Алгебра

Из Википедије, слободне енциклопедије

Алгебра (арап. الجبر „ал-гебр“ састављање раздвојених делова, сједињавање) је грана математике који истражује односе и својства бројева помоћу знакова.

Генеза назива води до књиге арапског математичара Ал Хорезмија Хисаб ал џабр вал мукабала што се у слободнијем преводу може бити Књига о свођењу и двоструком одузимању. Поступак се прво односио на уређивање леве и десне стране код једначина али је касније, развојем математике, значајно проширен.

Изворно се под „алгебром“ подразумевала теорија „алгебарских“ једначина, у којима су помоћу „алгебарских“ рачунских операција (сабирање, одузимање, множење, дељење итд.) повезане познате и непознате величине. Данас овај појам означава и општију теорију математичких структура, у којој се посебно истражују структурне једнакости између тако различито усмерених области као што су теорија бројева, геометрија или алгебра у традиционалном смислу.

Важне алгебарске структуре су, рецимо, групе, прстени, тела и асоцијације. Све творевине које показују неку одређену структуру називају се „модели“ ове структуре. Резултати на које се смера истраживањима апстрактних структура покаткад важе и за њихове моделе.

Надовезујући се на Mathematical Analysis of Logic (1847.) Џорџ Була, алгебарска истраживања су постала значајна и за формалну логику. Важну улогу ту играју посебно „буловске асоцијације“ или „буловске алгебре“. Поред алгебарских структура, говори се још и ο „структурама уређења“ и „тополошким структурама“.

Класификација[уреди]

Алгебра може грубо да се подели у следеће категорије:

У неким областима напредног изучавања, аксиоматски алгебарски системи као што су групе, прстени, поља и алгебре над пољима, се проучавају у присуству геометријске структуре (метрика или топологија) која је у складу са том алгебарском структуром. Овај списак укључује разне области функционалне анализе:

Спољашње везе[уреди]