Пређи на садржај

Блазар — разлика између измена

С Википедије, слободне енциклопедије
Садржај обрисан Садржај додат
.
.
Ред 4: Ред 4:


'''Блазар''' је врста [[активна галаксија|активних галаксија]]. Ова класа је најпроменљивија у свом зрачењу од свих класа активних галаксија.<ref>{{cite journal |last1=Urry |first1=C. M. |last2=Padovani |first2=P. |title=Unified Schemes for Radio-Loud Active Galactic Nuclei |journal=Publications of the Astronomical Society of the Pacific |date=1995 |volume=107 |page=803 |doi=10.1086/133630 |bibcode=1995PASP..107..803U|arxiv=astro-ph/9506063 |s2cid=17198955 }}</ref> Укључује -{BL Lac}- објекте и неке од снажно променљивих [[квазар]]а. Име је добијено фузијом назива -{''BL Lacertae''}- ([[BL Гуштера|-{BL}- Гуштера]]) и ''квазар''. По моделу активних галаксија, активност блазара је проузрокована млазевимa (џетовима) енергетских честица ([[електрон]]и, [[протон]]и, [[алфа-распад|алфа честице]]...) из језгра активне галаксије који су у правцу, или скоро у правцу, посматрачеве линије вида.<ref>„Блазар“. У ''-{Encyclopedia of Astronomy & Astrophysics}-'', -{Nature Publishing Group}-, 2001</ref>
'''Блазар''' је врста [[активна галаксија|активних галаксија]]. Ова класа је најпроменљивија у свом зрачењу од свих класа активних галаксија.<ref>{{cite journal |last1=Urry |first1=C. M. |last2=Padovani |first2=P. |title=Unified Schemes for Radio-Loud Active Galactic Nuclei |journal=Publications of the Astronomical Society of the Pacific |date=1995 |volume=107 |page=803 |doi=10.1086/133630 |bibcode=1995PASP..107..803U|arxiv=astro-ph/9506063 |s2cid=17198955 }}</ref> Укључује -{BL Lac}- објекте и неке од снажно променљивих [[квазар]]а. Име је добијено фузијом назива -{''BL Lacertae''}- ([[BL Гуштера|-{BL}- Гуштера]]) и ''квазар''. По моделу активних галаксија, активност блазара је проузрокована млазевимa (џетовима) енергетских честица ([[електрон]]и, [[протон]]и, [[алфа-распад|алфа честице]]...) из језгра активне галаксије који су у правцу, или скоро у правцу, посматрачеве линије вида.<ref>„Блазар“. У ''-{Encyclopedia of Astronomy & Astrophysics}-'', -{Nature Publishing Group}-, 2001</ref>
{{рут}}
The blazar category includes [[BL Lacertae object|BL Lac objects]] and [[OVV quasar|optically violently variable (OVV) quasars]]. The generally accepted theory is that BL Lac objects are intrinsically low-power [[radio galaxy|radio galaxies]] while OVV quasars are intrinsically powerful radio-loud [[quasar]]s. The name "blazar" was coined in 1978 by astronomer [[Edward Spiegel]] to denote the combination of these two classes.<ref>{{cite journal | last = Kellermann | first = Kenneth| title = Variability of Blazars | date = 2 October 1992 | journal = Science | volume = 258 | issue = 5079 | pages = 145–146| doi = 10.1126/science.258.5079.145-a| pmid = 17835899}}</ref>

In visible-wavelength images, most blazars appear compact and pointlike, but high-resolution images reveal that they are located at the centers of [[Elliptical galaxy|elliptical galaxies]].<ref>{{cite journal |last1=Urry |first1=C. M. |last2=Scarpa |first2=R. |last3=O'Dowd |first3=M. |last4=Falomo |first4=R. |last5=Pesce |first5=J. E. |last6=Treves |first6=A. |title=The Hubble Space Telescope Survey of BL Lacertae Objects. II. Host Galaxies |journal=The Astrophysical Journal |date=2000 |volume=532 |issue=2 |page=816 |doi=10.1086/308616 |bibcode=2000ApJ...532..816U|arxiv=astro-ph/9911109 |s2cid=17721022 }}</ref>

Blazars are important topics of research in [[astronomy]] and [[high-energy astronomy|high-energy astrophysics]]. Blazar research includes investigation of the properties of [[accretion disk]]s and [[astrophysical jet|jets]], the central [[supermassive black hole]]s and surrounding host [[galaxy|galaxies]], and the emission of high-energy [[photons]], [[cosmic ray]]s, and [[neutrino]]s.

In July 2018, the [[IceCube Neutrino Observatory]] team traced a neutrino that hit its [[Antarctica]]-based detector in September 2017 to its point of origin in a blazar 3.7 billion [[light-year]]s away. This was the first time that a [[neutrino detector]] was used to locate an object in space.<ref name="NYT-2018">{{cite news |last=Overbye |first=Dennis |author-link=Dennis Overbye |title=It Came From a Black Hole, and Landed in Antarctica - For the first time, astronomers followed cosmic neutrinos into the fire-spitting heart of a supermassive blazar. |url=https://www.nytimes.com/2018/07/12/science/space-neutrinos-blazar.html |date=12 July 2018 |work=[[The New York Times]] |access-date=13 July 2018 }}</ref><ref name="Guardian-2018">{{cite web |title=Neutrino that struck Antarctica traced to galaxy 3.7bn light years away |url=https://www.theguardian.com/science/2018/jul/12/neutrino-that-struck-antarctica-traced-to-galaxy-37bn-light-years-away |work=The Guardian |date=12 July 2018 |access-date=12 July 2018 }}</ref>

== Структура ==
[[File:SDSS Mrk 421.jpg|thumb|250px|[[Sloan Digital Sky Survey]] image of blazar [[Markarian 421]], illustrating the bright nucleus and elliptical host galaxy]]

Blazars, like all active galactic nuclei (AGN), are thought to be ultimately powered by material falling onto a [[supermassive black hole]] at the center of the host galaxy. Gas, dust and the occasional star are captured and spiral into this central black hole, creating a hot [[accretion disc|accretion disk]] which generates enormous amounts of energy in the form of [[photon]]s, [[electron]]s, [[positron]]s and other [[elementary particle]]s. This region is relatively small, approximately 10<sup>−3</sup> [[parsec]]s in size.

There is also a larger opaque [[toroid]] extending several parsecs from the black hole, containing a hot gas with embedded regions of higher density. These "clouds" can absorb and re-emit energy from regions closer to the black hole. On Earth, the clouds are detected as [[spectral line|emission lines]] in the blazar [[electromagnetic spectrum|spectrum]].

Perpendicular to the accretion disk, a pair of [[relativistic jet]]s carries highly energetic [[Plasma (physics)|plasma]] away from the AGN. The jet is [[Collimated beam|collimated]] by a combination of intense magnetic fields and powerful winds from the accretion disk and toroid. Inside the jet, high energy photons and particles interact with each other and the strong magnetic field. These relativistic jets can extend as far as many tens of [[parsec|kiloparsecs]] from the central black hole.

All of these regions can produce a variety of observed energy, mostly in the form of a nonthermal spectrum ranging from very low-frequency radio to extremely energetic gamma rays, with a high [[Polarization (waves)|polarization]] (typically a few percent) at some frequencies. The nonthermal spectrum consists of [[synchrotron radiation]] in the radio to X-ray range, and [[Compton scattering|inverse Compton emission]] in the X-ray to gamma-ray region. A thermal spectrum peaking in the ultraviolet region and faint optical emission lines are also present in OVV quasars, but faint or non-existent in BL Lac objects.

== Садашње гледиште ==
Blazars are thought to be [[active galaxy|active galactic nuclei]], with relativistic jets oriented close to the line of sight with the observer.

The special jet orientation explains the general peculiar characteristics: high observed luminosity, very rapid variation, high polarization (compared to non-blazar quasars), and the apparent [[superluminal jet|superluminal motions]] detected along the first few parsecs of the jets in most blazars.

A Unified Scheme or Unified Model has become generally accepted, where highly variable quasars are related to intrinsically powerful radio galaxies, and BL Lac objects are related to intrinsically weak radio galaxies.<ref>{{Cite web|title = Black Hole 'Batteries' Keep Blazars Going and Going|date = 24 February 2015|url = http://www.nasa.gov/content/goddard/black-hole-batteries-keep-blazars-going-and-going|access-date = 2015-05-31}}</ref> The distinction between these two connected populations explains the difference in emission line properties in blazars.<ref>{{Cite journal|title = The Cosmic Evolution of Fermi BL Lacertae Objects|journal = The Astrophysical Journal|date = 2014-01-01|issn = 0004-637X|pages = 73|volume = 780|issue = 1|doi = 10.1088/0004-637X/780/1/73|language = en|first1 = M.|last1 = Ajello|first2 = R. W.|last2 = Romani|first3 = D.|last3 = Gasparrini|first4 = M. S.|last4 = Shaw|first5 = J.|last5 = Bolmer|first6 = G.|last6 = Cotter|first7 = J.|last7 = Finke|first8 = J.|last8 = Greiner|first9 = S. E.|last9 = Healey|arxiv = 1310.0006 |bibcode = 2014ApJ...780...73A |s2cid = 8733720}}</ref>

Other explanations for the relativistic jet/unified scheme approach which have been proposed include gravitational microlensing and coherent emission from the relativistic jet. Neither of these explains the overall properties of blazars. For example, microlensing is achromatic. That is, all parts of a spectrum would rise and fall together. This is not observed in blazars. However, it is possible that these processes, as well as more complex plasma physics, can account for specific observations or some details.

Examples of blazars include [[3C 454.3]], [[3C 273]], [[BL Lacertae]], [[PKS 2155-304]], [[Markarian 421]], [[Markarian 501]] and [[S5 0014+81]]. Markarian 501 and S5 0014+81 are also called "TeV Blazars" for their high energy (teraelectron-volt range) gamma-ray emission.

In July 2018, a blazar called [[TXS 0506+056]]<ref>{{Cite web|url=http://simbad.u-strasbg.fr/simbad/sim-id?Ident=TXS+0506+056|title=SIMBAD query result|website=simbad.u-strasbg.fr|access-date=2018-07-13}}</ref> was identified as source of high-energy neutrinos by the [[IceCube Neutrino Observatory|IceCube]] project.<ref name="Guardian-2018" /><ref name="BBC-2018" /><ref>{{Cite web|url=https://icecube.wisc.edu/news/view/586|title=IceCube Neutrinos Point to Long-Sought Cosmic Ray Accelerator|website=icecube.wisc.edu|date=12 July 2018|language=en|access-date=2018-07-13}}</ref>


== Референце ==
== Референце ==
{{reflist}}
{{reflist|refs=
<ref name="BBC-2018">{{cite web |title=Source of cosmic 'ghost' particle revealed |url=https://www.bbc.com/news/science-environment-44786125 |work=BBC |date=12 July 2018 |access-date=12 July 2018 }}</ref>

}}

== Литература ==
{{refbegin|30em}}
* {{cite journal | last1 = Eggen | first1 = O. J. | last2 = Lynden-Bell | first2 = D. | last3 = Sandage | first3 = A. R. | title = Evidence from the motions of old stars that the Galaxy collapsed | bibcode = 1962ApJ...136..748E | date = 1962 | journal = [[The Astrophysical Journal]] | volume = 136 | pages = 748 | doi = 10.1086/147433}}
* {{cite journal | last = Searle | first = L. |author2=Zinn, R. | date = 1978 | journal = [[The Astrophysical Journal]] | title = Compositions of halo clusters and the formation of the galactic halo | bibcode = 1978ApJ...225..357S | volume = 225 | pages = 357–379 | doi = 10.1086/156499}}
* {{Cite journal|last1=White|first1=Simon|last2=Rees|first2=Martin|date=1978|title=Core condensation in heavy halos: a two-stage theory for galaxy formation and clustering.|journal=MNRAS|doi=10.1093/mnras/183.3.341|bibcode = 1978MNRAS.183..341W|volume=183|issue=3|pages=341–358|doi-access=free}}
* {{Cite book|title=Cosmic Collisions: The Hubble Atlas of Merging Galaxies.|last1=Christensen|first1=L.L.|last2=de Martin|first2=D.|last3=Shida|first3=R.Y.|publisher=Springer|year=2009|isbn=9780387938530}}
* {{Cite journal|last1=Steinmetz|first1=Matthias|last2=Navarro|first2=Julio F.|date=2002-06-01|title=The hierarchical origin of galaxy morphologies|journal=New Astronomy|volume=7|issue=4|pages=155–160|doi=10.1016/S1384-1076(02)00102-1|arxiv = astro-ph/0202466 |bibcode = 2002NewA....7..155S |citeseerx=10.1.1.20.7981|s2cid=14153669 }}
* {{Cite book|title=Hot Interstellar Matter in Elliptical Galaxies|last=Kim|first=Dong-Woo|publisher=Springer|year=2012|isbn=978-1-4614-0579-5|location=New York}}
* {{Cite journal|last1=Churazov|first1=E.|last2=Sazonov|first2=S.|last3=Sunyaev|first3=R.|last4=Forman|first4=W.|last5=Jones|first5=C.|last6=Böhringer|first6=H.|date=2005-10-01|title=Supermassive black holes in elliptical galaxies: switching from very bright to very dim|journal=Monthly Notices of the Royal Astronomical Society: Letters|language=en|volume=363|issue=1|pages=L91–L95|doi=10.1111/j.1745-3933.2005.00093.x|issn=1745-3925|arxiv = astro-ph/0507073 |bibcode = 2005MNRAS.363L..91C |s2cid=119379229 }}
* {{Cite journal|last1=Gebhardt|first1=Karl|last2=Bender|first2=Ralf|last3=Bower|first3=Gary|last4=Dressler|first4=Alan|last5=Faber|first5=S. M.|last6=Filippenko|first6=Alexei V.|last7=Richard Green|last8=Grillmair|first8=Carl|last9=Ho|first9=Luis C.|date=2000-01-01|title=A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion|journal=The Astrophysical Journal Letters|language=en|volume=539|issue=1|pages=L13|doi=10.1086/312840|issn=1538-4357|arxiv = astro-ph/0006289 |bibcode = 2000ApJ...539L..13G |s2cid=11737403 }}
* {{Cite journal|last=Barnes|first=Joshua E.|date=1989-03-09|title=Evolution of compact groups and the formation of elliptical galaxies|journal=Nature|language=en|volume=338|issue=6211|pages=123–126|doi=10.1038/338123a0|bibcode = 1989Natur.338..123B |s2cid=4249960 }}
* {{Cite web|url=https://www.noao.edu/outreach/current/collide_hilite.html|title=Current Science Highlights: When Galaxies Collide|website=www.noao.edu|access-date=2016-04-25}}
* {{Cite web|url=http://curious.astro.cornell.edu/about-us/96-the-%20universe/galaxies/formation-and-evolution/530-what-happens-when-galaxies-collide-beginner|title=What happens when galaxies collide? (Beginner) - Curious About Astronomy? Ask an Astronomer|last=Saintonge|first=Amelie|website=curious.astro.cornell.edu|access-date=2016-04-25}}
* {{Cite journal|last1=Cox|first1=T. J.|last2=Loeb|first2=Abraham|date=2008-05-01|title=The collision between the Milky Way and Andromeda|journal=Monthly Notices of the Royal Astronomical Society|language=en|volume=386|issue=1|pages=461–474|doi=10.1111/j.1365-2966.2008.13048.x|issn=0035-8711|arxiv = 0705.1170 |bibcode = 2008MNRAS.386..461C |s2cid=14964036 }}
* {{cite web|title=Giant Galaxies Die from the Inside Out|url=http://www.eso.org/public/news/eso1516/|website=www.eso.org|publisher=European Southern Observatory|access-date=21 April 2015}}
* {{Cite book|title=An Introduction to Modern Astrophysics|last1=Carroll|first1=Bradley W.|last2=Ostlie|first2=Dale A.|publisher=Pearson|year=2007|isbn=978-0805304022|location=New York}}
* {{Cite journal|last1=Blanton|first1=Michael R.|last2=Hogg|first2=David W.|last3=Bahcall|first3=Neta A.|last4=Baldry|first4=Ivan K.|last5=Brinkmann|first5=J.|last6=Csabai|first6=István|last7=Daniel Eisenstein|last8=Fukugita|first8=Masataka|last9=Gunn|first9=James E.|date=2003-01-01|title=The Broadband Optical Properties of Galaxies with Redshifts 0.02 < z < 0.22|journal=The Astrophysical Journal|language=en|volume=594|issue=1|pages=186|doi=10.1086/375528|issn=0004-637X|arxiv = astro-ph/0209479 |bibcode = 2003ApJ...594..186B |s2cid=67803622 }}
* {{Cite journal|last1=Faber|first1=S. M.|last2=Willmer|first2=C. N. A.|last3=Wolf|first3=C.|last4=Koo|first4=D. C.|last5=Weiner|first5=B. J.|last6=Newman|first6=J. A.|last7=Im|first7=M.|last8=Coil|first8=A. L.|last9=C. Conroy|date=2007-01-01 |title=Galaxy Luminosity Functions to z 1 from DEEP2 and COMBO-17: Implications for Red Galaxy Formation|journal=The Astrophysical Journal|language=en|volume=665 |issue=1|pages=265–294|doi=10.1086/519294|issn=0004-637X|arxiv = astro-ph/0506044 |bibcode = 2007ApJ...665..265F |s2cid=15750425 }}
* {{Cite journal|last=Blanton|first=Michael R.|date=2006-01-01|title=Galaxies in SDSS and DEEP2: A Quiet Life on the Blue Sequence?|journal=The Astrophysical Journal|language=en|volume=648|issue=1|pages=268–280|doi=10.1086/505628|issn=0004-637X|arxiv = astro-ph/0512127 |bibcode = 2006ApJ...648..268B |s2cid=119426210 }}
* {{Cite journal|last1=Gabor|first1=J. M.|last2=Davé|first2=R.|last3=Finlator|first3=K.|last4=Oppenheimer|first4=B. D.|date=2010-09-11|title=How is star formation quenched in massive galaxies?|journal=Monthly Notices of the Royal Astronomical Society|language=en|volume=407|issue=2|pages=749–771|doi=10.1111/j.1365-2966.2010.16961.x|issn=0035-8711|arxiv = 1001.1734 |bibcode = 2010MNRAS.407..749G |s2cid=85462129 }}
* {{Cite journal|last1=Kereš|first1=Dušan|last2=Katz|first2=Neal|last3=Davé|first3=Romeel|last4=Fardal|first4=Mark|last5=Weinberg|first5=David H.|date=2009-07-11|title=Galaxies in a simulated ΛCDM universe – II. Observable properties and constraints on feedback|journal=Monthly Notices of the Royal Astronomical Society|language=en|volume=396|issue=4|pages=2332–2344|doi=10.1111/j.1365-2966.2009.14924.x|issn=0035-8711|arxiv = 0901.1880 |bibcode = 2009MNRAS.396.2332K |s2cid=4500254 }}
* {{Cite journal|last1=Peng|first1=Y.|last2=Maiolino|first2=R.|last3=Cochrane|first3=R.|title=Strangulation as the primary mechanism for shutting down star formation in galaxies|journal=Nature|volume=521|issue=7551|pages=192–195 |doi=10.1038/nature14439|arxiv = 1505.03143 |bibcode = 2015Natur.521..192P|pmid=25971510|year=2015|s2cid=205243674 }}
* {{Cite journal|last1=Bianconi|first1=Matteo|last2=Marleau|first2=Francine R.|last3=Fadda|first3=Dario|title=Star formation and black hole accretion activity in rich local clusters of galaxies|journal=Astronomy & Astrophysics|volume=588|doi=10.1051/0004-6361/201527116|arxiv = 1601.06080 |bibcode = 2016A&A...588A.105B|page=A105|year=2016|s2cid=56310943 }}

{{refend}}


== Спољашње везе ==
== Спољашње везе ==

Верзија на датум 5. јул 2022. у 00:39

A blazar.
Уметников утисак о блазару
Блазар са ознаком H0323+02 снимљен са ЕСО опсерваторије

Блазар је врста активних галаксија. Ова класа је најпроменљивија у свом зрачењу од свих класа активних галаксија.[1] Укључује BL Lac објекте и неке од снажно променљивих квазара. Име је добијено фузијом назива BL Lacertae (BL Гуштера) и квазар. По моделу активних галаксија, активност блазара је проузрокована млазевимa (џетовима) енергетских честица (електрони, протони, алфа честице...) из језгра активне галаксије који су у правцу, или скоро у правцу, посматрачеве линије вида.[2]

The blazar category includes BL Lac objects and optically violently variable (OVV) quasars. The generally accepted theory is that BL Lac objects are intrinsically low-power radio galaxies while OVV quasars are intrinsically powerful radio-loud quasars. The name "blazar" was coined in 1978 by astronomer Edward Spiegel to denote the combination of these two classes.[3]

In visible-wavelength images, most blazars appear compact and pointlike, but high-resolution images reveal that they are located at the centers of elliptical galaxies.[4]

Blazars are important topics of research in astronomy and high-energy astrophysics. Blazar research includes investigation of the properties of accretion disks and jets, the central supermassive black holes and surrounding host galaxies, and the emission of high-energy photons, cosmic rays, and neutrinos.

In July 2018, the IceCube Neutrino Observatory team traced a neutrino that hit its Antarctica-based detector in September 2017 to its point of origin in a blazar 3.7 billion light-years away. This was the first time that a neutrino detector was used to locate an object in space.[5][6]

Структура

Sloan Digital Sky Survey image of blazar Markarian 421, illustrating the bright nucleus and elliptical host galaxy

Blazars, like all active galactic nuclei (AGN), are thought to be ultimately powered by material falling onto a supermassive black hole at the center of the host galaxy. Gas, dust and the occasional star are captured and spiral into this central black hole, creating a hot accretion disk which generates enormous amounts of energy in the form of photons, electrons, positrons and other elementary particles. This region is relatively small, approximately 10−3 parsecs in size.

There is also a larger opaque toroid extending several parsecs from the black hole, containing a hot gas with embedded regions of higher density. These "clouds" can absorb and re-emit energy from regions closer to the black hole. On Earth, the clouds are detected as emission lines in the blazar spectrum.

Perpendicular to the accretion disk, a pair of relativistic jets carries highly energetic plasma away from the AGN. The jet is collimated by a combination of intense magnetic fields and powerful winds from the accretion disk and toroid. Inside the jet, high energy photons and particles interact with each other and the strong magnetic field. These relativistic jets can extend as far as many tens of kiloparsecs from the central black hole.

All of these regions can produce a variety of observed energy, mostly in the form of a nonthermal spectrum ranging from very low-frequency radio to extremely energetic gamma rays, with a high polarization (typically a few percent) at some frequencies. The nonthermal spectrum consists of synchrotron radiation in the radio to X-ray range, and inverse Compton emission in the X-ray to gamma-ray region. A thermal spectrum peaking in the ultraviolet region and faint optical emission lines are also present in OVV quasars, but faint or non-existent in BL Lac objects.

Садашње гледиште

Blazars are thought to be active galactic nuclei, with relativistic jets oriented close to the line of sight with the observer.

The special jet orientation explains the general peculiar characteristics: high observed luminosity, very rapid variation, high polarization (compared to non-blazar quasars), and the apparent superluminal motions detected along the first few parsecs of the jets in most blazars.

A Unified Scheme or Unified Model has become generally accepted, where highly variable quasars are related to intrinsically powerful radio galaxies, and BL Lac objects are related to intrinsically weak radio galaxies.[7] The distinction between these two connected populations explains the difference in emission line properties in blazars.[8]

Other explanations for the relativistic jet/unified scheme approach which have been proposed include gravitational microlensing and coherent emission from the relativistic jet. Neither of these explains the overall properties of blazars. For example, microlensing is achromatic. That is, all parts of a spectrum would rise and fall together. This is not observed in blazars. However, it is possible that these processes, as well as more complex plasma physics, can account for specific observations or some details.

Examples of blazars include 3C 454.3, 3C 273, BL Lacertae, PKS 2155-304, Markarian 421, Markarian 501 and S5 0014+81. Markarian 501 and S5 0014+81 are also called "TeV Blazars" for their high energy (teraelectron-volt range) gamma-ray emission.

In July 2018, a blazar called TXS 0506+056[9] was identified as source of high-energy neutrinos by the IceCube project.[6][10][11]

Референце

  1. ^ Urry, C. M.; Padovani, P. (1995). „Unified Schemes for Radio-Loud Active Galactic Nuclei”. Publications of the Astronomical Society of the Pacific. 107: 803. Bibcode:1995PASP..107..803U. S2CID 17198955. arXiv:astro-ph/9506063Слободан приступ. doi:10.1086/133630. 
  2. ^ „Блазар“. У Encyclopedia of Astronomy & Astrophysics, Nature Publishing Group, 2001
  3. ^ Kellermann, Kenneth (2. 10. 1992). „Variability of Blazars”. Science. 258 (5079): 145—146. PMID 17835899. doi:10.1126/science.258.5079.145-a. 
  4. ^ Urry, C. M.; Scarpa, R.; O'Dowd, M.; Falomo, R.; Pesce, J. E.; Treves, A. (2000). „The Hubble Space Telescope Survey of BL Lacertae Objects. II. Host Galaxies”. The Astrophysical Journal. 532 (2): 816. Bibcode:2000ApJ...532..816U. S2CID 17721022. arXiv:astro-ph/9911109Слободан приступ. doi:10.1086/308616. 
  5. ^ Overbye, Dennis (12. 7. 2018). „It Came From a Black Hole, and Landed in Antarctica - For the first time, astronomers followed cosmic neutrinos into the fire-spitting heart of a supermassive blazar.”. The New York Times. Приступљено 13. 7. 2018. 
  6. ^ а б „Neutrino that struck Antarctica traced to galaxy 3.7bn light years away”. The Guardian. 12. 7. 2018. Приступљено 12. 7. 2018. 
  7. ^ „Black Hole 'Batteries' Keep Blazars Going and Going”. 24. 2. 2015. Приступљено 2015-05-31. 
  8. ^ Ajello, M.; Romani, R. W.; Gasparrini, D.; Shaw, M. S.; Bolmer, J.; Cotter, G.; Finke, J.; Greiner, J.; Healey, S. E. (2014-01-01). „The Cosmic Evolution of Fermi BL Lacertae Objects”. The Astrophysical Journal (на језику: енглески). 780 (1): 73. Bibcode:2014ApJ...780...73A. ISSN 0004-637X. S2CID 8733720. arXiv:1310.0006Слободан приступ. doi:10.1088/0004-637X/780/1/73. 
  9. ^ „SIMBAD query result”. simbad.u-strasbg.fr. Приступљено 2018-07-13. 
  10. ^ „Source of cosmic 'ghost' particle revealed”. BBC. 12. 7. 2018. Приступљено 12. 7. 2018. 
  11. ^ „IceCube Neutrinos Point to Long-Sought Cosmic Ray Accelerator”. icecube.wisc.edu (на језику: енглески). 12. 7. 2018. Приступљено 2018-07-13. 

Литература

Спољашње везе