Teorija Galoa — разлика између измена

С Википедије, слободне енциклопедије
Садржај обрисан Садржај додат
Спашавам 1 извора и означавам 0 мртвим.) #IABot (v2.0.8.6
.
Ред 22: Ред 22:
* Zašto nije moguće [[Angle trisection|trisektirati]] svaki ugao pomoću [[Конструкције лењиром и шестаром|lenjira i šestara]]?<ref name="Stewart"/>
* Zašto nije moguće [[Angle trisection|trisektirati]] svaki ugao pomoću [[Конструкције лењиром и шестаром|lenjira i šestara]]?<ref name="Stewart"/>
* Zašto [[Удвајање коцке|udvostručavanje kocke]] nije moguće istom metodom?
* Zašto [[Удвајање коцке|udvostručavanje kocke]] nije moguće istom metodom?

== Istorija ==
{{rut}}
=== Rana istorija ===
Galois' theory originated in the study of [[symmetric functions]] – the coefficients of a [[monic polynomial]] are ([[up to]] sign) the [[elementary symmetric polynomial]]s in the roots. For instance, {{math|1=(''x'' – ''a'')(''x'' – ''b'') = ''x''<sup>2</sup> – (''a'' + ''b'')''x'' + ''ab''}}, where 1, {{math|''a'' + ''b''}} and {{math|''ab''}} are the elementary polynomials of degree 0, 1 and 2 in two variables.

This was first formalized by the 16th-century French mathematician [[François Viète]], in [[Viète's formulas]], for the case of positive real roots. In the opinion of the 18th-century British mathematician [[Charles Hutton]],<ref>{{Harvnb|Funkhouser|1930}}</ref> the expression of coefficients of a polynomial in terms of the roots (not only for positive roots) was first understood by the 17th-century French mathematician [[Albert Girard]]; Hutton writes:
<blockquote>...[Girard was] the first person who understood the general doctrine of the formation of the coefficients of the powers from the sum of the roots and their products. He was the first who discovered the rules for summing the powers of the roots of any equation.</blockquote>

=== Galois' writings ===

In 1830 Galois (at the age of 18) submitted to the [[Paris Academy of Sciences]] a memoir on his theory of solvability by radicals; Galois' paper was ultimately rejected in 1831 as being too sketchy and for giving a condition in terms of the roots of the equation instead of its coefficients. Galois then died in a duel in 1832, and his paper, "''Mémoire sur les conditions de résolubilité des équations par radicaux''", remained unpublished until 1846 when it was published by [[Joseph Liouville]] accompanied by some of his own explanations.<ref name="Tignol2001">{{cite book|first=Jean-Pierre|last=Tignol|title=Galois' Theory of Algebraic Equations|url=https://archive.org/details/galoistheoryalge00tign_325|url-access=limited|year=2001|publisher=World Scientific|isbn=978-981-02-4541-2|pages=[https://archive.org/details/galoistheoryalge00tign_325/page/n242 232]–3, 302}}</ref> Prior to this publication, Liouville announced Galois' result to the Academy in a speech he gave on 4 July 1843.<ref>Stewart, 3rd ed., p. xxiii</ref> According to Allan Clark, Galois's characterization "dramatically supersedes the work of Abel and Ruffini."<ref name="Clark1984">{{cite book|first=Allan|last=Clark|title=Elements of Abstract Algebra|year=1984|orig-year=1971|publisher=Courier |isbn=978-0-486-14035-3|page=131}}</ref>

=== Aftermath ===
Galois' theory was notoriously difficult for his contemporaries to understand, especially to the level where they could expand on it. For example, in his 1846 commentary, Liouville completely missed the group-theoretic core of Galois' method.<ref name="Wussing2007">{{cite book|first=Hans|last=Wussing|title=The Genesis of the Abstract Group Concept: A Contribution to the History of the Origin of Abstract Group Theory|year=2007|publisher=Courier |isbn=978-0-486-45868-7|page=118}}</ref> [[Joseph Alfred Serret]] who attended some of Liouville's talks, included Galois' theory in his 1866 (third edition) of his textbook ''Cours d'algèbre supérieure''. Serret's pupil, [[Camille Jordan]], had an even better understanding reflected in his 1870 book ''Traité des substitutions et des équations algébriques''. Outside France, Galois' theory remained more obscure for a longer period. In Britain, [[Arthur Cayley|Cayley]] failed to grasp its depth and popular British algebra textbooks did not even mention Galois' theory until well after the turn of the century. In Germany, Kronecker's writings focused more on Abel's result. [[Richard Dedekind|Dedekind]] wrote little about Galois' theory, but lectured on it at Göttingen in 1858, showing a very good understanding.<ref name="Scharlau1981">{{cite book |first1=Winfried |last1=Scharlau |first2=Ilse |last2=Dedekind |first3=Richard |last3=Dedekind |title=Richard Dedekind 1831–1981; eine Würdigung zu seinem 150. Geburtstag |publisher=Vieweg |location=Braunschweig |year=1981 |isbn=9783528084981 |url=http://www.gbv.de/dms/ilmenau/toc/023900512.PDF}}</ref> [[Eugen Netto]]'s books of the 1880s, based on Jordan's ''Traité'', made Galois theory accessible to a wider German and American audience as did [[Heinrich Martin Weber]]'s 1895 algebra textbook.<ref name="GaloisNeumann2011">{{cite book|first1=Évariste|last1=Galois|first2=Peter M.|last2=Neumann|title=The Mathematical Writings of Évariste Galois|year=2011|publisher=European Mathematical Society|isbn=978-3-03719-104-0|page=10}}</ref>


== Reference ==
== Reference ==
Ред 65: Ред 80:
* Szamuely, T., [https://books.google.com/books?id=YUAgAwAAQBAJ&printsec=frontcover#v=onepage&q=Grothendieck&f=false Galois Groups and Fundamental Groups], Cambridge University Press, 2009.
* Szamuely, T., [https://books.google.com/books?id=YUAgAwAAQBAJ&printsec=frontcover#v=onepage&q=Grothendieck&f=false Galois Groups and Fundamental Groups], Cambridge University Press, 2009.
* Dubuc, E. J and de la Vega, C. S., On the Galois theory of Grothendieck, https://arxiv.org/abs/math/0009145v1
* Dubuc, E. J and de la Vega, C. S., On the Galois theory of Grothendieck, https://arxiv.org/abs/math/0009145v1
* {{Cite book |last=Gray |first=Jeremy |url=https://link.springer.com/book/10.1007/978-3-319-94773-0 |title=A history of abstract algebra: from algebraic equations to modern algebra |series=Springer Undergraduate Mathematics Series |date=2018 |isbn=978-3-319-94773-0 |location=Cham, Switzerland|doi=10.1007/978-3-319-94773-0 |s2cid=125927783 }}
* {{Cite book |last=Kimberling |first=Clark |title=Emmy Noether: A Tribute to Her Life and Work |publisher=[[Marcel Dekker]] |year=1981 |editor-last=Brewer |editor-first=James W |pages=3–61 |chapter=Emmy Noether and Her Influence |author-link=Clark Kimberling |editor-last2=Smith |editor-first2=Martha K}}
* {{Cite book |last=Kleiner |first=Israel |editor-first1=Israel |editor-last1=Kleiner |url=https://link.springer.com/book/10.1007/978-0-8176-4685-1 |title=A history of abstract algebra |date=2007 |publisher=Birkhäuser |isbn=978-0-8176-4685-1 |location=Boston, Mass.|doi=10.1007/978-0-8176-4685-1 }}
* {{Citation |last=Monna |first=A. F. |title=Dirichlet's principle: A mathematical comedy of errors and its influence on the development of analysis |year=1975 |publisher=Oosthoek, Scheltema & Holkema |isbn=978-9031301751}}
* {{Citation |last=Allenby |first=R. B. J. T. |title=Rings, Fields and Groups |year=1991 |publisher=Butterworth-Heinemann |isbn=978-0-340-54440-2}}
* {{Citation |last=Artin |first=Michael |title=Algebra |year=1991 |publisher=[[Prentice Hall]] |isbn=978-0-89871-510-1 |author-link=Michael Artin}}
* {{Citation |last1=Burris |first1=Stanley N. |title=A Course in Universal Algebra |url=http://www.math.uwaterloo.ca/~snburris/htdocs/ualg.html |year=1999 |last2=Sankappanavar |first2=H. P. |orig-year=1981}}
* {{Citation |last1=Gilbert |first1=Jimmie |title=Elements of Modern Algebra |year=2005 |publisher=Thomson Brooks/Cole |isbn=978-0-534-40264-8 |last2=Gilbert |first2=Linda}}
* {{Lang Algebra}}
* {{Citation |last=Sethuraman |first=B. A. |title=Rings, Fields, Vector Spaces, and Group Theory: An Introduction to Abstract Algebra via Geometric Constructibility |url=https://archive.org/details/ringsfieldsvecto0000seth |year=1996 |place=Berlin, New York |publisher=[[Springer-Verlag]] |isbn=978-0-387-94848-5 |url-access=registration}}
* {{Citation |last=Whitehead |first=C. |title=Guide to Abstract Algebra |year=2002 |edition=2nd |place=Houndmills |publisher=Palgrave |isbn=978-0-333-79447-0}}
* W. Keith Nicholson (2012) ''Introduction to Abstract Algebra'', 4th edition, [[John Wiley & Sons]] {{ISBN|978-1-118-13535-8}} .
* John R. Durbin (1992) ''Modern Algebra : an introduction'', John Wiley & Sons
* Charles C. Pinter (1990) [1982] ''[https://www.math.umd.edu/~jcohen/402/Pinter%20Algebra.pdf A Book of Abstract Algebra]'', second edition, from [[University of Maryland]]

{{refend}}
{{refend}}



Верзија на датум 26. јун 2023. у 06:41

Lattice of subgroups and subfields showing their corresponding Galois groups.
Dijagram rešetke susednih pozitivnih kvadratnih korena od 2 i 3, njihovih potpolja, i grupa Galoa.

U matematici, teorija Galoa pruža vezu između teorije polja i teorije grupa. Korištenjem teorije Galoa, izvesni problemi u teoriji polja mogu se svesti na teoriju grupa, što je na neki način jednostavnije i lakše razumljivo. Ona je korišćena za rešavanje klasičnih problema, uključujući napor kojim je pokazano da se dva antička problema ne mogu rešiti na način na koji su navedeni (udvostručenje kocke i trisektiranje ugla; treći antički problem, kvadratura kruga, takođe je nerešiv, ali je to pokazano drugim metodima); pokazano je da ne postoji kvintna formula; i pokazano je koji se poligoni mogu konstruisati.

Teorija je nazvana po Evaristu Galoa, koji ju je uveo radi proučavanja korena polinoma i karakterizacije polinomskih jednačina koje su rešive radikalima u smislu svojstava permutacijske grupe njihovih korena - jednačina je rešiva radikalima ako se njeni koreni mogu izraziti formulom koja uključuje samo cele brojeve, n-te korene i četiri osnovne aritmetičke operacije.

Ovu teoriju su popularizovali mnogi matematičari i dalje su je razvili Ričard Dedekind, Leopold Kroneker, Emil Artin i drugi koji su permutacijsku grupu korena tumačili kao grupu automorfizma ekstenzije polja.

Teorija Galoa je bila generalizovana do Galoaovih veza i teorije Grotendika Galoa.

Primene na klasične probleme

Nastanak i razvoj teorije Galoa bio je uzrokovan sledećim pitanjem, koje je bilo jedno od glavnih otvorenih matematičkih pitanja do početka 19. veka:

Da li postoji formula za korene polinomske jednačine petog (ili višeg) stepena u smislu koeficijenata polinoma, koristeći samo uobičajene algebarske operacije (sabiranje, oduzimanje, množenje, deljenje) i primenu radikala (kvadratne korene, kubne korene, etc)?

Abel-Rafinijeva teorema pruža suprotni primer kojim se dokazuje da postoje polinomske jednačine za koje takva formula ne može da postoji. Teorija Galoa daje znatno kompletniji odgovor na ovo pitanje, objašnjavajući zašto je moguće da se reše neke jednačine, uključujući sve one sa stepenom četiri ili manje, u gornjem maniru, i zašto to nije moguće za većinu jednačina stepena pet ili više. Dalje, ona daje konceptualno jasan i lak za transformisanje u algoritam, način da se utvrdi kada se data jednačina višeg stepena može rešiti na taj način.

Teorija Galoa daje jasan uvid u pitanja koja se tiču problema pri konstrukciji lenjirom i šestarom. Ona daje elegantnu karakterizaciju odnosa dužina koji se mogu konstruirati ovom metodom. Koristeći to, postaje relativno lako odgovoriti na klasične probleme geometrije kao su

Istorija

Rana istorija

Galois' theory originated in the study of symmetric functions – the coefficients of a monic polynomial are (up to sign) the elementary symmetric polynomials in the roots. For instance, (xa)(xb) = x2 – (a + b)x + ab, where 1, a + b and ab are the elementary polynomials of degree 0, 1 and 2 in two variables.

This was first formalized by the 16th-century French mathematician François Viète, in Viète's formulas, for the case of positive real roots. In the opinion of the 18th-century British mathematician Charles Hutton,[2] the expression of coefficients of a polynomial in terms of the roots (not only for positive roots) was first understood by the 17th-century French mathematician Albert Girard; Hutton writes:

...[Girard was] the first person who understood the general doctrine of the formation of the coefficients of the powers from the sum of the roots and their products. He was the first who discovered the rules for summing the powers of the roots of any equation.

Galois' writings

In 1830 Galois (at the age of 18) submitted to the Paris Academy of Sciences a memoir on his theory of solvability by radicals; Galois' paper was ultimately rejected in 1831 as being too sketchy and for giving a condition in terms of the roots of the equation instead of its coefficients. Galois then died in a duel in 1832, and his paper, "Mémoire sur les conditions de résolubilité des équations par radicaux", remained unpublished until 1846 when it was published by Joseph Liouville accompanied by some of his own explanations.[3] Prior to this publication, Liouville announced Galois' result to the Academy in a speech he gave on 4 July 1843.[4] According to Allan Clark, Galois's characterization "dramatically supersedes the work of Abel and Ruffini."[5]

Aftermath

Galois' theory was notoriously difficult for his contemporaries to understand, especially to the level where they could expand on it. For example, in his 1846 commentary, Liouville completely missed the group-theoretic core of Galois' method.[6] Joseph Alfred Serret who attended some of Liouville's talks, included Galois' theory in his 1866 (third edition) of his textbook Cours d'algèbre supérieure. Serret's pupil, Camille Jordan, had an even better understanding reflected in his 1870 book Traité des substitutions et des équations algébriques. Outside France, Galois' theory remained more obscure for a longer period. In Britain, Cayley failed to grasp its depth and popular British algebra textbooks did not even mention Galois' theory until well after the turn of the century. In Germany, Kronecker's writings focused more on Abel's result. Dedekind wrote little about Galois' theory, but lectured on it at Göttingen in 1858, showing a very good understanding.[7] Eugen Netto's books of the 1880s, based on Jordan's Traité, made Galois theory accessible to a wider German and American audience as did Heinrich Martin Weber's 1895 algebra textbook.[8]

Reference

  1. ^ а б Stewart, Ian (1989). Galois Theory. Chapman and Hall. ISBN 0-412-34550-1. 
  2. ^ Funkhouser 1930
  3. ^ Tignol, Jean-Pierre (2001). Galois' Theory of Algebraic EquationsСлободан приступ ограничен дужином пробне верзије, иначе неопходна претплата. World Scientific. стр. 232–3, 302. ISBN 978-981-02-4541-2. 
  4. ^ Stewart, 3rd ed., p. xxiii
  5. ^ Clark, Allan (1984) [1971]. Elements of Abstract Algebra. Courier. стр. 131. ISBN 978-0-486-14035-3. 
  6. ^ Wussing, Hans (2007). The Genesis of the Abstract Group Concept: A Contribution to the History of the Origin of Abstract Group Theory. Courier. стр. 118. ISBN 978-0-486-45868-7. 
  7. ^ Scharlau, Winfried; Dedekind, Ilse; Dedekind, Richard (1981). Richard Dedekind 1831–1981; eine Würdigung zu seinem 150. Geburtstag (PDF). Braunschweig: Vieweg. ISBN 9783528084981. 
  8. ^ Galois, Évariste; Neumann, Peter M. (2011). The Mathematical Writings of Évariste Galois. European Mathematical Society. стр. 10. ISBN 978-3-03719-104-0. 

Literatura

Spoljašnje veze