Инсектицид — разлика између измена

С Википедије, слободне енциклопедије
Садржај обрисан Садржај додат
м .
.
Ред 1: Ред 1:
{{short description|Пестицид који се користи против инсеката}}
[[Хемија|Хемијска]] [[отров]]на једињења која се користе против штетних [[инсекти|инсеката]]. У састав инсектицида, ради штедње и бољег растурања, обично се отровним супстанцама додаје неки „носач“, најчешће [[талк]], [[каолин]], [[вода]]. У састав инсектицида улазе и тзв. помоћне материје, које обезбеђују квашење, трајање и лебдење у води.<ref>{{harvnb|Yu|2008|pp=}}</ref><ref>{{cite web |title=Insecticides: Chemistries and Characteristics |url=http://ipmworld.umn.edu/chapters/bloomq.htm |access-date=02. 09. 2011 |archive-url=https://web.archive.org/web/20110617055654/http://ipmworld.umn.edu/chapters/bloomq.htm |archive-date=17. 06. 2011 |url-status=dead |df= }}</ref>
[[File:FLIT Spray Can 1.jpg|thumb|-{[[FLIT]]}- ручна пумпа за прскање инсектицида из 1928]]
[[File:Kente l.jpg|thumb|Фармер који прска инсектицид по дрвету индијског ораха у [[Танзанија]]]]
[[File:Pif Paf Insecticide.jpg|upright|thumb|right|Инсектицид из домаћинстваe]]


Данас је у употреби много врста инсектицида. Према физичком стању у тренутку примене разликују се: чврсти (прашковити), течни и гасовити инсектициди; према токсичном дејству на инсекте деле се на: утробне (унутрашње), додирне (контактне), гасовите и системичне отрове. Ова подела није алсолутна, јер неки инсектициди (поливалентни), делују истовремено [[утробно]], [[контактно]] и [[фумигантно]]. Ови отрови убијају инсекте углавном делујући на њихов централни нервни систем, тако бубашваба не угине од последица тровања, већ због тога што се преврнула на леђа и није могла да поново устане.
[[Хемија|Хемијска]] [[отров]]на једињења која се користе против штетних [[инсекти|инсеката]].<ref>{{cite web |url=http://www.iupac.org/publications/pac/2006/pdf/7811x2075.pdf |page=2123 |title=Glossary of Terms Relating to Pesticides |author=IUPAC |publisher=[[IUPAC]] |year=2006 |access-date=January 28, 2014}}</ref> У састав инсектицида, ради штедње и бољег растурања, обично се отровним супстанцама додаје неки „носач“, најчешће [[талк]], [[каолин]], [[вода]]. У састав инсектицида улазе и тзв. помоћне материје, које обезбеђују квашење, трајање и лебдење у води.<ref>{{harvnb|Yu|2008|pp=}}</ref><ref>{{cite web |title=Insecticides: Chemistries and Characteristics |url=http://ipmworld.umn.edu/chapters/bloomq.htm |access-date=02. 09. 2011 |archive-url=https://web.archive.org/web/20110617055654/http://ipmworld.umn.edu/chapters/bloomq.htm |archive-date=17. 06. 2011 |url-status=dead |df= }}</ref> Данас је у употреби много врста инсектицида. Према физичком стању у тренутку примене разликују се: чврсти (прашковити), течни и гасовити инсектициди; према токсичном дејству на инсекте деле се на: утробне (унутрашње), додирне (контактне), гасовите и системичне отрове. Ова подела није алсолутна, јер неки инсектициди (поливалентни), делују истовремено [[утробно]], [[контактно]] и [[фумигантно]]. Ови отрови убијају инсекте углавном делујући на њихов централни нервни систем, тако бубашваба не угине од последица тровања, већ због тога што се преврнула на леђа и није могла да поново устане.


Инсектициди укључују овициде и [[larvicides|ларвициде]] који се користе против [[Јаје|јаја]] инсеката и [[larva|ларви]], респективно. Инсектициди се користе у [[agriculture|пољопривреди]], [[medicine|медицини]], [[Производња|индустрији]] и од потрошача. Сматра се да су инсектициди један главни фактор повећања пољопривредне продуктивности 20. века.<ref name="EmdenPeakall1996">{{cite book|first1=H.F. |last1=van Emden|first2=David B. |last2=Peakall|title=Beyond Silent Spring|url={{google books |plainurl=y |id=PyjFtiNFVG0C}}|date=30 June 1996|publisher=Springer|isbn=978-0-412-72800-6}}</ref> Готово сви инсектициди имају потенцијал да значајно промене екосистеме; многи су токсични за људе и/или животиње; неки се концентришу ширећи се дуж ланца исхране.
== Референце ==
{{reflist|2}}


Инсектициди могу бити репелентни или нерепелентни. Друштвени инсекти попут мрава не могу да детектују нерепеланте и лако се пузе кроз њих. Када се врате у гнездо, са собом преносе инсектицид и излажу остале обитаваоце гнезда. Временом ово елиминише све мраве, укључујући и матицу. Ово је спорије од неких других метода, али обично у потпуности искорењује колонију мрава.<ref>{{cite web |url=http://store.doyourownpestcontrol.com/crawling-insects/ant-control-products/non-repellent-ant-spray# |title=Non-Repellent insecticides |website=Do-it-yourself Pest Control|access-date= 20 April 2017}}</ref>
== Литература ==

== Типови активности ==
{{anchor|Systemic}}{{рут}}
'''Systemic''' insecticides become incorporated and distributed systemically throughout the whole plant. When insects feed on the plant, they ingest the insecticide. Systemic insecticides produced by [[transgenic]] plants are called plant-incorporated protectants (PIPs). For instance, a gene that codes for a specific ''[[Bacillus thuringiensis]]'' biocidal protein was introduced into corn ([[maize]]) and other species. The plant manufactures the protein, which kills the insect when consumed.<ref>{{cite web|url=http://www.epa.gov|title=United States Environmental Protection Agency - US EPA}}</ref>

{{anchor|Contact}}
'''Contact''' insecticides are toxic to insects upon direct contact. These can be inorganic insecticides, which are metals and include the commonly used [[sulfur]], and the less commonly used [[arsenate]]s, [[copper]] and [[fluorine]] compounds. Contact insecticides can also be organic insecticides, i.e. organic chemical compounds, synthetically produced, and comprising the largest numbers of pesticides used today. Or they can be natural compounds like pyrethrum, neem oil etc.
Contact insecticides usually have no residual activity.

Efficacy can be related to the quality of [[pesticide application]], with small droplets, such as [[aerosol]]s often improving performance.<ref>{{cite web|url=http://www.dropdata.org |title=dropdata.org |publisher=dropdata.org |access-date=2011-01-05}}</ref>

== Биолошки пестициди ==
{{main| Biopesticide}}
Many organic compounds are produced by plants for the purpose of defending the host plant from predation. A trivial case is tree [[rosin]], which is a natural insecticide. Specifically, the production of [[oleoresin]] by [[Pinophyta|conifer species]] is a component of the defense response against insect attack and fungal [[pathogen]] infection.<ref name="Defensive Biosynthesis of Resin in Conifers">{{cite journal|author1=Trapp, S. |author2=Croteau, R. |title=Defensive Biosynthesis of Resin in Conifers|journal= Annual Review of Plant Physiology and Plant Molecular Biology|year= 2001|volume= 52|pages= 689–724 |doi= 10.1146/annurev.arplant.52.1.689|pmid=11337413|issue=1}}</ref> Many fragrances, e.g. [[oil of wintergreen]], are in fact antifeedants.

Four extracts of plants are in commercial use: [[pyrethrum]], [[rotenone]], [[neem oil]], and various [[essential oil]]s<ref>{{cite journal | author = Isman Murray B | year = 2006| title = Botanical Insecticides, Deterrents, And Repellents In Modern Agriculture And An Increasingly Regulated World | journal = Annual Review of Entomology | volume = 51 | pages = 45–66 | doi = 10.1146/annurev.ento.51.110104.151146 | pmid = 16332203}}</ref>

== Остали биолошки приступи ==
=== Протектанти инкорпорирани у биљке ===
Transgenic crops that act as insecticides began in 1996 with a [[genetically modified potato]] that produced the Cry [[protein]], derived from the bacterium [[Bacillus thuringiensis]], which is toxic to beetle [[larvae]] such as the [[Colorado potato beetle]]. The technique has been expanded to include the use of [[RNA]] interference [[RNAi]] that fatally [[gene silencing|silences]] crucial insect [[gene]]s. RNAi likely evolved as a defense against [[virus]]es. Midgut cells in many larvae take up the molecules and help spread the signal. The technology can target only insects that have the silenced sequence, as was demonstrated when a particular RNAi affected only one of four [[Drosophila|fruit fly]] species. The technique is expected to replace many other insecticides, which are losing effectiveness due to the spread of [[pesticide resistance]].<ref name=s732>{{Cite journal | doi = 10.1126/science.341.6147.732| pmid = 23950525| title = A Lethal Dose of RNA| year = 2013| last1 = Kupferschmidt | first1 = K.| journal = Science| volume = 341| issue = 6147| pages = 732–3| bibcode = 2013Sci...341..732K}}</ref>

=== Ензими ===
Many plants exude substances to repel insects. Premier examples are substances activated by the [[enzyme]] [[myrosinase]]. This enzyme converts [[glucosinolate]]s to various compounds that are toxic to [[herbivorous]] insects. One product of this enzyme is [[allyl isothiocyanate]], the pungent ingredient in [[horseradish sauce]]s.

[[File:Myrosinase general mechanism.png|thumb|center|760px|alt=mechanism of glucosinolate hydrolysis by myrosinase|Biosynthesis of antifeedants by the action of myrosinase.]]

The myrosinase is released only upon crushing the flesh of horseradish. Since allyl isothiocyanate is harmful to the plant as well as the insect, it is stored in the harmless form of the glucosinolate, separate from the myrosinase enzyme.<ref name="Cole">{{cite journal | author = Cole Rosemary A | year = 1976 | title = Isothiocyanates, nitriles and thiocyanates as products of autolysis of glucosinolates in ''Cruciferae'' | journal = Phytochemistry | volume = 15 | issue = 5| pages = 759–762 | doi = 10.1016/S0031-9422(00)94437-6 }}</ref>

== Синтетички инсектициди и природни инсектициди ==
A major emphasis of organic chemistry is the development of chemical tools to enhance agricultural productivity. Insecticides represent a major area of emphasis. Many of the major insecticides are inspired by biological analogues. Many others are not found in nature.

=== Organochlorides ===

The best known [[organochloride]], [[DDT]], was created by Swiss scientist [[Paul Hermann Müller|Paul Müller]]. For this discovery, he was awarded the 1948 [[Nobel Prize for Physiology or Medicine]].<ref>{{cite web |editor=Karl Grandin | title=Paul Müller Biography | url=http://nobelprize.org/nobel_prizes/medicine/laureates/1948/muller-bio.html | work=Les Prix Nobel | publisher=The Nobel Foundation | year=1948 | access-date=2008-07-24}}</ref> DDT was introduced in 1944. It functions by opening [[sodium channel]]s in the insect's [[nerve cell]]s.<ref>{{Cite journal |author=Vijverberg |title=Similar mode of action of pyrethroids and DDT on sodium channel gating in myelinated nerves |journal=Nature |volume=295 |issue=5850 |pages=601–603 |year=1982 |display-authors=1 |bibcode=1982Natur.295..601V |last2=Van Den Bercken |first2=Joep |doi=10.1038/295601a0|pmid=6276777 |s2cid=4259608 }}</ref> The contemporaneous rise of the chemical industry facilitated large-scale production of DDT and related [[chlorinated hydrocarbon]]s.

=== Organophosphates and carbamates ===

[[Organophosphate]]s are another large class of contact insecticides. These also target the insect's nervous system. Organophosphates interfere with the [[enzyme]]s [[acetylcholinesterase]] and other [[cholinesterase]]s, disrupting nerve impulses and killing or disabling the insect. Organophosphate insecticides and [[chemical warfare]] nerve agents (such as [[sarin]], [[Tabun (nerve agent)|tabun]], [[soman]], and [[VX (nerve agent)|VX]]) work in the same way. Organophosphates have a cumulative toxic effect to wildlife, so multiple exposures to the chemicals amplifies the toxicity.<ref name="palmerw">Palmer, WE, Bromley, PT, and Brandenburg, RL. [http://ipm.ncsu.edu/wildlife/peanuts_wildlife.html Wildlife & pesticides - Peanuts]. North Carolina Cooperative Extension Service. Retrieved on 14 October 2007.</ref> In the US, organophosphate use declined with the rise of substitutes.<ref name=s730>{{Cite journal | doi = 10.1126/science.341.6147.730 | title = Infographic: Pesticide Planet | journal = Science | volume = 341 | issue = 6147 | pages = 730–731 | year = 2013 | pmid = 23950524| bibcode = 2013Sci...341..730. }}</ref>

=== Pyrethroids ===

[[Pyrethroid]] pesticides mimic the insecticidal activity of the natural compound [[pyrethrum]], the [[biopesticide]] found in [[pyrethrin]]s. These compounds are nonpersistent sodium channel modulators and are less toxic than organophosphates and carbamates. Compounds in this group are often [[Pesticide application|applied against household pests]].<ref>{{Cite journal| last1=Class |first1=Thomas J. |last2=Kintrup |first2=J. | title=Pyrethroids as household insecticides: analysis, indoor exposure and persistence | journal=Fresenius' Journal of Analytical Chemistry |volume=340 | issue=7|pages=446–453 | year=1991 |doi=10.1007/BF00322420 |s2cid=95713100 }}</ref>

=== Neonicotinoids ===
[[Neonicotinoid]]s are synthetic analogues of the natural insecticide [[nicotine]] (with much lower acute mammalian toxicity and greater field persistence). These chemicals are [[acetylcholine]] receptor [[agonist]]s. They are broad-spectrum systemic insecticides, with rapid action (minutes-hours). They are applied as sprays, drenches, seed and [[soil]] treatments. Treated insects exhibit leg tremors, rapid wing motion, [[stylet (anatomy)|stylet]] withdrawal ([[aphid]]s), disoriented movement, paralysis and death.<ref>{{cite web|url=http://edis.ifas.ufl.edu/pi117|title=Pesticide Toxicity Profile: Neonicotinoid Pesticides|first=Frederick M.|last=Fishel|date=9 March 2016}}</ref> [[Imidacloprid]] may be the most common. It has recently come under scrutiny for allegedly pernicious effects on [[honeybee]]s<ref>[http://www.columbiatribune.com/news/2012/feb/19/insecticides-taking-toll-on-honeybees/ Insecticides taking toll on honeybees] {{webarchive|url=https://web.archive.org/web/20120318005423/http://www.columbiatribune.com/news/2012/feb/19/insecticides-taking-toll-on-honeybees/ |date=2012-03-18 }}</ref> and its potential to increase the susceptibility of rice to [[planthopper]] attacks.<ref>{{cite journal |url=http://scienceindex.com/stories/2068471/Possible_connection_between_imidaclopridinduced_changes_in_rice_gene_transcription_profiles_and_susceptibility_to_the_brown_plant_hopperNilaparvatalugensStl_Hemiptera_Delphacidae.html |last1=Yao |first1=Cheng |first2=Zhao-Peng |last2=Shi |first3=Li-Ben |last3=Jiang |first4=Lin-Quan |last4=Ge |first5=Jin-Cai |last5=Wu |first6=Gary C. |last6=Jahn |title=Possible connection between imidacloprid-induced changes in rice gene transcription profiles and susceptibility to the brown plant hopper Nilaparvata lugens Stål (Hemiptera: Delphacidae) |journal=Pesticide Biochemistry and Physiology |volume=102 |issue=3 |pages=213–219 |date=20 January 2012 |issn=0048-3575 |doi=10.1016/j.pestbp.2012.01.003 |pmid=22544984 |pmc=3334832 |url-status=dead |archive-url=https://web.archive.org/web/20130524213250/http://scienceindex.com/stories/2068471/Possible_connection_between_imidaclopridinduced_changes_in_rice_gene_transcription_profiles_and_susceptibility_to_the_brown_plant_hopperNilaparvatalugensStl_Hemiptera_Delphacidae.html |archive-date=24 May 2013 }}</ref>

=== Butenolides ===
Butenolide [[pesticide]]s are a novel group of chemicals, similar to neonicotinoids in their mode of action, that have so far only one representative: [[:fr:Flupyradifurone#cite ref-:0 14-0|flupyradifurone]]. They are [[acetylcholine]] receptor [[agonist]]s, like [[neonicotinoid]]s, but with a different pharmacophore.<ref>{{Cite journal|last1=Nauen|first1=Ralf|last2=Jeschke|first2=Peter|last3=Velten|first3=Robert|last4=Beck|first4=Michael E|last5=Ebbinghaus-Kintscher|first5=Ulrich|last6=Thielert|first6=Wolfgang|last7=Wölfel|first7=Katharina|last8=Haas|first8=Matthias|last9=Kunz|first9=Klaus|last10=Raupach|first10=Georg|date=June 2015|title=Flupyradifurone: a brief profile of a new butenolide insecticide|journal=Pest Management Science|language=en|volume=71|issue=6|pages=850–862|doi=10.1002/ps.3932|pmc=4657471|pmid=25351824}}</ref> They are broad-spectrum systemic insecticides, applied as sprays, drenches, seed and [[soil]] treatments. Although the classic [[risk assessment]] considered this insecticide group (and flupyradifurone specifically) safe for [[bee]]s, novel research<ref>{{Cite web|title=Pesticide Marketed as Safe for Bees Harms Them in Study|url=https://www.the-scientist.com/news-opinion/pesticide-marketed-as-safe-for-bees-harms-them-in-study-65734|access-date=2020-08-01|website=The Scientist Magazine®|language=en}}</ref> have raised concern on their [[Lethality|lethal]] and sublethal effects, alone or in combination with other chemicals or environmental factors.<ref>{{Cite journal|last1=Tosi|first1=S.|last2=Nieh|first2=J. C.|date=2019-04-10|title=Lethal and sublethal synergistic effects of a new systemic pesticide, flupyradifurone (Sivanto®), on honeybees|journal=Proceedings of the Royal Society B: Biological Sciences|volume=286|issue=1900|pages=20190433|doi=10.1098/rspb.2019.0433|pmc=6501679|pmid=30966981}}</ref><ref>{{Cite journal|last1=Tong|first1=Linda|last2=Nieh|first2=James C.|last3=Tosi|first3=Simone|date=2019-12-01|title=Combined nutritional stress and a new systemic pesticide (flupyradifurone, Sivanto®) reduce bee survival, food consumption, flight success, and thermoregulation|url=http://www.sciencedirect.com/science/article/pii/S0045653519316297|journal=Chemosphere|language=en|volume=237|pages=124408|doi=10.1016/j.chemosphere.2019.124408|pmid=31356997|issn=0045-6535}}</ref>

=== Ryanoids ===
[[Ryanoid]]s are synthetic analogues with the same mode of action as [[ryanodine]], a naturally occurring insecticide extracted from ''Ryania speciosa'' ([[Salicaceae]]). They bind to [[calcium channel]]s in cardiac and skeletal muscle, blocking nerve transmission. The first insecticide from this class to be registered was Rynaxypyr, generic name [[chlorantraniliprole]].<ref>{{cite web|url=http://www.epa.gov/opprd001/factsheets/chloran.pdf|title=Pesticide Fact Sheet- chlorantraniliprole |publisher=epa.gov|access-date=2011-09-14}}</ref>


{{-}}
{{Инсектициди}}
* {{Cite book |ref= harv|title=The Toxicology and Biochemistry of Insecticides |last=Yu|first=Simon J.|publisher=CRC Press |year=2008|isbn=978-1-4200-5975-5}}
== Референце ==
== Референце ==
{{reflist|30em}}
{{reflist|}}


== Литература ==
== Литература ==
{{refbegin|}}
* {{cite journal | author = McWilliams James E | year = 2008| title = 'The Horizon Opened Up Very Greatly': Leland O. Howard and the Transition to Chemical Insecticides in the United States, 1894–1927 | journal = Agricultural History | volume = 82 | issue = 4| pages = 468–95 | doi = 10.3098/ah.2008.82.4.468 | pmid = 19266680}}
* {{Cite book |ref= harv|title=The Toxicology and Biochemistry of Insecticides |last=Yu|first=Simon J.|publisher=CRC Press |year=2008|isbn=978-1-4200-5975-5}}
* {{cite web | url=http://jenny.tfrec.wsu.edu/opm/displaySpecies.php?pn=-60 | title=Insect Growth Regulators |author1=Krysan, James |author2=Dunley, John | access-date=20 April 2017 }}
{{refend}}

== Спољашње везе ==
{{Commons category|insecticide}}
* -{[http://www.insectbuzz.com/ InsectBuzz.com] - Daily updated news on insects and their relatives, including information on insecticides and their alternatives}-
* -{[http://www.dropdata.org International Pesticide Application Research Centre (IPARC)]}-
* -{[http://www.pestworld.org/ Pestworld.org] – Official site of the National Pest Management Association}-
* -{Streaming online video about efforts to reduce insecticide use in rice in Bangladesh. [https://web.archive.org/web/20061102001739/http://www.irri.org/videos/LITE-research.wmv on Windows Media Player], [https://web.archive.org/web/20061102001718/http://www.irri.org/videos/LITE-research.rm on RealPlayer]}-
* -{[http://grounds-mag.com/mag/grounds_maintenance_insecticides_work/index.html How Insecticides Work] – Has a thorough explanation on how insecticides work.}-
* -{[http://www.ipm.ucdavis.edu/WATER/U/alternative.html University of California Integrated pest management program]}-
* -{[https://web.archive.org/web/20091126070818/http://www.msue.msu.edu/objects/content_revision/download.cfm/revision_id.496061/workspace_id.-4/01500536.html/ Using Insecticides], Michigan State University Extension}-
* -{Example of Insecticide application in the [http://www.zen-garden.org/html/page_control.htm Tsubo-en Zen garden] (Japanese dry rock garden) in Lelystad, The Netherlands.}-

{{Инсектициди}}
{{Authority control}}


[[Категорија:Инсектициди]]
[[Категорија:Инсектициди]]

Верзија на датум 7. јануар 2021. у 02:15

FLIT ручна пумпа за прскање инсектицида из 1928
Фармер који прска инсектицид по дрвету индијског ораха у Танзанија
Датотека:Pif Paf Insecticide.jpg
Инсектицид из домаћинстваe

Хемијска отровна једињења која се користе против штетних инсеката.[1] У састав инсектицида, ради штедње и бољег растурања, обично се отровним супстанцама додаје неки „носач“, најчешће талк, каолин, вода. У састав инсектицида улазе и тзв. помоћне материје, које обезбеђују квашење, трајање и лебдење у води.[2][3] Данас је у употреби много врста инсектицида. Према физичком стању у тренутку примене разликују се: чврсти (прашковити), течни и гасовити инсектициди; према токсичном дејству на инсекте деле се на: утробне (унутрашње), додирне (контактне), гасовите и системичне отрове. Ова подела није алсолутна, јер неки инсектициди (поливалентни), делују истовремено утробно, контактно и фумигантно. Ови отрови убијају инсекте углавном делујући на њихов централни нервни систем, тако бубашваба не угине од последица тровања, већ због тога што се преврнула на леђа и није могла да поново устане.

Инсектициди укључују овициде и ларвициде који се користе против јаја инсеката и ларви, респективно. Инсектициди се користе у пољопривреди, медицини, индустрији и од потрошача. Сматра се да су инсектициди један главни фактор повећања пољопривредне продуктивности 20. века.[4] Готово сви инсектициди имају потенцијал да значајно промене екосистеме; многи су токсични за људе и/или животиње; неки се концентришу ширећи се дуж ланца исхране.

Инсектициди могу бити репелентни или нерепелентни. Друштвени инсекти попут мрава не могу да детектују нерепеланте и лако се пузе кроз њих. Када се врате у гнездо, са собом преносе инсектицид и излажу остале обитаваоце гнезда. Временом ово елиминише све мраве, укључујући и матицу. Ово је спорије од неких других метода, али обично у потпуности искорењује колонију мрава.[5]

Типови активности

Systemic insecticides become incorporated and distributed systemically throughout the whole plant. When insects feed on the plant, they ingest the insecticide. Systemic insecticides produced by transgenic plants are called plant-incorporated protectants (PIPs). For instance, a gene that codes for a specific Bacillus thuringiensis biocidal protein was introduced into corn (maize) and other species. The plant manufactures the protein, which kills the insect when consumed.[6]

Contact insecticides are toxic to insects upon direct contact. These can be inorganic insecticides, which are metals and include the commonly used sulfur, and the less commonly used arsenates, copper and fluorine compounds. Contact insecticides can also be organic insecticides, i.e. organic chemical compounds, synthetically produced, and comprising the largest numbers of pesticides used today. Or they can be natural compounds like pyrethrum, neem oil etc. Contact insecticides usually have no residual activity.

Efficacy can be related to the quality of pesticide application, with small droplets, such as aerosols often improving performance.[7]

Биолошки пестициди

Many organic compounds are produced by plants for the purpose of defending the host plant from predation. A trivial case is tree rosin, which is a natural insecticide. Specifically, the production of oleoresin by conifer species is a component of the defense response against insect attack and fungal pathogen infection.[8] Many fragrances, e.g. oil of wintergreen, are in fact antifeedants.

Four extracts of plants are in commercial use: pyrethrum, rotenone, neem oil, and various essential oils[9]

Остали биолошки приступи

Протектанти инкорпорирани у биљке

Transgenic crops that act as insecticides began in 1996 with a genetically modified potato that produced the Cry protein, derived from the bacterium Bacillus thuringiensis, which is toxic to beetle larvae such as the Colorado potato beetle. The technique has been expanded to include the use of RNA interference RNAi that fatally silences crucial insect genes. RNAi likely evolved as a defense against viruses. Midgut cells in many larvae take up the molecules and help spread the signal. The technology can target only insects that have the silenced sequence, as was demonstrated when a particular RNAi affected only one of four fruit fly species. The technique is expected to replace many other insecticides, which are losing effectiveness due to the spread of pesticide resistance.[10]

Ензими

Many plants exude substances to repel insects. Premier examples are substances activated by the enzyme myrosinase. This enzyme converts glucosinolates to various compounds that are toxic to herbivorous insects. One product of this enzyme is allyl isothiocyanate, the pungent ingredient in horseradish sauces.

mechanism of glucosinolate hydrolysis by myrosinase
Biosynthesis of antifeedants by the action of myrosinase.

The myrosinase is released only upon crushing the flesh of horseradish. Since allyl isothiocyanate is harmful to the plant as well as the insect, it is stored in the harmless form of the glucosinolate, separate from the myrosinase enzyme.[11]

Синтетички инсектициди и природни инсектициди

A major emphasis of organic chemistry is the development of chemical tools to enhance agricultural productivity. Insecticides represent a major area of emphasis. Many of the major insecticides are inspired by biological analogues. Many others are not found in nature.

Organochlorides

The best known organochloride, DDT, was created by Swiss scientist Paul Müller. For this discovery, he was awarded the 1948 Nobel Prize for Physiology or Medicine.[12] DDT was introduced in 1944. It functions by opening sodium channels in the insect's nerve cells.[13] The contemporaneous rise of the chemical industry facilitated large-scale production of DDT and related chlorinated hydrocarbons.

Organophosphates and carbamates

Organophosphates are another large class of contact insecticides. These also target the insect's nervous system. Organophosphates interfere with the enzymes acetylcholinesterase and other cholinesterases, disrupting nerve impulses and killing or disabling the insect. Organophosphate insecticides and chemical warfare nerve agents (such as sarin, tabun, soman, and VX) work in the same way. Organophosphates have a cumulative toxic effect to wildlife, so multiple exposures to the chemicals amplifies the toxicity.[14] In the US, organophosphate use declined with the rise of substitutes.[15]

Pyrethroids

Pyrethroid pesticides mimic the insecticidal activity of the natural compound pyrethrum, the biopesticide found in pyrethrins. These compounds are nonpersistent sodium channel modulators and are less toxic than organophosphates and carbamates. Compounds in this group are often applied against household pests.[16]

Neonicotinoids

Neonicotinoids are synthetic analogues of the natural insecticide nicotine (with much lower acute mammalian toxicity and greater field persistence). These chemicals are acetylcholine receptor agonists. They are broad-spectrum systemic insecticides, with rapid action (minutes-hours). They are applied as sprays, drenches, seed and soil treatments. Treated insects exhibit leg tremors, rapid wing motion, stylet withdrawal (aphids), disoriented movement, paralysis and death.[17] Imidacloprid may be the most common. It has recently come under scrutiny for allegedly pernicious effects on honeybees[18] and its potential to increase the susceptibility of rice to planthopper attacks.[19]

Butenolides

Butenolide pesticides are a novel group of chemicals, similar to neonicotinoids in their mode of action, that have so far only one representative: flupyradifurone. They are acetylcholine receptor agonists, like neonicotinoids, but with a different pharmacophore.[20] They are broad-spectrum systemic insecticides, applied as sprays, drenches, seed and soil treatments. Although the classic risk assessment considered this insecticide group (and flupyradifurone specifically) safe for bees, novel research[21] have raised concern on their lethal and sublethal effects, alone or in combination with other chemicals or environmental factors.[22][23]

Ryanoids

Ryanoids are synthetic analogues with the same mode of action as ryanodine, a naturally occurring insecticide extracted from Ryania speciosa (Salicaceae). They bind to calcium channels in cardiac and skeletal muscle, blocking nerve transmission. The first insecticide from this class to be registered was Rynaxypyr, generic name chlorantraniliprole.[24]

Референце

  1. ^ IUPAC (2006). „Glossary of Terms Relating to Pesticides” (PDF). IUPAC. стр. 2123. Приступљено 28. 1. 2014. 
  2. ^ Yu 2008
  3. ^ „Insecticides: Chemistries and Characteristics”. Архивирано из оригинала 17. 06. 2011. г. Приступљено 02. 09. 2011. 
  4. ^ van Emden, H.F.; Peakall, David B. (30. 6. 1996). Beyond Silent Spring. Springer. ISBN 978-0-412-72800-6. 
  5. ^ „Non-Repellent insecticides”. Do-it-yourself Pest Control. Приступљено 20. 4. 2017. 
  6. ^ „United States Environmental Protection Agency - US EPA”. 
  7. ^ „dropdata.org”. dropdata.org. Приступљено 2011-01-05. 
  8. ^ Trapp, S.; Croteau, R. (2001). „Defensive Biosynthesis of Resin in Conifers”. Annual Review of Plant Physiology and Plant Molecular Biology. 52 (1): 689—724. PMID 11337413. doi:10.1146/annurev.arplant.52.1.689. 
  9. ^ Isman Murray B (2006). „Botanical Insecticides, Deterrents, And Repellents In Modern Agriculture And An Increasingly Regulated World”. Annual Review of Entomology. 51: 45—66. PMID 16332203. doi:10.1146/annurev.ento.51.110104.151146. 
  10. ^ Kupferschmidt, K. (2013). „A Lethal Dose of RNA”. Science. 341 (6147): 732—3. Bibcode:2013Sci...341..732K. PMID 23950525. doi:10.1126/science.341.6147.732. 
  11. ^ Cole Rosemary A (1976). „Isothiocyanates, nitriles and thiocyanates as products of autolysis of glucosinolates in Cruciferae”. Phytochemistry. 15 (5): 759—762. doi:10.1016/S0031-9422(00)94437-6. 
  12. ^ Karl Grandin, ур. (1948). „Paul Müller Biography”. Les Prix Nobel. The Nobel Foundation. Приступљено 2008-07-24. 
  13. ^ Vijverberg; et al. (1982). „Similar mode of action of pyrethroids and DDT on sodium channel gating in myelinated nerves”. Nature. 295 (5850): 601—603. Bibcode:1982Natur.295..601V. PMID 6276777. S2CID 4259608. doi:10.1038/295601a0. 
  14. ^ Palmer, WE, Bromley, PT, and Brandenburg, RL. Wildlife & pesticides - Peanuts. North Carolina Cooperative Extension Service. Retrieved on 14 October 2007.
  15. ^ „Infographic: Pesticide Planet”. Science. 341 (6147): 730—731. 2013. Bibcode:2013Sci...341..730.. PMID 23950524. doi:10.1126/science.341.6147.730. 
  16. ^ Class, Thomas J.; Kintrup, J. (1991). „Pyrethroids as household insecticides: analysis, indoor exposure and persistence”. Fresenius' Journal of Analytical Chemistry. 340 (7): 446—453. S2CID 95713100. doi:10.1007/BF00322420. 
  17. ^ Fishel, Frederick M. (9. 3. 2016). „Pesticide Toxicity Profile: Neonicotinoid Pesticides”. 
  18. ^ Insecticides taking toll on honeybees Архивирано 2012-03-18 на сајту Wayback Machine
  19. ^ Yao, Cheng; Shi, Zhao-Peng; Jiang, Li-Ben; Ge, Lin-Quan; Wu, Jin-Cai; Jahn, Gary C. (20. 1. 2012). „Possible connection between imidacloprid-induced changes in rice gene transcription profiles and susceptibility to the brown plant hopper Nilaparvata lugens Stål (Hemiptera: Delphacidae)”. Pesticide Biochemistry and Physiology. 102 (3): 213—219. ISSN 0048-3575. PMC 3334832Слободан приступ. PMID 22544984. doi:10.1016/j.pestbp.2012.01.003. Архивирано из оригинала 24. 5. 2013. г. 
  20. ^ Nauen, Ralf; Jeschke, Peter; Velten, Robert; Beck, Michael E; Ebbinghaus-Kintscher, Ulrich; Thielert, Wolfgang; Wölfel, Katharina; Haas, Matthias; Kunz, Klaus; Raupach, Georg (јун 2015). „Flupyradifurone: a brief profile of a new butenolide insecticide”. Pest Management Science (на језику: енглески). 71 (6): 850—862. PMC 4657471Слободан приступ. PMID 25351824. doi:10.1002/ps.3932. 
  21. ^ „Pesticide Marketed as Safe for Bees Harms Them in Study”. The Scientist Magazine® (на језику: енглески). Приступљено 2020-08-01. 
  22. ^ Tosi, S.; Nieh, J. C. (2019-04-10). „Lethal and sublethal synergistic effects of a new systemic pesticide, flupyradifurone (Sivanto®), on honeybees”. Proceedings of the Royal Society B: Biological Sciences. 286 (1900): 20190433. PMC 6501679Слободан приступ. PMID 30966981. doi:10.1098/rspb.2019.0433. 
  23. ^ Tong, Linda; Nieh, James C.; Tosi, Simone (2019-12-01). „Combined nutritional stress and a new systemic pesticide (flupyradifurone, Sivanto®) reduce bee survival, food consumption, flight success, and thermoregulation”. Chemosphere (на језику: енглески). 237: 124408. ISSN 0045-6535. PMID 31356997. doi:10.1016/j.chemosphere.2019.124408. 
  24. ^ „Pesticide Fact Sheet- chlorantraniliprole” (PDF). epa.gov. Приступљено 2011-09-14. 

Литература

  • McWilliams James E (2008). „'The Horizon Opened Up Very Greatly': Leland O. Howard and the Transition to Chemical Insecticides in the United States, 1894–1927”. Agricultural History. 82 (4): 468—95. PMID 19266680. doi:10.3098/ah.2008.82.4.468. 
  • Yu, Simon J. (2008). The Toxicology and Biochemistry of Insecticides. CRC Press. ISBN 978-1-4200-5975-5. 
  • Krysan, James; Dunley, John. „Insect Growth Regulators”. Приступљено 20. 4. 2017. 

Спољашње везе