Морска струја — разлика између измена

С Википедије, слободне енциклопедије
Садржај обрисан Садржај додат
Нема описа измене
ознаке: мобилна измена мобилно веб-уређивање
.
Ред 1: Ред 1:
{{short description|Усмерени масовни ток океанске воде генерисан спољашњим или унутрашњим силама }}{{rut}}
[[Датотека:Currents.svg|мини|десно|300п|Приказ главних морских струја на мапи света и океана|мини]]
[[Датотека:Currents.svg|мини|десно|300п|Приказ главних морских струја на мапи света и океана]]
[[Датотека:Perpetual Ocean.ogv|thumb|Distinctive white lines trace the flow of surface currents around the world.]]
[[Датотека:Ocean flows at surface and 2000 meters below sea level.webm|thumb|Visualization showing global ocean currents from Jan 01, 2010 to Dec 31, 2012 at sea level then at 2000 meters below sea level]]
[[Датотека:Circulation of Ocean Currents Around the Western Antarctic Ice Shelves.ogv|thumb|Animation of circulation around ice shelves of [[Antarctica]]]]


'''Морcκa струја''' је прогресивно кретање [[вода|водене]] масе. у [[море|морима]] и [[океан]]има, условљено различитим силама. Струје настају услед трења [[ветар|ветра]] о површину мора, услед неравномерног распореда [[температура|температуре]] и [[салинитет]]а воде, нагиба нивоа воде и сл. Према физичко-хемијским својствима морске струје се деле на: [[Хладна морска струја|хладне]] и [[Топла морска струја|топле]].
'''Морcκa струја''' је прогресивно кретање [[вода|водене]] масе у [[море|морима]] и [[океан]]има, условљено различитим силама. Струје настају услед трења [[ветар|ветра]] о површину мора, услед неравномерног распореда [[температура|температуре]] и [[салинитет]]а воде, нагиба нивоа воде и сл.<ref>{{cite web |last1=NOAA |first1=NOAA |title=What is a current? |url=https://oceanservice.noaa.gov/facts/current.html |website=Ocean Service Noaa |publisher=National Ocean Service |access-date=13 December 2020}}</ref> Према физичко-хемијским својствима морске струје се деле на: [[Хладна морска струја|хладне]] и [[Топла морска струја|топле]]. На правац струја велики утицај врши сила [[Земља|Земљиног]] обртања ([[Кориолисов ефекат|Кориолисова сила]]), која их скреће на северној полулопти удесно, а на јужној улево. Такође, утицај се испољава и на контурама [[обала]] и рељефа дна [[океан]]а.


== Узроци ==
На правац струја велики утицај врши сила [[Земља|Земљиног]] обртања ([[Кориолисов ефекат|Кориолисова сила]]), која их скреће на северној полулопти удесно, а на јужној улево. Такође, утицај се испољава и на контурама [[обала]] и рељефа дна [[океан]]а.
[[File:CSIRO ScienceImage 11128 The bathymetry of the Kerguelen Plateau in the Southern Ocean governs the course of the new current part of the global network of ocean currents.jpg|thumb|right|The [[bathymetry]] of the [[Kerguelen Plateau]] in the [[Southern Ocean]] governs the course of the [[Kerguelen deep western boundary current]], part of the global network of ocean currents.<ref name=Massive>{{cite web |title=Massive Southern Ocean current discovered |url=https://www.sciencedaily.com/releases/2010/04/100427101234.htm |website=ScienceDaily |date=Apr 27, 2010}}</ref><ref name=Fukamachi>{{cite journal |display-authors=etal|last1=Yasushi Fukamachi, Stephen Rintoul |title=Strong export of Antarctic Bottom Water east of the Kerguelen plateau |journal=Nature Geoscience |date=Apr 2010 |volume=3 |issue=5 |pages=327–331 |doi=10.1038/NGEO842 |bibcode=2010NatGe...3..327F |url=https://www.researchgate.net/publication/47656862}}</ref>]]

Ocean dynamics define and describe the motion of water within the oceans. Ocean temperature and motion fields can be separated into three distinct layers: mixed (surface) layer, upper ocean (above the thermocline), and deep ocean. Ocean currents are measured in [[Sverdrup|sverdrup (sv)]], where 1 sv is equivalent to a volume flow rate of {{convert|1000000|m3|ft3|abbr=on}} per second.

Surface currents, which make up only 8% of all water in the ocean, are generally restricted to the upper {{convert|400|m|ft|abbr=on}} of ocean water, and are separated from lower regions by varying temperatures and [[salinity]] which affect the density of the water, which in turn, defines each oceanic region. Because the movement of deep water in ocean basins is caused by density-driven forces and gravity, deep waters sink into deep ocean basins at high latitudes where the temperatures are cold enough to cause the density to increase.

=== Wind driven circulation ===
Surface oceanic currents are driven by wind currents, the large scale prevailing winds drive major persistent ocean currents, and seasonal or occasional winds drive currents of similar persistence to the winds that drive them,<ref name="NatGeo Current" >{{cite web |url=https://www.nationalgeographic.org/encyclopedia/current/#:~:text=or%20as%20lightning.-,Air%20Currents,flow%20in%20a%20certain%20direction |title=Current |publisher=National Geographic |website=www.nationalgeographic.org |date=2 September 2011 |access-date=7 January 2021 }}</ref> and the [[Coriolis effect]] plays a major role in their development.<ref>{{cite web|url=https://dashamlav.com/ocean-currents-world-map-types-causes-characteristics/|title=Ocean Currents of the World: Causes|date=29 August 2020|access-date=2020-11-20}}</ref> The [[Ekman spiral]] velocity distribution results in the currents flowing at an angle to the driving winds, and they develop typical clockwise spirals in the [[northern hemisphere]] and counter-clockwise rotation in the [[southern hemisphere]].<ref name=NNOAACurrents>
{{cite web |url= http://oceanservice.noaa.gov/education/kits/currents/05currents1.html |title = Surface Ocean Currents |last = National Ocean Service |date = March 25, 2008 |website= noaa.gov |publisher= [[National Oceanic and Atmospheric Administration]] |access-date = 2017-06-13 |url-status= live |archive-url= https://web.archive.org/web/20170706062957/https://oceanservice.noaa.gov/education/kits/currents/05currents1.html |archive-date = July 6, 2017}}</ref>
In addition, the areas of surface ocean currents move somewhat with the [[season]]s; this is most notable in equatorial currents.

Deep ocean basins generally have a non-symmetric surface current, in that the eastern equator-ward flowing branch is broad and diffuse whereas the pole-ward flowing [[western boundary current]] is relatively narrow.

=== Thermohaline circulation ===
{{main|Thermohaline circulation}}
{{Further|Deep ocean water}}
Deep ocean currents are driven by [[density]] and temperature gradients. This [[thermohaline circulation]] is also known as the ocean's conveyor belt. These currents, sometimes called submarine rivers, flow deep below the surface of the ocean and are hidden from immediate detection. Where significant vertical movement of ocean currents is observed, this is known as [[upwelling]] and [[downwelling]]. Deep ocean currents are currently being researched using a fleet of underwater robots called [[Argo (oceanography)|Argo]].

The thermohaline circulation is a part of the large-scale ocean circulation that is driven by global [[density gradient]]s created by surface heat and freshwater [[flux]]es.<ref>{{cite journal|last=Rahmstorf|first=S|title=The concept of the thermohaline circulation|journal=Nature|volume=421|page=699|year=2003|url=http://www.pik-potsdam.de/~stefan/Publications/Nature/nature_concept_03.pdf|pmid=12610602|issue=6924|doi=10.1038/421699a|bibcode = 2003Natur.421..699R |s2cid=4414604|doi-access=free}}</ref><ref>{{cite journal|last=Lappo|first=SS|title=On reason of the northward heat advection across the Equator in the South Pacific and Atlantic ocean|journal=Study of Ocean and Atmosphere Interaction Processes|year=1984|pages=125–9|publisher=Moscow Department of Gidrometeoizdat (in Mandarin)}}</ref> The adjective ''thermohaline'' derives from ''[[wikt:thermo-|thermo-]]'' referring to [[temperature]] and ''{{nowrap|-haline}}'' referring to [[salinity|salt content]], factors which together determine the [[Water (molecule)#Density of saltwater and ice|density of sea water]]. [[Wind]]-driven surface currents (such as the [[Gulf Stream]]) travel [[Polar regions of Earth|polewards]] from the equatorial [[Atlantic Ocean]], cooling en route, and eventually sinking at high [[latitude]]s (forming [[North Atlantic Deep Water]]). This dense water then flows into the [[ocean basin]]s. While the bulk of it [[upwelling|upwells]] in the [[Southern Ocean]], the oldest waters (with a transit time of around 1000 years)<ref>The global ocean conveyor belt is a constantly moving system of deep-ocean circulation driven by temperature and salinity; [http://oceanservice.noaa.gov/facts/conveyor.html What is the global ocean conveyor belt?]</ref> upwell in the North Pacific.<ref>{{cite journal|doi=10.1175/JPO2699.1|last=Primeau|first=F|title=Characterizing transport between the surface mixed layer and the ocean interior with a forward and adjoint global ocean transport model|journal=Journal of Physical Oceanography|volume=35|issue=4|pages=545–64|year=2005|bibcode=2005JPO....35..545P|url=https://escholarship.org/content/qt5f76r4wn/qt5f76r4wn.pdf?t=n3tp5j}}</ref> Extensive mixing therefore takes place between the ocean basins, reducing differences between them and making the Earth's oceans a global system. On their journey, the water masses transport both energy (in the form of heat) and matter (solids, dissolved substances and gases) around the globe. As such, the state of the circulation has a large impact on the [[climate]] of the Earth. The thermohaline circulation is sometimes called the ocean conveyor belt, the great ocean conveyor, or the global conveyor belt. On occasion, it is imprecisely used to refer to the [[meridional overturning circulation]], (MOC)


== Види још ==
== Види још ==
* [[Хладна морска струја]]
* [[Хладна морска струја]]
* [[Топла морска струја]]
* [[Топла морска струја]]

== References ==
{{Reflist}}


== Литература ==
== Литература ==
{{Refbegin|30em}}
* Мастило, Наталија (2005): ''Речник савремене српске географске терминологије'', Географски факултет, Београд
* Мастило, Наталија (2005): ''Речник савремене српске географске терминологије'', Географски факултет, Београд
* {{Cite journal | last1 = Hansen | first1 = B. | title = Already the day after tomorrow? | journal = Science | volume = 305 | date = 2004 | pages = 953–954 | doi = 10.1126/science.1100085 | pmid = 15310882 | last2 = Østerhus | first2 = S | last3 = Quadfasel | first3 = D | last4 = Turrell | first4 = W | issue = 5686| s2cid = 12968045 }}
* {{Cite journal | last = Kerr | first = Richard A. | title = A slowing cog in the North Atlantic ocean's climate machine | journal = Science | volume = 304 | date = 2004 | pages = 371–372 | doi = 10.1126/science.304.5669.371a | pmid = 15087513 | issue = 5669 | s2cid = 42150417 | url = https://semanticscholar.org/paper/439bc3244f81f7f80f3eeda3056235583d07f1a0}}
* {{Cite journal | last=Munday | first=Phillip L. | author2 = Jones, Geoffrey P. | author3 = Pratchett, Morgan S. | author4 = Williams, Ashley J. | title=Climate change and the future for coral reef fishes | journal=Fish and Fisheries | volume=9 | issue=3 | date=2008 | pages=261–285 | doi=10.1111/j.1467-2979.2008.00281.x }}
* {{Cite journal | last=Rahmstorf | first=S. | title=Thermohaline circulation: The current climate | journal=Nature | volume=421 | pages=699 | date=2003 | doi=10.1038/421699a | pmid=12610602 | issue=6924 | bibcode=2003Natur.421..699R| s2cid=4414604 | doi-access=free }}
* {{Cite journal | last=Roemmich | first=D. | title=Physical oceanography: Super spin in the southern seas | journal=Nature | volume=449 | date=2007 | pages=34–35 | doi=10.1038/449034a | pmid=17805284 | issue=7158 | bibcode=2007Natur.449...34R| s2cid=2951110 }}
* {{cite journal|last=Rahmstorf|first=S|title=The concept of the thermohaline circulation|journal=Nature|volume=421|page=699|year=2003|url=http://www.pik-potsdam.de/~stefan/Publications/Nature/nature_concept_03.pdf|pmid=12610602|issue=6924|doi=10.1038/421699a|bibcode=2003Natur.421..699R|s2cid=4414604|doi-access=free}}
* {{cite journal|last=Lappo|first=SS|title=On reason of the northward heat advection across the Equator in the South Pacific and Atlantic ocean|journal=Study of Ocean and Atmosphere Interaction Processes|year=1984|pages=125–9|publisher=Moscow Department of Gidrometeoizdat (in Mandarin)}}
* {{cite journal|doi=10.1175/JPO2699.1|last=Primeau|first=F|title=Characterizing transport between the surface mixed layer and the ocean interior with a forward and adjoint global ocean transport model|journal=Journal of Physical Oceanography|volume=35|issue=4|pages=545–64|year=2005|bibcode=2005JPO....35..545P|url=https://escholarship.org/content/qt5f76r4wn/qt5f76r4wn.pdf?t=n3tp5j}}
* {{Cite news |last=Schwartz |first=John |date=2019-02-20 |title=Wallace Broecker, 87, Dies; Sounded Early Warning on Climate Change |language=en-US |work=The New York Times |url=https://www.nytimes.com/2019/02/19/obituaries/wallace-broecker-dead.html |access-date=2022-06-05 |issn=0362-4331}}
* {{Cite journal |last=de Menocal |first=Peter |date=2019-03-26 |title=Wallace Smith Broecker (1931-2019) |url=https://www.nature.com/articles/d41586-019-00993-2 |journal=Nature |language=en |volume=568 |issue=7750 |pages=34 |doi=10.1038/d41586-019-00993-2|bibcode=2019Natur.568...34D |s2cid=186242350 }}
* {{Cite book |last=S. |first=Broecker, Wallace |url=http://worldcat.org/oclc/695704119 |title=The great ocean conveyor : discovering the trigger for abrupt climate change |date=2010 |publisher=Princeton University Press |isbn=978-0-691-14354-5 |oclc=695704119}}
* {{cite journal|last=Wunsch|first=C|year=2002|title=What is the thermohaline circulation?|journal=Science|volume=298|issue=5596|pages=1179–81|doi=10.1126/science.1079329|pmid=12424356|s2cid=129518576}}
* {{cite journal|last=Wyrtki|first=K|title=The thermohaline circulation in relation to the general circulation in the oceans|journal=Deep-Sea Research|volume=8|issue=1|pages=39–64|year=1961|doi=10.1016/0146-6313(61)90014-4|bibcode=1961DSR.....8...39W}}
* Schmidt, G., 2005, [http://www.realclimate.org/index.php?p=159 Gulf Stream slowdown?], [[RealClimate]]
* {{Cite book|title=Ocean Dynamics|url=https://archive.org/details/oceandynamics00olbe|url-access=limited|last=Eden|first=Carsten|publisher=Springer|year=2012|isbn=978-3-642-23449-1|pages=[https://archive.org/details/oceandynamics00olbe/page/n193 177]}}
* {{Cite book|last=Hennessy|title=Report of the Annual Meeting: On the Influence of the Gulf-stream on the Climate of Ireland|year=1858|publisher=Richard Taylor and William Francis|access-date=6 January 2009|url=https://books.google.com/books?id=Les4AAAAMAAJ&q=ireland+is+warmed+by+the+Gulf+Stream&pg=RA1-PA132}}
* {{cite web|title=Satellites Record Weakening North Atlantic Current Impact|publisher=NASA|access-date=10 September 2008|url=http://oceanmotion.org/html/impact/climate-variability.htm}}
* The Institute for Environmental Research & Education. [http://www.iere.org/documents/tidal.pdf Tidal.pdf] {{webarchive|url=https://web.archive.org/web/20101011040501/http://www.iere.org/documents/tidal.pdf|date=11 October 2010}} Retrieved on 28 July 2010.
* Jeremy Elton Jacquot. [http://www.treehugger.com/files/2007/12/gulf_streams_wave_energy.php Gulf Stream's Tidal Energy Could Provide Up to a Third of Florida's Power] Retrieved 21 September 2008
* {{cite journal|last=Marshall|first=John|author2=Speer, Kevin|title=Closure of the meridional overturning circulation through Southern Ocean upwelling|journal=Nature Geoscience|date=26 February 2012|volume=5|issue=3|pages=171–80|doi=10.1038/ngeo1391|bibcode=2012NatGe...5..171M|url=https://zenodo.org/record/889555}}
* {{cite journal|last1=Trenberth|first1=K|last2=Caron|first2=J|year=2001|title=Estimates of Meridional Atmosphere and Ocean Heat Transports|journal=Journal of Climate|volume=14|issue=16|pages=3433–43|doi=10.1175/1520-0442(2001)014<3433:EOMAAO>2.0.CO;2|bibcode=2001JCli...14.3433T|url=https://zenodo.org/record/1234671}}
* {{cite journal|last=Broecker|first=WS|title=Was the Younger Dryas Triggered by a Flood?|journal=Science|volume=312|issue=5777|pages=1146–8|doi=10.1126/science.1123253|pmid=16728622|year=2006|s2cid=39544213}}
* {{cite book|last=Apel|first=JR|title=Principles of Ocean Physics|publisher=Academic Press|year=1987|isbn=0-12-058866-8}}
* {{cite journal|doi=10.1175/JCLI3436.1|author=Gnanadesikan, A.|author2=R. D. Slater|author3=P. S. Swathi|author4=G. K. Vallis|title=The energetics of ocean heat transport|journal=Journal of Climate|volume=18|issue=14|pages=2604–16|year=2005|bibcode=2005JCli...18.2604G}}
* {{cite book|last=Knauss|first=JA|title=Introduction to Physical Oceanography|publisher=Prentice Hall|year=1996|isbn=0-13-238155-9}}
* {{cite web|publisher=[[United Nations Environment Programme]] / GRID-Arendal|year=2006|url=http://www.grida.no/climate/vital/32.htm|title=Potential Impact of Climate Change|access-date=16 January 2007|archive-date=28 January 2017|archive-url=https://web.archive.org/web/20170128190429/http://www.grida.no/climate/vital/32.htm|url-status=dead}}
* {{cite book|last=Rahmstorf|first=S|chapter=Thermohaline Ocean Circulation|chapter-url=http://pik-potsdam.de/~stefan/Publications/Book_chapters/rahmstorf_eqs_2006.pdf|editor=Elias, S. A.|title=Encyclopedia of Quaternary Sciences|publisher=Elsevier Science|year=2006|isbn=0-444-52747-8}}
{{Refend}}


== Спољашње везе ==
== Спољашње везе ==
{{Commonscat|Ocean currents}}
{{Commons category|Ocean currents}}
* [https://earth.nullschool.net/#current/ocean/surface/currents/winkel3/ Current global map of sea surface currents]
* {{cite news|url=http://www.usclivar.org/research-highlights/extreme-sea-level-rise-event-linked-amoc-downturn|title=Extreme sea level rise event linked to AMOC downturn|date=25 March 2015|publisher=CLIVAR|author1=Jianjun Yin|author2=Stephen Griffies|access-date=7 December 2020|archive-date=4 March 2016|archive-url=https://web.archive.org/web/20160304114651/http://www.usclivar.org/research-highlights/extreme-sea-level-rise-event-linked-amoc-downturn|url-status=dead}}


{{Морске струје}}
{{Морске струје}}

Верзија на датум 2. јул 2022. у 22:19

Приказ главних морских струја на мапи света и океана
Distinctive white lines trace the flow of surface currents around the world.
Visualization showing global ocean currents from Jan 01, 2010 to Dec 31, 2012 at sea level then at 2000 meters below sea level
Animation of circulation around ice shelves of Antarctica

Морcκa струја је прогресивно кретање водене масе у морима и океанима, условљено различитим силама. Струје настају услед трења ветра о површину мора, услед неравномерног распореда температуре и салинитета воде, нагиба нивоа воде и сл.[1] Према физичко-хемијским својствима морске струје се деле на: хладне и топле. На правац струја велики утицај врши сила Земљиног обртања (Кориолисова сила), која их скреће на северној полулопти удесно, а на јужној улево. Такође, утицај се испољава и на контурама обала и рељефа дна океана.

Узроци

The bathymetry of the Kerguelen Plateau in the Southern Ocean governs the course of the Kerguelen deep western boundary current, part of the global network of ocean currents.[2][3]

Ocean dynamics define and describe the motion of water within the oceans. Ocean temperature and motion fields can be separated into three distinct layers: mixed (surface) layer, upper ocean (above the thermocline), and deep ocean. Ocean currents are measured in sverdrup (sv), where 1 sv is equivalent to a volume flow rate of 1.000.000 m3 (35.000.000 cu ft) per second.

Surface currents, which make up only 8% of all water in the ocean, are generally restricted to the upper 400 m (1.300 ft) of ocean water, and are separated from lower regions by varying temperatures and salinity which affect the density of the water, which in turn, defines each oceanic region. Because the movement of deep water in ocean basins is caused by density-driven forces and gravity, deep waters sink into deep ocean basins at high latitudes where the temperatures are cold enough to cause the density to increase.

Wind driven circulation

Surface oceanic currents are driven by wind currents, the large scale prevailing winds drive major persistent ocean currents, and seasonal or occasional winds drive currents of similar persistence to the winds that drive them,[4] and the Coriolis effect plays a major role in their development.[5] The Ekman spiral velocity distribution results in the currents flowing at an angle to the driving winds, and they develop typical clockwise spirals in the northern hemisphere and counter-clockwise rotation in the southern hemisphere.[6] In addition, the areas of surface ocean currents move somewhat with the seasons; this is most notable in equatorial currents.

Deep ocean basins generally have a non-symmetric surface current, in that the eastern equator-ward flowing branch is broad and diffuse whereas the pole-ward flowing western boundary current is relatively narrow.

Thermohaline circulation

Deep ocean currents are driven by density and temperature gradients. This thermohaline circulation is also known as the ocean's conveyor belt. These currents, sometimes called submarine rivers, flow deep below the surface of the ocean and are hidden from immediate detection. Where significant vertical movement of ocean currents is observed, this is known as upwelling and downwelling. Deep ocean currents are currently being researched using a fleet of underwater robots called Argo.

The thermohaline circulation is a part of the large-scale ocean circulation that is driven by global density gradients created by surface heat and freshwater fluxes.[7][8] The adjective thermohaline derives from thermo- referring to temperature and -haline referring to salt content, factors which together determine the density of sea water. Wind-driven surface currents (such as the Gulf Stream) travel polewards from the equatorial Atlantic Ocean, cooling en route, and eventually sinking at high latitudes (forming North Atlantic Deep Water). This dense water then flows into the ocean basins. While the bulk of it upwells in the Southern Ocean, the oldest waters (with a transit time of around 1000 years)[9] upwell in the North Pacific.[10] Extensive mixing therefore takes place between the ocean basins, reducing differences between them and making the Earth's oceans a global system. On their journey, the water masses transport both energy (in the form of heat) and matter (solids, dissolved substances and gases) around the globe. As such, the state of the circulation has a large impact on the climate of the Earth. The thermohaline circulation is sometimes called the ocean conveyor belt, the great ocean conveyor, or the global conveyor belt. On occasion, it is imprecisely used to refer to the meridional overturning circulation, (MOC)

Види још

References

  1. ^ NOAA, NOAA. „What is a current?”. Ocean Service Noaa. National Ocean Service. Приступљено 13. 12. 2020. 
  2. ^ „Massive Southern Ocean current discovered”. ScienceDaily. 27. 4. 2010. 
  3. ^ Yasushi Fukamachi, Stephen Rintoul; et al. (април 2010). „Strong export of Antarctic Bottom Water east of the Kerguelen plateau”. Nature Geoscience. 3 (5): 327—331. Bibcode:2010NatGe...3..327F. doi:10.1038/NGEO842. 
  4. ^ „Current”. www.nationalgeographic.org. National Geographic. 2. 9. 2011. Приступљено 7. 1. 2021. 
  5. ^ „Ocean Currents of the World: Causes”. 29. 8. 2020. Приступљено 2020-11-20. 
  6. ^ National Ocean Service (25. 3. 2008). „Surface Ocean Currents”. noaa.gov. National Oceanic and Atmospheric Administration. Архивирано из оригинала 6. 7. 2017. г. Приступљено 2017-06-13. 
  7. ^ Rahmstorf, S (2003). „The concept of the thermohaline circulation” (PDF). Nature. 421 (6924): 699. Bibcode:2003Natur.421..699R. PMID 12610602. S2CID 4414604. doi:10.1038/421699aСлободан приступ. 
  8. ^ Lappo, SS (1984). „On reason of the northward heat advection across the Equator in the South Pacific and Atlantic ocean”. Study of Ocean and Atmosphere Interaction Processes. Moscow Department of Gidrometeoizdat (in Mandarin): 125—9. 
  9. ^ The global ocean conveyor belt is a constantly moving system of deep-ocean circulation driven by temperature and salinity; What is the global ocean conveyor belt?
  10. ^ Primeau, F (2005). „Characterizing transport between the surface mixed layer and the ocean interior with a forward and adjoint global ocean transport model” (PDF). Journal of Physical Oceanography. 35 (4): 545—64. Bibcode:2005JPO....35..545P. doi:10.1175/JPO2699.1. 

Литература

Спољашње везе