents a constant is often called a variable. This is, in particular, the case of e and π, even when they represents Euler's number and 3.14159...

Other specific names for variables are:

All these denominations of variables are of semantic nature, and the way of computing with them (syntax) is the same for all.

Dependent and independent variables

In calculus and its application to physics and other sciences, it is rather common to consider a variable, say y, whose possible values depend on the value of another variable, say x. In mathematical terms, the dependent variable y represents the value of a function of x. To simplify formulas, it is often useful to use the same symbol for the dependent variable y and the function mapping x onto y. For example, the state of a physical system depends on measurable quantities such as the pressure, the temperature, the spatial position, ..., and all these quantities vary when the system evolves, that is, they are function of the time. In the formulas describing the system, these quantities are represented by variables which are dependent on the time, and thus considered implicitly as functions of the time.[7][8][9]

Therefore, in a formula, a dependent variable is a variable that is implicitly a function of another (or several other) variables. An independent variable is a variable that is not dependent.[10]

The property of a variable to be dependent or independent depends often of the point of view and is not intrinsic. For example, in the notation f(x, y, z), the three variables may be all independent and the notation represents a function of three variables. On the other hand, if y and z depend on x (are dependent variables) then the notation represents a function of the single independent variable x.[11]

Examples

If one defines a function f from the real numbers to the real numbers by

then x is a variable standing for the argument of the function being defined, which can be any real number.

In the identity

the variable i is a summation variable which designates in turn each of the integers 1, 2, ..., n (it is also called index because its variation is over a discrete set of values) while n is a parameter (it does not vary within the formula).

In the theory of polynomials, a polynomial of degree 2 is generally denoted as ax2 + bx + c, where a, b and c are called coefficients (they are assumed to be fixed, i.e., parameters of the problem considered) while x is called a variable. When studying this polynomial for its polynomial function this x stands for the function argument. When studying the polynomial as an object in itself, x is taken to be an indeterminate, and would often be written with a capital letter instead to indicate this status.

Референце

  1. ^ Stover & Weisstein.
  2. ^ Menini, Claudia; Oystaeyen, Freddy Van (2017-11-22). Abstract Algebra: A Comprehensive Treatment (на језику: енглески). CRC Press. ISBN 978-1-4822-5817-2. Архивирано из оригинала 2021-02-21. г. Приступљено 2020-10-15. 
  3. ^ „Computability Theory and Foundations of Mathematics / February, 17th – 20th, 2014 / Tokyo Institute of Technology, Tokyo, Japan” (PDF). 
  4. ^ Edwards Art. 4
  5. ^ Hosch 2010, стр. 71.
  6. ^ Foerster 2006, стр. 18.
  7. ^ Aris, Rutherford (1994). Mathematical modelling techniques. Courier Corporation. 
  8. ^ Boyce, William E.; Richard C. DiPrima (2012). Elementary differential equations. John Wiley & Sons. 
  9. ^ Alligood, Kathleen T.; Sauer, Tim D.; Yorke, James A. (1996). Chaos an introduction to dynamical systems. Springer New York. 
  10. ^ Edwards Art. 5
  11. ^ Edwards Art. 6

Литература

Спољашње везе