Пређи на садржај

Slušni sistem — разлика између измена

С Википедије, слободне енциклопедије
Садржај обрисан Садржај додат
.
(нема разлике)

Верзија на датум 28. јун 2020. у 05:56

Slušni sistem
Anatomska terminologija
Kako zvukovi prolaze od izvora do mozga

Slušni sistem je senzorni sistem za čulo sluha. On obuhvata senzorne organe (uši) i slušne delove senzornog sistema.

Pregled sistema

The outer ear funnels sound vibrations to the eardrum, increasing the sound pressure in the middle frequency range. The middle-ear ossicles further amplify the vibration pressure roughly 20 times. The base of the stapes couples vibrations into the cochlea via the oval window, which vibrates the perilymph liquid (present throughout the inner ear) and causes the round window to bulb out as the oval window bulges in.

Vestibular and tympanic ducts are filled with perilymph, and the smaller cochlear duct between them is filled with endolymph, a fluid with a very different ion concentration and voltage.[1][2][3] Vestibular duct perilymph vibrations bend organ of Corti outer cells (4 lines) causing prestin to be released in cell tips. This causes the cells to be chemically elongated and shrunk (somatic motor), and hair bundles to shift which, in turn, electrically affects the basilar membrane’s movement (hair-bundle motor). These motors (outer hair cells) amplify the traveling wave amplitudes over 40-fold.[4] The outer hair cells (OHC) are minimally innervated by spiral ganglion in slow (unmyelinated) reciprocal communicative bundles (30+ hairs per nerve fiber); this contrasts inner hair cells (IHC) that have only afferent innervation (30+ nerve fibers per one hair) but are heavily connected. There are three to four times as many OHCs as IHCs. The basilar membrane (BM) is a barrier between scalae, along the edge of which the IHCs and OHCs sit. Basilar membrane width and stiffness vary to control the frequencies best sensed by the IHC. At the cochlear base the BM is at its narrowest and most stiff (high-frequencies), while at the cochlear apex it is at its widest and least stiff (low-frequencies). The tectorial membrane (TM) helps facilitate cochlear amplification by stimulating OHC (direct) and IHC (via endolymph vibrations). TM width and stiffness parallels BM's and similarly aids in frequency differentiation.[5][6][7][8][9][10][11][12][13]

The superior olivary complex (SOC), in pons, is the first convergence of the left and right cochlear pulses. SOC has 14 described nuclei; their abbreviation are used here (see Superior olivary complex for their full names). MSO determines the angle the sound came from by measuring time differences in left and right info. LSO normalizes sound levels between the ears; it uses the sound intensities to help determine sound angle. LSO innervates the IHC. VNTB innervate OHC. MNTB inhibit LSO via glycine. LNTB are glycine-immune, used for fast signalling. DPO are high-frequency and tonotopical. DLPO are low-frequency and tonotopical. VLPO have the same function as DPO, but act in a different area. PVO, CPO, RPO, VMPO, ALPO and SPON (inhibited by glycine) are various signalling and inhibiting nuclei.[14][15][16][17]

The trapezoid body is where most of the cochlear nucleus (CN) fibers decussate (cross left to right and vice versa); this cross aids in sound localization.[18] The CN breaks into ventral (VCN) and dorsal (DCN) regions. The VCN has three nuclei. Bushy cells transmit timing info, their shape averages timing jitters. Stellate (chopper) cells encode sound spectra (peaks and valleys) by spatial neural firing rates based on auditory input strength (rather than frequency). Octopus cells have close to the best temporal precision while firing, they decode the auditory timing code. The DCN has 2 nuclei. DCN also receives info from VCN. Fusiform cells integrate information to determine spectral cues to locations (for example, whether a sound originated from in front or behind). Cochlear nerve fibers (30,000+) each have a most sensitive frequency and respond over a wide range of levels.[19][20]

Simplified, nerve fibers’ signals are transported by bushy cells to the binaural areas in the olivary complex, while signal peaks and valleys are noted by stellate cells, and signal timing is extracted by octopus cells. The lateral lemniscus has three nuclei: dorsal nuclei respond best to bilateral input and have complexity tuned responses; intermediate nuclei have broad tuning responses; and ventral nuclei have broad and moderately complex tuning curves. Ventral nuclei of lateral lemniscus help the inferior colliculus (IC) decode amplitude modulated sounds by giving both phasic and tonic responses (short and long notes, respectively). IC receives inputs not shown, including visual (pretectal area: moves eyes to sound. superior colliculus: orientation and behavior toward objects, as well as eye movements (saccade)) areas, pons (superior cerebellar peduncle: thalamus to cerebellum connection/hear sound and learn behavioral response), spinal cord (periaqueductal grey: hear sound and instinctually move), and thalamus. The above are what implicate IC in the ‘startle response’ and ocular reflexes. Beyond multi-sensory integration IC responds to specific amplitude modulation frequencies, allowing for the detection of pitch. IC also determines time differences in binaural hearing.[21] The medial geniculate nucleus divides into ventral (relay and relay-inhibitory cells: frequency, intensity, and binaural info topographically relayed), dorsal (broad and complex tuned nuclei: connection to somatosensory info), and medial (broad, complex, and narrow tuned nuclei: relay intensity and sound duration). The auditory cortex (AC) brings sound into awareness/perception. AC identifies sounds (sound-name recognition) and also identifies the sound’s origin location. AC is a topographical frequency map with bundles reacting to different harmonies, timing and pitch. Right-hand-side AC is more sensitive to tonality, left-hand-side AC is more sensitive to minute sequential differences in sound.[22][23] Rostromedial and ventrolateral prefrontal cortices are involved in activation during tonal space and storing short-term memories, respectively.[24] The Heschl’s gyrus/transverse temporal gyrus includes Wernicke’s area and functionality, it is heavily involved in emotion-sound, emotion-facial-expression, and sound-memory processes. The entorhinal cortex is the part of the ‘hippocampus system’ that aids and stores visual and auditory memories.[25][26] The supramarginal gyrus (SMG) aids in language comprehension and is responsible for compassionate responses. SMG links sounds to words with the angular gyrus and aids in word choice. SMG integrates tactile, visual, and auditory info.[27][28]

Reference

  1. ^ Tillotson JK, McCann S (2013). Kaplan medical anatomy flashcards. Kaplan Publishing. ISBN 978-1-60714-984-2. 
  2. ^ Ashwell K (2016). Barron's anatomy flash cards. Barron's Educational Series. ISBN 978-1-4380-7717-8. 
  3. ^ „How Does My Hearing Work?”. NZ Audiological Society. Архивирано из оригинала 23. 8. 2019. г. Приступљено 27. 3. 2016. 
  4. ^ Zheng J, Shen W, He DZ, Long KB, Madison LD, Dallos P (мај 2000). „Prestin is the motor protein of cochlear outer hair cells”. Nature. 405 (6783): 149—55. Bibcode:2000Natur.405..149Z. PMID 10821263. doi:10.1038/35012009. 
  5. ^ Zwislocki JJ, Cefaratti LK (новембар 1989). „Tectorial membrane. II: Stiffness measurements in vivo”. Hearing Research. 42 (2–3): 211—27. PMID 2606804. doi:10.1016/0378-5955(89)90146-9. 
  6. ^ Richter CP, Emadi G, Getnick G, Quesnel A, Dallos P (септембар 2007). „Tectorial membrane stiffness gradients”. Biophysical Journal. 93 (6): 2265—76. Bibcode:2007BpJ....93.2265R. PMC 1959565Слободан приступ. PMID 17496047. doi:10.1529/biophysj.106.094474. 
  7. ^ Meaud J, Grosh K (март 2010). „The effect of tectorial membrane and basilar membrane longitudinal coupling in cochlear mechanics”. The Journal of the Acoustical Society of America. 127 (3): 1411—21. Bibcode:2010ASAJ..127.1411M. PMC 2856508Слободан приступ. PMID 20329841. doi:10.1121/1.3290995. 
  8. ^ Gueta R, Barlam D, Shneck RZ, Rousso I (октобар 2006). „Measurement of the mechanical properties of isolated tectorial membrane using atomic force microscopy”. Proceedings of the National Academy of Sciences of the United States of America. 103 (40): 14790—5. Bibcode:2006PNAS..10314790G. PMC 1595430Слободан приступ. PMID 17001011. doi:10.1073/pnas.0603429103. 
  9. ^ Freeman DM, Abnet CC, Hemmert W, Tsai BS, Weiss TF (јун 2003). „Dynamic material properties of the tectorial membrane: a summary”. Hearing Research. 180 (1–2): 1—10. PMID 12782348. doi:10.1016/S0378-5955(03)00073-X. 
  10. ^ Legan PK, Lukashkina VA, Goodyear RJ, Kössi M, Russell IJ, Richardson GP (октобар 2000). „A targeted deletion in alpha-tectorin reveals that the tectorial membrane is required for the gain and timing of cochlear feedback”. Neuron. 28 (1): 273—85. PMID 11087000. doi:10.1016/S0896-6273(00)00102-1. 
  11. ^ Canlon B (1988). „The effect of acoustic trauma on the tectorial membrane, stereocilia, and hearing sensitivity: possible mechanisms underlying damage, recovery, and protection”. Scandinavian Audiology. Supplementum. 27: 1—45. PMID 3043645. 
  12. ^ Zwislocki JJ (1979). „Tectorial membrane: a possible sharpening effect on the frequency analysis in the cochlea”. Acta Oto-Laryngologica. 87 (3–4): 267—9. PMID 443008. doi:10.3109/00016487909126419. 
  13. ^ Teudt IU, Richter CP (октобар 2014). „Basilar membrane and tectorial membrane stiffness in the CBA/CaJ mouse”. Journal of the Association for Research in Otolaryngology. 15 (5): 675—94. PMC 4164692Слободан приступ. PMID 24865766. doi:10.1007/s10162-014-0463-y. 
  14. ^ Thompson AM, Schofield BR (новембар 2000). „Afferent projections of the superior olivary complex”. Microscopy Research and Technique. 51 (4): 330—54. PMID 11071718. doi:10.1002/1097-0029(20001115)51:4<330::AID-JEMT4>3.0.CO;2-X. 
  15. ^ Oliver DL (новембар 2000). „Ascending efferent projections of the superior olivary complex”. Microscopy Research and Technique. 51 (4): 355—63. PMID 11071719. doi:10.1002/1097-0029(20001115)51:4<355::AID-JEMT5>3.0.CO;2-J. 
  16. ^ Moore JK (новембар 2000). „Organization of the human superior olivary complex”. Microscopy Research and Technique. 51 (4): 403—12. PMID 11071722. doi:10.1002/1097-0029(20001115)51:4<403::AID-JEMT8>3.0.CO;2-Q. 
  17. ^ Yang L, Monsivais P, Rubel EW (март 1999). „The superior olivary nucleus and its influence on nucleus laminaris: a source of inhibitory feedback for coincidence detection in the avian auditory brainstem”. The Journal of Neuroscience. 19 (6): 2313—25. PMC 6782562Слободан приступ. PMID 10066281. doi:10.1523/JNEUROSCI.19-06-02313.1999. 
  18. ^ Paolini AG, FitzGerald JV, Burkitt AN, Clark GM (септембар 2001). „Temporal processing from the auditory nerve to the medial nucleus of the trapezoid body in the rat”. Hearing Research. 159 (1–2): 101—16. PMID 11520638. doi:10.1016/S0378-5955(01)00327-6. 
  19. ^ Bajo VM, Merchán MA, Malmierca MS, Nodal FR, Bjaalie JG (мај 1999). „Topographic organization of the dorsal nucleus of the lateral lemniscus in the cat”. The Journal of Comparative Neurology. 407 (3): 349—66. PMID 10320216. doi:10.1002/(SICI)1096-9861(19990510)407:3<349::AID-CNE4>3.0.CO;2-5. 
  20. ^ Young ED, Davis KA (2002). „Circuitry and function of the dorsal cochlear nucleus”. Ур.: Oertel D, Fay RR, Popper AN. Integrative functions in the mammalian auditory pathway. Springer Handbook of Auditory Research. 15. New York, NY: Springer. стр. 160—206. ISBN 978-1-4757-3654-0. doi:10.1007/978-1-4757-3654-0_5. 
  21. ^ Oliver DL (2005). „Neuronal organization in the inferior colliculus”. Ур.: Winer JA, Schreiner CE. The inferior colliculus. New York, NY: Springer. стр. 69—114. ISBN 978-0-387-27083-8. doi:10.1007/0-387-27083-3_2. 
  22. ^ Janata P, Birk JL, Van Horn JD, Leman M, Tillmann B, Bharucha JJ (децембар 2002). „The cortical topography of tonal structures underlying Western music”. Science. 298 (5601): 2167—70. Bibcode:2002Sci...298.2167J. PMID 12481131. doi:10.1126/science.1076262. 
  23. ^ Morosan P, Rademacher J, Schleicher A, Amunts K, Schormann T, Zilles K (април 2001). „Human primary auditory cortex: cytoarchitectonic subdivisions and mapping into a spatial reference system”. NeuroImage. 13 (4): 684—701. CiteSeerX 10.1.1.420.7633Слободан приступ. PMID 11305897. doi:10.1006/nimg.2000.0715. 
  24. ^ Romanski LM, Tian B, Fritz J, Mishkin M, Goldman-Rakic PS, Rauschecker JP (децембар 1999). „Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex”. Nature Neuroscience. 2 (12): 1131—6. PMC 2778291Слободан приступ. PMID 10570492. doi:10.1038/16056. 
  25. ^ Badre D, Wagner AD (октобар 2007). „Left ventrolateral prefrontal cortex and the cognitive control of memory”. Neuropsychologia. 45 (13): 2883—901. PMID 17675110. doi:10.1016/j.neuropsychologia.2007.06.015. 
  26. ^ Amunts K, Kedo O, Kindler M, Pieperhoff P, Mohlberg H, Shah NJ, Habel U, Schneider F, Zilles K (децембар 2005). „Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps”. Anatomy and Embryology. 210 (5–6): 343—52. PMID 16208455. doi:10.1007/s00429-005-0025-5. 
  27. ^ Penniello MJ, Lambert J, Eustache F, Petit-Taboué MC, Barré L, Viader F, Morin P, Lechevalier B, Baron JC (јун 1995). „A PET study of the functional neuroanatomy of writing impairment in Alzheimer's disease. The role of the left supramarginal and left angular gyri”. Brain : A Journal of Neurology. 118 ( Pt 3) (3): 697—706. PMID 7600087. doi:10.1093/brain/118.3.697. 
  28. ^ Stoeckel C, Gough PM, Watkins KE, Devlin JT (октобар 2009). „Supramarginal gyrus involvement in visual word recognition”. Cortex; A Journal Devoted to the Study of the Nervous System and Behavior. 45 (9): 1091—6. PMC 2726132Слободан приступ. PMID 19232583. doi:10.1016/j.cortex.2008.12.004. 

Literatura

Spoljašnje veze