Teorija polja (matematika) — разлика између измена

С Википедије, слободне енциклопедије
Садржај обрисан Садржај додат
.
(нема разлике)

Верзија на датум 19. август 2019. у 00:45

Regularni heptagon se ne može konstruisati koristeći samo konstrukcije lenjirom i šestarom; to se može dokazati koristeći polje konstruktivnih brojeva.

U matematici, polje je skup na kome su sabiranje, oduzimanje, množenje, i deljenje definisani, i ponašaju se kao korespondirajuće operacije na racionalnim i realnim brojevima. Polje je stoga fundamentalna algebarska struktura, koja ima široku primenu u algebri, teoriji brojeva i mnogim drugim oblastima matematike.

Najbolje poznata polja su polje racionalnih brojeva, polje real numbers and the field of complex numbers. Many other fields, such as fields of rational functions, algebraic function fields, algebraic number fields, and p-adic fields are commonly used and studied in mathematics, particularly in number theory and algebraic geometry. Most cryptographic protocols rely on finite fields, i.e., fields with finitely many elements.

The relation of two fields is expressed by the notion of a field extension. Galois theory, initiated by Évariste Galois in the 1830s, is devoted to understanding the symmetries of field extensions. Among other results, this theory shows that angle trisection and squaring the circle cannot be done with a compass and straightedge. Moreover, it shows that quintic equations are algebraically unsolvable.

Fields serve as foundational notions in several mathematical domains. This includes different branches of analysis, which are based on fields with additional structure. Basic theorems in analysis hinge on the structural properties of the field of real numbers. Most importantly for algebraic purposes, any field may be used as the scalars for a vector space, which is the standard general context for linear algebra. Number fields, the siblings of the field of rational numbers, are studied in depth in number theory. Function fields can help describe properties of geometric objects.

Definicija

Informally, a field is a set, along with two operations defined on that set: an addition operation written as a + b, and a multiplication operation written as ab, both of which behave similarly as they behave for rational numbers and real numbers, including the existence of an additive inverse a for all elements a, and of a multiplicative inverse b−1 for every nonzero element b. This allows one to also consider the so-called inverse operations of subtraction, ab, and division, a / b, by defining:

ab = a + (−b),
a / b = a · b−1.

Klasična definicija

Formally, a field is a set F together with two operations on F called addition and multiplication.[1] An operation on F is a function F × FF – in other words, a mapping that associates an element of F to every pair of its elements. The result of the addition of a and b is called the sum of a and b, and is denoted a + b. Similarly, the result of the multiplication of a and b is called the product of a and b, and is denoted ab or ab. These operations are required to satisfy the following properties, referred to as field axioms. In these axioms, a, b, and c are arbitrary elements of the field F.

  • Associativity of addition and multiplication: a + (b + c) = (a + b) + c, and a · (b · c) = (a · b) · c.
  • Commutativity of addition and multiplication: a + b = b + a, and a · b = b · a.
  • Additive and multiplicative identity: there exist two different elements 0 and 1 in F such that a + 0 = a and a · 1 = a.
  • Additive inverses: for every a in F, there exists an element in F, denoted a, called the additive inverse of a, such that a + (−a) = 0.
  • Multiplicative inverses: for every a ≠ 0 in F, there exists an element in F, denoted by a−1 or 1/a, called the multiplicative inverse of a, such that a · a−1 = 1.
  • Distributivity of multiplication over addition: a · (b + c) = (a · b) + (a · c).

This may be summarized by saying: a field has two operations, called addition and multiplication; it is an abelian group under addition with 0 as the additive identity; the nonzero elements are an abelian group under multiplication with 1 as the multiplicative identity; and multiplication distributes over addition.

Reference

  1. ^ Beachy & Blair (2006, Definition 4.1.1, p. 181)

Literatura