Пређи на садржај

Lustra — разлика између измена

С Википедије, слободне енциклопедије
Садржај обрисан Садржај додат
Add 1 book for Википедија:Проверљивост (20210201)) #IABot (v2.0.8) (GreenC bot
.
ознака: везе до вишезначних одредница
Ред 1: Ред 1:
{{short description|Mala kruta ploča koja raste iz životinjske kože}}
[[Датотека:Fish_scales.jpg|десно|мини|250x250пискел|Lustra]]
[[Датотека:Fish_scales.jpg|десно|мини|250x250пискел|Lustra]]
[[File:Keeled scales on a southern watersnake (26954310414).jpg|thumb|right|250px|Izbočene krljušti [[Colubridae|kolubridne]] zmije (-{''[[Nerodia fasciata]]''}-)]]
[[Датотека:Keeled scales on a southern watersnake (26954310414).jpg|thumb|right|250px|Izbočene krljušti [[Colubridae|kolubridne]] zmije (-{''[[Nerodia fasciata]]''}-)]]


'''Lustra''' ili ''krljušt'' predstavlja narodni termin za pločice koje prekrivaju [[Кожа|kožu]] [[Рибе|ribe]], dok je stručni naziv ljuska. U većini [[biologija|bioloških]] nomenklatura, krljušt ([[Greek language|grčki]] [[wikt:λεπίς|λεπίς]] ''{{transl|el|lepis}}'', [[Latin language|latinski]] -{''squama''}-) mala je kruta [[Plate (anatomy)|ploča]] koja raste iz [[koža|kože]] [[životinje]] da bi joj se pružila zaštita. Kod vrsta lepidopterana ([[leptiri]] i [[moljci]]), ljuske su ploče na površini [[insect wing|krila insekata]] i pružaju obojenje. Krljušti su prilično česte i razvijale su se više puta kroz [[Хомоплазија|konvergentnu evoluciju]], sa različitim strukturama i funkcijama.
'''Lustra''' ili ''krljušt'' predstavlja narodni termin za pločice koje prekrivaju [[Кожа|kožu]] [[Рибе|ribe]], dok je stručni naziv ljuska. U većini [[biologija|bioloških]] nomenklatura, krljušt ([[Greek language|grčki]] [[wikt:λεπίς|λεπίς]] ''{{transl|el|lepis}}'', [[Latin language|latinski]] -{''squama''}-) mala je kruta [[Plate (anatomy)|ploča]] koja raste iz [[koža|kože]] [[životinje]] da bi joj se pružila zaštita. Kod vrsta lepidopterana ([[leptiri]] i [[moljci]]), ljuske su ploče na površini [[insect wing|krila insekata]] i pružaju obojenje. Krljušti su prilično česte i razvijale su se više puta kroz [[Хомоплазија|konvergentnu evoluciju]], sa različitim strukturama i funkcijama.
Ред 9: Ред 10:
{{main|Riblje krljušti}}
{{main|Riblje krljušti}}
Riblje krljušti su [[skin|dermalnog]] porekla, specifično [[mezoderm]]not. Ova činjenica ih paleontološki razlikuje od krljušti gmizavaca. Genetski, isti geni koji su uključeni u razvoj zuba i dlaka kod sisara, takođe su uključeni u razvoj krljušti.<ref>{{Cite journal| first1 = P. T.| title = Fish scale development: Hair today, teeth and scales yesterday?| journal = Current Biology| volume = 11| last1 = Sharpe| issue = 18| pages = R751–R752| year = 2001| pmid = 11566120| doi = 10.1016/S0960-9822(01)00438-9 }}</ref>
Riblje krljušti su [[skin|dermalnog]] porekla, specifično [[mezoderm]]not. Ova činjenica ih paleontološki razlikuje od krljušti gmizavaca. Genetski, isti geni koji su uključeni u razvoj zuba i dlaka kod sisara, takođe su uključeni u razvoj krljušti.<ref>{{Cite journal| first1 = P. T.| title = Fish scale development: Hair today, teeth and scales yesterday?| journal = Current Biology| volume = 11| last1 = Sharpe| issue = 18| pages = R751–R752| year = 2001| pmid = 11566120| doi = 10.1016/S0960-9822(01)00438-9 }}</ref>
{{rut}}
<gallery widths="250px" heights="180px">
File:Ganoid scales.png|Ganoid scales on a [[carboniferous]] fish ''[[Amblypterus]] striatus''
File:Denticules cutanés du requin citron Negaprion brevirostris vus au microscope électronique à balayage.jpg|Placoid scales on a [[lemon shark]] (''Negaprion brevirostris'')
File:RutilusRutilusScalesLateralLine.JPG|Cycloid scales on a [[common roach]] (''Rutilus rutilus'')
</gallery>

Fish scales are [[skin|dermally]] derived, specifically in the [[mesoderm]]. This fact distinguishes them from reptile scales paleontologically.
Genetically, the same genes involved in tooth and hair development in mammals are also involved in scale development.<ref>{{cite journal | vauthors = Sharpe PT | title = Fish scale development: Hair today, teeth and scales yesterday? | journal = Current Biology | volume = 11 | issue = 18 | pages = R751–2 | date = September 2001 | pmid = 11566120 | doi = 10.1016/S0960-9822(01)00438-9 | s2cid = 18868124 | doi-access = free }}</ref>

===Cosmoid scales===<!-- This section is linked from [[Coelacanth]] -->
True cosmoid scales can only be found on the [[Sarcopterygian]]s. The inner layer of the scale is made of [[lamellar]] bone. On top of this lies a layer of spongy or [[Blood vessel|vascular]] bone and then a layer of [[dentine]]-like material called [[cosmine]]. The upper surface is [[keratin]]. The [[coelacanth]] has modified cosmoid scales that lack cosmine and are thinner than true cosmoid scales.

===Ganoid scales===<!-- This section is linked from [[Gar]] -->
Ganoid scales can be found on [[gar]]s (family [[Lepisosteidae]]), [[bichir]]s, and reedfishes (family [[Polypteridae]]). Ganoid scales are similar to cosmoid scales, but a layer of [[ganoin]] lies over the cosmine layer and under the enamel. Ganoin scales are diamond shaped, shiny, and hard. <!-- Which is it, enamel or dentine? Only dentine mentioned previously. -->
Within the ganoin are [[guanine]] compounds, iridescent derivatives of guanine found in a DNA molecule.<ref>{{cite news | vauthors = Levy-Lior A, Pokroy B, Levavi-Sivan B, Leiserowitz L, Weiner S, Addadi L | title =Biogenic guanine crystals from the skin of fish may be designed to enhance light reflectance | journal = Crystal Growth & Design | year =2008 | volume =8 | issue =2 | pages = 507–511 |doi=10.1021/cg0704753}}</ref> The iridescent property of these chemicals provide the ganoin its shine.

===Placoid scales===

[[Placoid scale]]s are found on [[Chondrichthyes|cartilaginous fish]] including [[shark]]s and [[stingray]]s. These scales, also called denticles, are similar in structure to [[tooth|teeth]], and have one median spine and two lateral spines. The modern jawed fish ancestors, the jawless [[ostracoderm]]s and later jawed [[placoderm]]s, may have had scales with the properties of both placoid and ganoid scales.

===Leptoid scales===
Leptoid scales are found on higher-order bony fish. As they grow they add concentric layers. They are arranged so as to overlap in a head-to-tail direction, like roof tiles, allowing a smoother flow of water over the body and therefore reducing [[Drag (physics)|drag]].<ref>{{cite book | publisher = John Wiley & Sons | isbn = 978-1-118-92421-1| last1 = Ballard| first1 = Bonnie| last2 = Cheek| first2 = Ryan | title = Exotic Animal Medicine for the Veterinary Technician | date = 2 July 2016 | url=https://books.google.com/books?id=h1_NDAAAQBAJ&q=leptoid+scale&pg=PT786}}</ref> They come in two forms:
*'''Cycloid scales''' have a smooth outer edge, and are most common on fish with soft fin rays, such as [[salmon]] and [[carp]].
*'''Ctenoid scales''' have a toothed outer edge, and are usually found on fish with spiny fin rays, such as [[Bass (fish)|bass]] and [[crappie]].

==Reptilian scales==
[[File:Gold Dust Day Gecko closeup hawaii edit 1.jpg|thumb|Brightly colored scales on a [[gold dust day gecko]]]]
{{main|Reptile scales}}

[[Reptile]] scale types include: cycloid, granular (which appear bumpy), and keeled (which have a center ridge). Scales usually vary in size, the stouter, larger scales cover parts that are often exposed to physical stress (usually the feet, tail and head), while scales are small around the joints for flexibility. Most snakes have extra broad scales on the belly, each scale covering the belly from side to side.

The scales of all reptiles have an epidermal component (what one sees on the surface), but many reptiles, such as [[crocodilian]]s and turtles, have [[osteoderm]]s underlying the epidermal scale. Such scales are more properly termed [[scute]]s. Snakes, [[tuatara]]s and many lizards lack osteoderms. All reptilian scales have a dermal papilla underlying the epidermal part, and it is there that the osteoderms, if present, would be formed.

==Avian scales==
[[File:Riesenseeadler Fang.JPG|thumb|left|Scales on talons of a [[Steller's sea eagle]] (''Haliaeetus pelagicus'')]]
{{main|Bird anatomy#Scales}}
Birds' scales are found mainly on the toes and metatarsus, but may be found further up on the ankle in some birds. The scales and scutes of birds were thought to be [[Homology (biology)|homologous]] to those of reptiles,<ref name=Lucas>{{cite book |last=Lucas |first=Alfred M. |year=1972 |title=Avian Anatomy - integument |location=East Lansing, Michigan, USA |publisher=USDA Avian Anatomy Project, Michigan State University |pages=67, 344, 394–601}}</ref> but are now agreed to have evolved independently, being degenerate feathers.<ref name="pmid23493711">{{cite journal | vauthors = Zheng X, Zhou Z, Wang X, Zhang F, Zhang X, Wang Y, Wei G, Wang S, Xu X | title = Hind wings in Basal birds and the evolution of leg feathers | journal = Science | volume = 339 | issue = 6125 | pages = 1309–12 | date = March 2013 | pmid = 23493711 | doi = 10.1126/science.1228753 | bibcode = 2013Sci...339.1309Z | s2cid = 206544531 | url = https://semanticscholar.org/paper/3ce5603104bdbae3dd14ab9a8437a42196d77b9e }}</ref><ref name="pmid12949769">{{cite journal | vauthors = Sawyer RH, Knapp LW | title = Avian skin development and the evolutionary origin of feathers | journal = Journal of Experimental Zoology Part B: Molecular and Developmental Evolution | volume = 298 | issue = 1 | pages = 57–72 | date = August 2003 | pmid = 12949769 | doi = 10.1002/jez.b.26 }}</ref>

==Mammalian scales==
[[File:Indian pangolin (Manis crassicaudata) - oo 246940 (cropped to A).jpg|thumb|Scale-covered [[Indian pangolin]]]]
An example of a scaled mammal is the [[pangolin]]. Its scales are made of keratin and are used for protection, similar to an [[armadillo]]'s armor. They have been convergently evolved, being unrelated to mammals' distant reptile-like ancestors (since [[therapsids]] lost scales), except that they use a similar gene.

On the other hand, the [[musky rat-kangaroo]] has scales on its feet and tail.<ref>{{cite web |url=http://rainforest-australia.com/rkangaroo.htm | work = Rainforest-Australia.com |title=Musky Rat Kangaroo |access-date=2014-03-08 |url-status=dead |archive-url=https://web.archive.org/web/20131030065952/http://rainforest-australia.com/rkangaroo.htm |archive-date=2013-10-30 }}</ref> The precise nature of its purported scales has not been studied in detail, but they appear to be structurally different from pangolin scales.

[[Anomalure]]s also have scales on their tail undersides.<ref>{{cite book | veditors = Fleming T, Macdonald D | title = The Encyclopedia of Mammals | location = New York | publisher = Facts on File | page = [https://archive.org/details/encyclopediaofma00mals_0/page/632 632] | isbn = 0-87196-871-1 | year = 1984 | url = https://archive.org/details/encyclopediaofma00mals_0/page/632 }}</ref>

Foot pad epidermal tissues in most mammal species have been compared to the scales of other vertebrates. They are likely derived from cornification processes or stunted fur much like avian reticulae are derived from stunted feathers.<ref>{{cite book | first = Richard Ian Campbell | last = Spearman | date = 1973 | title = The integument: a textbook of skin biology | publisher = Cambridge University Press | isbn = 978-0-521-20048-6 | url-access = registration | url = https://archive.org/details/integumenttextbo00spea }}</ref>

==Arthropod scales==
[[File:Luna moth scales.jpg|thumb|Scales on a [[luna moth]] (''Actias luna'')]]
[[Butterflies]] and [[moth]]s - the order [[Lepidoptera]] ([[Greek language|Greek]] "scale-winged") - have membranous wings covered in delicate, powdery scales, which are modified [[setae]]. Each scale consists of a series of tiny stacked platelets of organic material, and butterflies tend to have the scales broad and flattened, while moths tend to have the scales narrower and more hair like. Scales are usually [[pigment]]ed, but some types of scales are metallic, or iridescent, without pigments; because the thickness of the platelets is on the same order as the [[wavelength]] of [[visible light]] the plates lead to structural coloration and [[iridescence]] through the physical phenomenon described as [[thin-film optics]]. The most common color produced in this fashion is [[blue]], such as in the ''[[Morpho]]'' butterflies. Other colors can be seen on the [[Chrysiridia rhipheus|sunset moth]].


== Reference ==
== Reference ==
Ред 14: Ред 67:


== Literatura ==
== Literatura ==
{{refbegin}}
{{refbegin|30em}}
* {{cite book | last =Kardong | first =Kenneth V. | authorlink =Kenneth Kardong | title =Vertebrates: Comparative Anatomy, Function, Evolution | url =https://archive.org/details/vertebratescompa0000kard | edition = second | publisher =[[McGraw-Hill]] | year =1998 | location =USA | pages =[https://archive.org/details/vertebratescompa0000kard/page/747 747] pp | doi = | id = | isbn =978-0-697-28654-3 }}
* {{cite book | last =Kardong | first =Kenneth V. | authorlink =Kenneth Kardong | title =Vertebrates: Comparative Anatomy, Function, Evolution | url =https://archive.org/details/vertebratescompa0000kard | edition = second | publisher =[[McGraw-Hill]] | year =1998 | location =USA | pages =[https://archive.org/details/vertebratescompa0000kard/page/747 747] pp | doi = | id = | isbn =978-0-697-28654-3 }}
* {{cite book |author=Helfman, G.S. |author2=B.B. Collette |author3= D.E. Facey |title=The Diversity of Fishes |publisher=Blackwell Science |year=1997 |isbn=978-0-86542-256-8 |pages=33–36}}
* {{cite book |author=Helfman, G.S. |author2=B.B. Collette |author3= D.E. Facey |title=The Diversity of Fishes |publisher=Blackwell Science |year=1997 |isbn=978-0-86542-256-8 |pages=33–36}}
* {{cite book |author=Helfman, G.S. |author2= B.B. Collette |author3= D.E. Facey |title=The Diversity of Fishes |publisher=Blackwell Science |year=1997 |isbn=978-0-86542-256-8 |pages=33–36}}
* {{cite journal | last1 = Schultze | first1 = H.P. | year = 2016 | title = Scales, enamel, cosmine, ganoine, and early osteichthyans | journal = Comptes Rendus Palevol | volume = 15 | issue = 1–2| pages = 83–102 | doi = 10.1016/j.crpv.2015.04.001 | doi-access = free }}
* {{cite journal | last1 = Mongera | first1 = A. | last2 = Nüsslein-Volhard | first2 = C. | year = 2013 | title = Scales of fish arise from mesoderm | journal = Current Biology | volume = 23 | issue = 9| pages = R338–R339 | doi = 10.1016/j.cub.2013.02.056 | pmid = 23660349 | doi-access = free }}
* {{Cite journal| first1 = P. T.| title = Fish scale development: Hair today, teeth and scales yesterday?| journal = Current Biology| volume = 11| last1 = Sharpe| issue = 18| pages = R751–R752| year = 2001| pmid = 11566120| doi = 10.1016/S0960-9822(01)00438-9 | s2cid = 18868124| doi-access = free}}
* {{cite journal|author=Turner, S.|author2=Tarling, D. H. |year=1982 |title=Thelodont and other agnathan distributions as tests of Lower Paleozoic continental reconstructions |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |volume=39 |pages=295–311 |doi=10.1016/0031-0182(82)90027-X|issue=3–4|bibcode=1982PPP....39..295T }}
* {{cite journal | author = Märss, T. | year = 2006 | title = Exoskeletal ultrasculpture of early vertebrates | journal =[[Journal of Vertebrate Paleontology]] | volume = 26 | issue = 2 | pages = 235–252 | doi = 10.1671/0272-4634(2006)26[235:EUOEV]2.0.CO;2}}
* {{cite book |author=Janvier, Philippe |title=Early Vertebrates |publisher=[[Oxford University Press]] |year=1998 |isbn=978-0-19-854047-2 |chapter=Early vertebrates and their extant relatives |pages=123–127}}
* {{cite journal | doi = 10.1080/02724634.1986.10011593 | author = Märss, T. | year = 1986 | title = Squamation of the thelodont agnathan ''Phlebolepis'' | journal = [[Journal of Vertebrate Paleontology]] | volume = 6 | issue = 1 | pages = 1–11}}
* {{cite journal | author = Botella, H. |author2=J. I. Valenzuela-Rios |author3=P. Carls | year = 2006 | title = A New Early Devonian thelodont from Celtiberia (Spain), with a revision of Spanish thelodonts |journal=[[Palaeontology (journal)|Palaeontology]] | volume = 49 | issue = 1 | pages = 141–154 | doi = 10.1111/j.1475-4983.2005.00534.x}}
* {{Cite book |author=Turner, S. |chapter = Monophyly and interrelationships of the Thelodonti |title=Early Vertebrates and Related Problems of Evolutionary Biology |editor=M. M. Chang |editor2=Y. H. Liu |editor3=G. R. Zhang |pages = 87–119 |publisher = Science Press, Beijing |year = 1991}}
* {{cite journal | last1 = Ferrón | first1 = Humberto G. | last2 = Botella | first2 = Héctor | year = 2017 | title = Squamation and ecology of thelodonts | journal = PLOS ONE | volume = 12 | issue = 2| page = e0172781 | doi = 10.1371/journal.pone.0172781 | pmid = 28241029 | pmc = 5328365 | bibcode = 2017PLoSO..1272781F | doi-access = free }}
* {{Cite journal|last1=Bergen|first1=Dylan J. M.|last2=Kague|first2=Erika|last3=Hammond|first3=Chrissy L.|date=2019|title=Zebrafish as an Emerging Model for Osteoporosis: A Primary Testing Platform for Screening New Osteo-Active Compounds|journal=Frontiers in Endocrinology|language=en|volume=10|page=6|doi=10.3389/fendo.2019.00006|pmid=30761080|pmc=6361756|issn=1664-2392|doi-access=free}}
* {{Cite journal|last1=de Vrieze|first1=E.|last2=van Kessel|first2=M. A. H. J.|last3=Peters|first3=H. M.|last4=Spanings|first4=F. A. T.|last5=Flik|first5=G.|last6=Metz|first6=J. R.|date=2014-02-01|title=Prednisolone induces osteoporosis-like phenotype in regenerating zebrafish scales|journal=Osteoporosis International|language=en|volume=25|issue=2|pages=567–578|doi=10.1007/s00198-013-2441-3|pmid=23903952|s2cid=21829206|issn=1433-2965}}
* {{Cite journal | last1 = Zylberberg | first1 = L. | last2 = Sire | first2 = J. -Y. | last3 = Nanci | first3 = A. | doi = 10.1002/(SICI)1097-0185(199709)249:1<86::AID-AR11>3.0.CO;2-X | title = Immunodetection of amelogenin-like proteins in the ganoine of experimentally regenerating scales of Calamoichthys calabaricus, a primitive actinopterygian fish | journal = The Anatomical Record | volume = 249 | issue = 1 | pages = 86–95 | year = 1997 | pmid = 9294653 | doi-access = free }}
* {{Cite journal|last1=Sire|first1=Jean-Yves|last2=Donoghue|first2=Philip C. J.|last3=Vickaryous|first3=Matthews K.|title=Origin and evolution of the integumentary skeleton in non-tetrapod vertebrates|journal=Journal of Anatomy|language=en|volume=214|issue=4|pages=409–440|doi=10.1111/j.1469-7580.2009.01046.x|issn=0021-8782|pmc=2736117|pmid=19422423|year=2009}}
* {{Cite journal | last1 = Richter | first1 = M. | title = A microstructural study of the ganoine tissue of selected lower vertebrates | doi = 10.1006/zjls.1995.0023 | journal = Zoological Journal of the Linnean Society | volume = 114 | issue = 2 | pages = 173–212 | year = 1995 }}
* {{Cite journal | last1 = Bruet | first1 = B. J. F. | last2 = Song | first2 = J. | last3 = Boyce | first3 = M. C. | last4 = Ortiz | first4 = C. | title = Materials design principles of ancient fish armour | doi = 10.1038/nmat2231 | journal = Nature Materials | volume = 7 | issue = 9 | pages = 748–756 | year = 2008 | pmid = 18660814|bibcode = 2008NatMa...7..748B }}
{{refend}}
{{refend}}


== Spoljašnje veze ==
== Spoljašnje veze ==
* {{Commonscat inline-lat|Scale (anatomy)}}
* {{Commonscat inline-lat|Scale (anatomy)}}
* [https://scholarworks.wm.edu/cgi/viewcontent.cgi?referer=https://www.google.com/&httpsredir=1&article=1544&context=reports Hydrodynamic aspects of shark scales]
* [https://asknature.org/strategy/scales-manipulate-flow/#.W6tTVvloSHs Fish scales and flow manipulation]


{{Authority control-lat}}
{{Authority control-lat}}
{{Klica-biologija}}


[[Категорија:Анатомија животиња]]
[[Категорија:Анатомија животиња]]

Верзија на датум 29. мај 2022. у 19:41

Шаблон:Short description

Lustra
Izbočene krljušti kolubridne zmije (Nerodia fasciata)

Lustra ili krljušt predstavlja narodni termin za pločice koje prekrivaju kožu ribe, dok je stručni naziv ljuska. U većini bioloških nomenklatura, krljušt (grčki λεπίς lepis, latinski squama) mala je kruta ploča koja raste iz kože životinje da bi joj se pružila zaštita. Kod vrsta lepidopterana (leptiri i moljci), ljuske su ploče na površini krila insekata i pružaju obojenje. Krljušti su prilično česte i razvijale su se više puta kroz konvergentnu evoluciju, sa različitim strukturama i funkcijama.

Krljušti se generalno klasifikuju kao deo integumentarnog sistema. Postoje različite vrste krljušti prema obliku i klasi životinje.

Riblje krljušti

Riblje krljušti su dermalnog porekla, specifično mezodermnot. Ova činjenica ih paleontološki razlikuje od krljušti gmizavaca. Genetski, isti geni koji su uključeni u razvoj zuba i dlaka kod sisara, takođe su uključeni u razvoj krljušti.[1]

Fish scales are dermally derived, specifically in the mesoderm. This fact distinguishes them from reptile scales paleontologically. Genetically, the same genes involved in tooth and hair development in mammals are also involved in scale development.[2]

Cosmoid scales

True cosmoid scales can only be found on the Sarcopterygians. The inner layer of the scale is made of lamellar bone. On top of this lies a layer of spongy or vascular bone and then a layer of dentine-like material called cosmine. The upper surface is keratin. The coelacanth has modified cosmoid scales that lack cosmine and are thinner than true cosmoid scales.

Ganoid scales

Ganoid scales can be found on gars (family Lepisosteidae), bichirs, and reedfishes (family Polypteridae). Ganoid scales are similar to cosmoid scales, but a layer of ganoin lies over the cosmine layer and under the enamel. Ganoin scales are diamond shaped, shiny, and hard. Within the ganoin are guanine compounds, iridescent derivatives of guanine found in a DNA molecule.[3] The iridescent property of these chemicals provide the ganoin its shine.

Placoid scales

Placoid scales are found on cartilaginous fish including sharks and stingrays. These scales, also called denticles, are similar in structure to teeth, and have one median spine and two lateral spines. The modern jawed fish ancestors, the jawless ostracoderms and later jawed placoderms, may have had scales with the properties of both placoid and ganoid scales.

Leptoid scales

Leptoid scales are found on higher-order bony fish. As they grow they add concentric layers. They are arranged so as to overlap in a head-to-tail direction, like roof tiles, allowing a smoother flow of water over the body and therefore reducing drag.[4] They come in two forms:

  • Cycloid scales have a smooth outer edge, and are most common on fish with soft fin rays, such as salmon and carp.
  • Ctenoid scales have a toothed outer edge, and are usually found on fish with spiny fin rays, such as bass and crappie.

Reptilian scales

Brightly colored scales on a gold dust day gecko

Reptile scale types include: cycloid, granular (which appear bumpy), and keeled (which have a center ridge). Scales usually vary in size, the stouter, larger scales cover parts that are often exposed to physical stress (usually the feet, tail and head), while scales are small around the joints for flexibility. Most snakes have extra broad scales on the belly, each scale covering the belly from side to side.

The scales of all reptiles have an epidermal component (what one sees on the surface), but many reptiles, such as crocodilians and turtles, have osteoderms underlying the epidermal scale. Such scales are more properly termed scutes. Snakes, tuataras and many lizards lack osteoderms. All reptilian scales have a dermal papilla underlying the epidermal part, and it is there that the osteoderms, if present, would be formed.

Avian scales

Scales on talons of a Steller's sea eagle (Haliaeetus pelagicus)

Birds' scales are found mainly on the toes and metatarsus, but may be found further up on the ankle in some birds. The scales and scutes of birds were thought to be homologous to those of reptiles,[5] but are now agreed to have evolved independently, being degenerate feathers.[6][7]

Mammalian scales

Scale-covered Indian pangolin

An example of a scaled mammal is the pangolin. Its scales are made of keratin and are used for protection, similar to an armadillo's armor. They have been convergently evolved, being unrelated to mammals' distant reptile-like ancestors (since therapsids lost scales), except that they use a similar gene.

On the other hand, the musky rat-kangaroo has scales on its feet and tail.[8] The precise nature of its purported scales has not been studied in detail, but they appear to be structurally different from pangolin scales.

Anomalures also have scales on their tail undersides.[9]

Foot pad epidermal tissues in most mammal species have been compared to the scales of other vertebrates. They are likely derived from cornification processes or stunted fur much like avian reticulae are derived from stunted feathers.[10]

Arthropod scales

Scales on a luna moth (Actias luna)

Butterflies and moths - the order Lepidoptera (Greek "scale-winged") - have membranous wings covered in delicate, powdery scales, which are modified setae. Each scale consists of a series of tiny stacked platelets of organic material, and butterflies tend to have the scales broad and flattened, while moths tend to have the scales narrower and more hair like. Scales are usually pigmented, but some types of scales are metallic, or iridescent, without pigments; because the thickness of the platelets is on the same order as the wavelength of visible light the plates lead to structural coloration and iridescence through the physical phenomenon described as thin-film optics. The most common color produced in this fashion is blue, such as in the Morpho butterflies. Other colors can be seen on the sunset moth.

Reference

  1. ^ Sharpe, P. T. (2001). „Fish scale development: Hair today, teeth and scales yesterday?”. Current Biology. 11 (18): R751—R752. PMID 11566120. doi:10.1016/S0960-9822(01)00438-9. 
  2. ^ Sharpe PT (септембар 2001). „Fish scale development: Hair today, teeth and scales yesterday?”. Current Biology. 11 (18): R751—2. PMID 11566120. S2CID 18868124. doi:10.1016/S0960-9822(01)00438-9Слободан приступ. 
  3. ^ Levy-Lior A, Pokroy B, Levavi-Sivan B, Leiserowitz L, Weiner S, Addadi L (2008). „Biogenic guanine crystals from the skin of fish may be designed to enhance light reflectance”. Crystal Growth & Design. 8 (2). стр. 507—511. doi:10.1021/cg0704753. 
  4. ^ Ballard, Bonnie; Cheek, Ryan (2. 7. 2016). Exotic Animal Medicine for the Veterinary Technician. John Wiley & Sons. ISBN 978-1-118-92421-1. 
  5. ^ Lucas, Alfred M. (1972). Avian Anatomy - integument. East Lansing, Michigan, USA: USDA Avian Anatomy Project, Michigan State University. стр. 67, 344, 394—601. 
  6. ^ Zheng X, Zhou Z, Wang X, Zhang F, Zhang X, Wang Y, Wei G, Wang S, Xu X (март 2013). „Hind wings in Basal birds and the evolution of leg feathers”. Science. 339 (6125): 1309—12. Bibcode:2013Sci...339.1309Z. PMID 23493711. S2CID 206544531. doi:10.1126/science.1228753. 
  7. ^ Sawyer RH, Knapp LW (август 2003). „Avian skin development and the evolutionary origin of feathers”. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution. 298 (1): 57—72. PMID 12949769. doi:10.1002/jez.b.26. 
  8. ^ „Musky Rat Kangaroo”. Rainforest-Australia.com. Архивирано из оригинала 2013-10-30. г. Приступљено 2014-03-08. 
  9. ^ Fleming T, Macdonald D, ур. (1984). The Encyclopedia of Mammals. New York: Facts on File. стр. 632. ISBN 0-87196-871-1. 
  10. ^ Spearman, Richard Ian Campbell (1973). The integument: a textbook of skin biologyНеопходна слободна регистрација. Cambridge University Press. ISBN 978-0-521-20048-6. 

Literatura

Spoljašnje veze