Простор-време — разлика између измена

С Википедије, слободне енциклопедије
Садржај обрисан Садржај додат
Исправљене словне грешке
.
Ред 1: Ред 1:
{{short description|Математички модел који комбинује простор и време.}}
[[Датотека:Spacetime curvature.png|мини|365x365пискел|Закривљеност простор-времена]]
[[Датотека:Spacetime curvature.png|мини|365x365пискел|Закривљеност простор-времена]]

'''Простор-време''' у [[физика|физици]] представља било који математички модел који спаја три димензије [[Простор|простора]] и једну [[Време|времена]] у један четвородимензионални [[Континуум (математика)|континуум]]. Дијаграми простор-времена могу се користити за визуализацију релативистичких ефеката.
'''Простор-време''' у [[физика|физици]] представља било који математички модел који спаја три димензије [[Простор|простора]] и једну [[Време|времена]] у један четвородимензионални [[Континуум (математика)|континуум]]. Дијаграми простор-времена могу се користити за визуализацију релативистичких ефеката.


Ред 14: Ред 16:


Геометријска интерпретација релативности Минковског била је битна за Ајнштајнов развој његове генералне теорије релативности 1915. године, где је показао како маса и енергија закривљују равно простор-време.<ref>{{Cite book|url=https://www.worldcat.org/oclc/643557942|title=Diccionario Akal de filosofa̕|date=2004|publisher=Akal Ediciones|others=Audi, Robert, 1941-, Marraud, Huberto,, Alonso, Enrique,|isbn=9788446026006|location=Madrid, Espana|oclc=643557942}}</ref>
Геометријска интерпретација релативности Минковског била је битна за Ајнштајнов развој његове генералне теорије релативности 1915. године, где је показао како маса и енергија закривљују равно простор-време.<ref>{{Cite book|url=https://www.worldcat.org/oclc/643557942|title=Diccionario Akal de filosofa̕|date=2004|publisher=Akal Ediciones|others=Audi, Robert, 1941-, Marraud, Huberto,, Alonso, Enrique,|isbn=9788446026006|location=Madrid, Espana|oclc=643557942}}</ref>

== Увод ==
{{rut}}
=== Дефиниције ===

Non-relativistic [[classical mechanics]] treats [[time]] as a universal quantity of measurement which is uniform throughout space, and separate from space. Classical mechanics assumes that time has a constant rate of passage, independent of the [[observer (special relativity)|observer's]] state of [[motion (physics)|motion]], or anything external.<ref>{{cite web|last1=Rynasiewicz|first1=Robert|title=Newton's Views on Space, Time, and Motion|url=https://plato.stanford.edu/entries/newton-stm/|website=Stanford Encyclopedia of Philosophy|publisher=Metaphysics Research Lab, Stanford University|access-date=24 March 2017}}</ref> Furthermore, it assumes that space is [[Euclidean space|Euclidean]]; it assumes that space follows the geometry of common sense.<ref>{{cite book|last1=Davis|first1=Philip J.|title=Mathematics & Common Sense: A Case of Creative Tension|date=2006|publisher=A.K. Peters|location=Wellesley, Massachusetts|isbn=9781439864326|page=86}}</ref>

In the context of [[special relativity]], time cannot be separated from the three dimensions of space, because the observed rate at which time passes for an object depends on the object's [[velocity]] relative to the observer. [[General relativity]] also provides an explanation of how [[gravitational fields]] can slow the passage of time for an object as seen by an observer outside the field.

In ordinary space, a position is specified by three numbers, known as [[dimension#In physics|dimensions]]. In the [[Cartesian coordinate system]], these are called x, y, and z. A position in spacetime is called an ''event'', and requires four numbers to be specified: the three-dimensional location in space, plus the position in time (Fig.&nbsp;1). An event is represented by a set of coordinates ''x'', ''y'', ''z'' and ''t''. Space time is thus [[Four-dimensional space|four dimensional]]. Mathematical events have zero duration and represent a single point in spacetime.

The path of a particle through spacetime can be considered to be a succession of events. The series of events can be linked together to form a line which represents a particle's progress through spacetime. That line is called the particle's ''world line''.<ref name="Collier"/>{{rp|105}}

Mathematically, spacetime is a ''[[manifold]]'', which is to say, it appears locally "flat" near each point in the same way that, at small enough scales, a globe appears flat.<ref>{{cite web|last1=Rowland |first1=Todd |title=Manifold |url=http://mathworld.wolfram.com/Manifold.html |website=Wolfram Mathworld |publisher=Wolfram Research|access-date=24 March 2017}}</ref> An extremely large scale factor, <math>c</math> (conventionally called the ''speed-of-light'') relates distances measured in space with distances measured in time. The magnitude of this scale factor (nearly {{convert|300000|km|disp=or||}} in space being equivalent to one second in time), along with the fact that spacetime is a manifold, implies that at ordinary, non-relativistic speeds and at ordinary, human-scale distances, there is little that humans might observe which is noticeably different from what they might observe if the world were Euclidean. It was only with the advent of sensitive scientific measurements in the mid-1800s, such as the [[Fizeau experiment]] and the [[Michelson–Morley experiment]], that puzzling discrepancies began to be noted between observation versus predictions based on the implicit assumption of Euclidean space.<ref name="French">{{cite book|last1=French|first1=A.P.|title=Special Relativity|date=1968|publisher=CRC Press|location=[[Boca Raton, Florida]]|isbn=0748764224|pages=35–60}}</ref>

{{anchor|Figure 1-1}}
[[File:Observer in special relativity.svg|thumb|Figure 1-1. Each location in spacetime is marked by four numbers defined by a [[frame of reference]]: the position in space, and the time (which can be visualized as the reading of a clock located at each position in space). The 'observer' synchronizes the clocks according to their own reference frame.]]

In special relativity, an observer will, in most cases, mean a frame of reference from which a set of objects or events is being measured. This usage differs significantly from the ordinary English meaning of the term. Reference frames are inherently nonlocal constructs, and according to this usage of the term, it does not make sense to speak of an observer as having a location. In Fig.&nbsp;1-1, imagine that the frame under consideration is equipped with a dense lattice of clocks, synchronized within this reference frame, that extends indefinitely throughout the three dimensions of space. Any specific location within the lattice is not important. The latticework of clocks is used to determine the time and position of events taking place within the whole frame. The term ''observer'' refers to the entire ensemble of clocks associated with one inertial frame of reference.<ref name="Taylor">{{cite book|url=https://archive.org/details/spacetime_physics/|title=Spacetime Physics: Introduction to Special Relativity|last1=Taylor|first1=Edwin F.|last2=Wheeler|first2=John Archibald|date=1992|publisher=Freeman|isbn=071670336X|edition=2nd|location=San Francisco|access-date=14 April 2017}}</ref>{{rp|17–22}} In this idealized case, every point in space has a clock associated with it, and thus the clocks register each event instantly, with no time delay between an event and its recording. A real observer, however, will see a delay between the emission of a signal and its detection due to the speed of light. To synchronize the clocks, in the [[data reduction]] following an experiment, the time when a signal is received will be corrected to reflect its actual time were it to have been recorded by an idealized lattice of clocks.

In many books on special relativity, especially older ones, the word "observer" is used in the more ordinary sense of the word. It is usually clear from context which meaning has been adopted.

Physicists distinguish between what one ''measures'' or ''observes'' (after one has factored out signal propagation delays), versus what one visually sees without such corrections. Failure to understand [[Special relativity#Measurement versus visual appearance|the difference between what one measures/observes versus what one sees]] is the source of much error among beginning students of relativity.<ref>{{cite journal|last1=Scherr|first1=Rachel E.|last2=Shaffer|first2=Peter S.|last3=Vokos|first3=Stamatis|title=Student understanding of time in special relativity: Simultaneity and reference frames|journal=American Journal of Physics|date=July 2001|volume=69|issue=S1|pages=S24–S35|doi=10.1119/1.1371254|url=https://arxiv.org/ftp/physics/papers/0207/0207109.pdf|access-date=11 April 2017|bibcode = 2001AmJPh..69S..24S |arxiv=physics/0207109|s2cid=8146369}}</ref>

=== Историја ===
{{main |History of special relativity|History of Lorentz transformations}}
{{multiple image
| direction = vertical
| width = 220
| image1 = Michelson-Morley experiment conducted with white light.png
<!-- | caption1 = -->
| image2 = MichelsonMorleyAnimationDE.gif
| caption2 = Figure 1-2. Michelson and Morley expected that motion through the aether would cause a differential phase shift between light traversing the two arms of their apparatus. The most logical explanation of their negative result, aether dragging, was in conflict with the observation of stellar aberration.
}}
By the mid-1800s, various experiments such as the observation of the [[Arago spot]] and [[Fizeau–Foucault apparatus|differential measurements of the speed of light in air versus water]] were considered to have proven the wave nature of light as opposed to a [[Corpuscular theory of light|corpuscular theory]].<ref>{{cite book|last1=Hughes|first1=Stefan|title=Catchers of the Light: Catching Space: Origins, Lunar, Solar, Solar System and Deep Space|date=2013|publisher=ArtDeCiel Publishing|location=Paphos, Cyprus|isbn=9781467579926|pages=202–233|url=https://books.google.com/books?id=iZk5OOf7fVYC}}</ref> Propagation of waves was then assumed to require the existence of a ''waving'' medium; in the case of light waves, this was considered to be a hypothetical [[luminiferous aether]].<ref group=note>''luminiferous'' from the Latin ''lumen'', light, + ''ferens'', carrying; ''aether'' from the Greek αἰθήρ (''aithēr''), pure air, clear sky</ref> However, the various attempts to establish the properties of this hypothetical medium yielded contradictory results. For example, the [[Fizeau experiment]] of 1851 demonstrated that the speed of light in flowing water was less than the sum of the speed of light in air plus the speed of the water by an amount dependent on the water's index of refraction. Among other issues, the dependence of the partial [[aether-dragging]] implied by this experiment on the index of refraction (which is dependent on wavelength) led to the unpalatable conclusion that aether ''simultaneously'' flows at different speeds for different colors of light.<ref name=Stachel>{{cite book |last=Stachel |first=John |editor1-last=Kox |editor1-first=A. J. |editor2-last=Eisenstaedt |editor2-first=Jean |title=The Universe of General Relativity |publisher=Birkhäuser |location=Boston |date=2005 |pages=1–13 |chapter=Fresnel’s (Dragging) Coefficient as a Challenge to 19th Century Optics of Moving Bodies. |isbn=081764380X |chapter-url=http://www.bu.edu/cphs/files/2015/04/2005_Fresnel.pdf |archive-url=https://www.webcitation.org/6phb8M8gM?url=http://www.bu.edu/cphs/files/2015/04/2005_Fresnel.pdf |archive-date=13 April 2017 |url-status=dead }}</ref> The famous [[Michelson–Morley experiment]] of 1887 (Fig.&nbsp;1-2) showed no differential influence of Earth's motions through the hypothetical aether on the speed of light, and the most likely explanation, complete aether dragging, was in conflict with the observation of [[stellar aberration]].<ref name="French"/>

== Напомене ==
{{reflist|group=note|30em}}


== Референце ==
== Референце ==
{{reflist}}
{{reflist|refs=
<ref name="Collier">{{cite book|title=A Most Incomprehensible Thing: Notes Towards a Very Gentle Introduction to the Mathematics of Relativity|last1=Collier|first1=Peter|publisher=Incomprehensible Books|year=2017|isbn=9780957389465|edition=3rd}}</ref>
}}


== Литература ==
== Литература ==
{{reflist}}
{{refbegin|30em}}
* {{Cite book| ref =harv|last =Логос|first =Александар А.|title =Путовање мисли : увод у потрагу за истином| location=Београд|year=2017| url =https://www.academia.edu/44763929/Putovanje_misli_Beograd_2017_pdf}}
* {{Cite book| ref =harv|last =Логос|first =Александар А.|title =Путовање мисли : увод у потрагу за истином| location=Београд|year=2017| url =https://www.academia.edu/44763929/Putovanje_misli_Beograd_2017_pdf}}
* [[George F. Ellis]] and Ruth M. Williams (1992) ''Flat and curved space–times''. Oxford Univ. Press. {{isbn|0-19-851164-7}}
* [[Hendrik Lorentz|Lorentz, H. A.]], [[Albert Einstein|Einstein, Albert]], [[Hermann Minkowski|Minkowski, Hermann]], and [[Hermann Weyl|Weyl, Hermann]] (1952) ''The Principle of Relativity: A Collection of Original Memoirs''. Dover.
* [[John Lucas (philosopher)|Lucas, John Randolph]] (1973) ''A Treatise on Time and Space''. London: Methuen.
* {{cite book| last = Penrose| first = Roger| author-link = Roger Penrose| title =The Road to Reality | publisher = Oxford University Press| year= 2004| location = Oxford| isbn = 0-679-45443-8 | title-link = The Road to Reality}} Chpts. 17–18.
* {{cite book|last=Taylor|first=E. F.|author2=Wheeler, John A.|author-link2=John A. Wheeler|title=Spacetime Physics, Second Edition|publisher=W. H. Freeman|year=1992|location=Internet Archive|url=https://archive.org/details/spacetime_physics/|isbn=0-7167-2327-1}}
*{{Citation
|author=Abraham, Max
|year=1902
|title=Dynamik des Electrons
|journal=Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse
|pages=20–41|title-link=s:de:Dynamik des Electrons
}}


*{{Citation
|doi=10.1002/andp.19023150105
|author=Abraham, Max
|year=1903
|title=Prinzipien der Dynamik des Elektrons
|journal=Annalen der Physik
|volume=315
|issue=1
|pages=105–179|bibcode = 1902AnP...315..105A |title-link=s:de:Prinzipien der Dynamik des Elektrons (1903)
}}


*{{Citation
{{клица-физика}}
|author=Abraham, Max
|year=1904
|title=Die Grundhypothesen der Elektronentheorie
|trans-title=[[s:Translation:The Fundamental Hypotheses of the Theory of Electrons|The Fundamental Hypotheses of the Theory of Electrons]]
|journal=Physikalische Zeitschrift
|volume=5
|pages=576–579|title-link=s:de:Die Grundhypothesen der Elektronentheorie
}}


* {{Citation
{{димензионалност}}
|author=Abraham, Max
|year=1914
|title=Neuere Gravitationstheorien
|journal=Jahrbuch der Radioaktivität und Elektronik
|volume=11
|issue=4
|pages=470–520
|url=http://libcoll.mpiwg-berlin.mpg.de/elib/all_documents/Abrah_Neuer_01_1915
|postscript=.}}


*{{Citation
|author=Alväger, Farley |author2=Kjellmann, Walle
|year=1964
|title=Test of the second postulate of special relativity in the GeV region
|journal=Physical Review Letters
|volume=12
|issue=3
|pages=260–262
|doi=10.1016/0031-9163(64)91095-9
|bibcode=1964PhL....12..260A}}

*{{Citation
|author=Bartoli, Adolfo
|year=1884
|orig-year=1876
|title=Il calorico raggiante e il secondo principio di termodynamica
|journal=Nuovo Cimento
|volume=15
|issue=1
|pages=196–202
|url=http://fisicavolta.unipv.it/percorsi/pdf/press.pdf
|doi=10.1007/bf02737234
|url-status=dead
|archive-url=https://web.archive.org/web/20081217082457/http://fisicavolta.unipv.it/percorsi/pdf/press.pdf
|archive-date=December 17, 2008
|df=mdy-all
|bibcode=1884NCim...15..193B
|s2cid=121845138
}}

* {{Citation
|doi=10.1112/plms/s2-8.1.223
|author=Bateman, Harry
|year=1910
|orig-year=1909
|title=The Transformation of the Electrodynamical Equations
|journal=Proceedings of the London Mathematical Society
|volume=8
|issue=1
|pages=223–264
|postscript=.|title-link=s:The Transformation of the Electrodynamical Equations
}}

*{{Citation
|author=Borel, Émile
|year=1913
|title=La théorie de la relativité et la cinématique
|journal=Comptes Rendus des Séances de l'Académie des Sciences
|volume=156
|pages=215–218
|url=http://gallica.bnf.fr/ark:/12148/bpt6k3109m/f215.chemindefer}}

*{{Citation
|author=Borel, Émile
|year=1913
|title=La cinématique dans la théorie de la relativité
|journal=Comptes Rendus des Séances de l'Académie des Sciences
|volume=157
|pages=703–705
|url=http://gallica.bnf.fr/ark:/12148/bpt6k31103/f703.table}}

*{{Citation
|author=Born, Max
|year=1909
|title=Die Theorie des starren Körpers in der Kinematik des Relativitätsprinzips
|trans-title=[[s:Translation:The Theory of the Rigid Electron in the Kinematics of the Principle of Relativity|The Theory of the Rigid Electron in the Kinematics of the Principle of Relativity]]
|journal=Annalen der Physik
|volume=335
|issue=11
|pages=1–56
|doi=10.1002/andp.19093351102|bibcode = 1909AnP...335....1B |url=https://zenodo.org/record/1424151
}}

*{{Citation
|author=Brecher, Kenneth
|year=1977
|title=Is the Speed of Light Independent of the Velocity of the Source?
|journal=Physical Review Letters
|volume=39
|issue=17
|pages=1051–1054
|doi=10.1103/PhysRevLett.39.1051
|bibcode=1977PhRvL..39.1051B}}

* {{Citation
|doi=10.1002/andp.19033160604
|author=Bucherer, A. H.
|year=1903
|title=Über den Einfluß der Erdbewegung auf die Intensität des Lichtes
|journal=Annalen der Physik
|volume=316
|issue=6
|pages=270–283|bibcode = 1903AnP...316..270B |title-link=s:de:Über den Einfluß der Erdbewegung auf die Intensität des Lichtes
}}

*{{Citation
|author=Bucherer, A. H.
|year=1908
|title=Messungen an Becquerelstrahlen. Die experimentelle Bestätigung der Lorentz–Einsteinschen Theorie. (Measurements of Becquerel rays. The Experimental Confirmation of the Lorentz–Einstein Theory)
|journal=Physikalische Zeitschrift
|volume=9
|issue=22
|pages=755–762}}

*{{Citation
|author=Cohn, Emil
|year=1901
|title=Über die Gleichungen der Electrodynamik für bewegte Körper
|journal=Archives Néerlandaises des Sciences Exactes et Naturelles
|volume=5
|pages=516–523}}

*{{Citation
|last=Cohn, Emil
|year=1904
|title=Zur Elektrodynamik bewegter Systeme I
|trans-title=[[s:Translation:On the Electrodynamics of Moving Systems I|On the Electrodynamics of Moving Systems I]]
|journal= Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften
|volume=1904/2
|issue=40
|pages =1294–1303}}

*{{Citation
|last=Cohn, Emil
|year=1904
|title=Zur Elektrodynamik bewegter Systeme II
|trans-title=[[s:Translation:On the Electrodynamics of Moving Systems II|On the Electrodynamics of Moving Systems II]]
|journal= Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften
|volume=1904/2
|issue=43
|pages =1404–1416}}

*{{Citation
|author=Comstock, Daniel Frost
|year=1910
|title=The Principle of Relativity
|journal=Science
|volume=31
|pages=767–772
|doi=10.1126/science.31.803.767
|pmid=17758464
|issue=803|bibcode = 1910Sci....31..767C |title-link=s:The Principle of Relativity (Comstock)
}}

* {{Citation
|doi=10.1112/plms/s2-8.1.77
|author=Cunningham, Ebenezer
|year=1910
|orig-year=1909
|title=The principle of Relativity in Electrodynamics and an Extension Thereof
|journal=Proceedings of the London Mathematical Society
|volume=8
|issue=1
|pages=77–98
|postscript=.|title-link=s:The principle of Relativity in Electrodynamics and an Extension Thereof
}}

{{refend}}

== Спољашње везе ==
{{Commons category|Spacetime}}
* [http://www.britannica.com/topic/Albert-Einstein-on-Space-Time-1987141 Albert Einstein on space–time] 13th edition [[Encyclopædia Britannica]] Historical: Albert Einstein's 1926 article
* [http://www.scholarpedia.org/article/Encyclopedia_of_Space-time_and_gravitation Encyclopedia of Space–time and gravitation] [[Scholarpedia]] Expert articles
* [[Stanford Encyclopedia of Philosophy]]: "[http://plato.stanford.edu/entries/spacetime-iframes/ Space and Time: Inertial Frames]" by Robert DiSalle.

{{димензионалност}}
{{нормативна контрола}}
{{нормативна контрола}}



Верзија на датум 14. јул 2021. у 01:21

Закривљеност простор-времена

Простор-време у физици представља било који математички модел који спаја три димензије простора и једну времена у један четвородимензионални континуум. Дијаграми простор-времена могу се користити за визуализацију релативистичких ефеката.

До 20. века људи су замишљали простор и време као одвојене појаве. Постојала је претпоставка да је тродимензионални просторни свемир независан од једнодимензионалног времена, а уобичајено графичко представљање тродимензионалног простора раширено је од времена Ренеа Декарта (1596–1650).[1] Преокрет се догодио почетком 20. века. Можда је данашњу мисао о четири нераздвојиве димензије и простор-времену уобличио (око 1907) Херман Минковски.[2] Замисао недељивог четвородимензионалног простор-времена раширена је од Ајнштајнове замисли простор-времена у општој теорији релативитета. Алберт Ајнштајн је засновао свој првобитни рад о специјалној релативности 1905. године на два постулата:

  1. закони физике су инваријантни (идентични) у свим инерцијалним системима (тј. неубрзавајућим у односу на референтно тело);
  2. брзина светлости у вакууму иста је за све посматраче, без обзира на кретање извора светлости.

Логична последица спајања ових постулата је нераздвојно повезивање четири димензије простора и времена, које су до тада сматране независним. Појављују се многе контраинтуитивне последице: поред независности од кретања извора светлости, брзина светлости има исту брзину без обзира на референтни оквир у коме се мери; растојања се мењају када се мере у различитим инерцијалним референтним оквирима и линеарна адитивност брзина више не важи.[3]

Ајнштајнова теорија представљала је напредак у односу на Лоренцову теорију о електромагнетним феноменима из 1904. године и Поенкареову теорију електродинамике. Иако су те теорије укључивале једначине идентичне онима које је Ајнштајн увео (тј. Лоренцову трансформацију), оне су у суштини ad hoc модели предложени за објашњавање резултата различитих експеримената - укључујући познати Мајкелсон-Морлијев експеримент - који су били изузетно тешки за уклапање у постојеће парадигме.

Године 1908. Херман Минковски, некадашњи професор математике младог Ајнштајна у Цириху - представио је геометријску интерпретацију специјалне релативности која је спојила време и три просторне димензије простора у јединствени четвородимензионални континуум, сада познат као простор Минковског. Кључна карактеристика овог тумачења је формална дефиниција интервала простор-време. Иако се мере раздаљине и времена између догађаја разликују од мера направљених у различитим референтним оквирима, интервал простор-време је независан од инерцијалног референтног оквира у којем су мерења направљена.

Геометријска интерпретација релативности Минковског била је битна за Ајнштајнов развој његове генералне теорије релативности 1915. године, где је показао како маса и енергија закривљују равно простор-време.[4]

Увод

Дефиниције

Non-relativistic classical mechanics treats time as a universal quantity of measurement which is uniform throughout space, and separate from space. Classical mechanics assumes that time has a constant rate of passage, independent of the observer's state of motion, or anything external.[5] Furthermore, it assumes that space is Euclidean; it assumes that space follows the geometry of common sense.[6]

In the context of special relativity, time cannot be separated from the three dimensions of space, because the observed rate at which time passes for an object depends on the object's velocity relative to the observer. General relativity also provides an explanation of how gravitational fields can slow the passage of time for an object as seen by an observer outside the field.

In ordinary space, a position is specified by three numbers, known as dimensions. In the Cartesian coordinate system, these are called x, y, and z. A position in spacetime is called an event, and requires four numbers to be specified: the three-dimensional location in space, plus the position in time (Fig. 1). An event is represented by a set of coordinates x, y, z and t. Space time is thus four dimensional. Mathematical events have zero duration and represent a single point in spacetime.

The path of a particle through spacetime can be considered to be a succession of events. The series of events can be linked together to form a line which represents a particle's progress through spacetime. That line is called the particle's world line.[7]:105

Mathematically, spacetime is a manifold, which is to say, it appears locally "flat" near each point in the same way that, at small enough scales, a globe appears flat.[8] An extremely large scale factor, (conventionally called the speed-of-light) relates distances measured in space with distances measured in time. The magnitude of this scale factor (nearly 300.000 km or 190.000 mi in space being equivalent to one second in time), along with the fact that spacetime is a manifold, implies that at ordinary, non-relativistic speeds and at ordinary, human-scale distances, there is little that humans might observe which is noticeably different from what they might observe if the world were Euclidean. It was only with the advent of sensitive scientific measurements in the mid-1800s, such as the Fizeau experiment and the Michelson–Morley experiment, that puzzling discrepancies began to be noted between observation versus predictions based on the implicit assumption of Euclidean space.[9]

Figure 1-1. Each location in spacetime is marked by four numbers defined by a frame of reference: the position in space, and the time (which can be visualized as the reading of a clock located at each position in space). The 'observer' synchronizes the clocks according to their own reference frame.

In special relativity, an observer will, in most cases, mean a frame of reference from which a set of objects or events is being measured. This usage differs significantly from the ordinary English meaning of the term. Reference frames are inherently nonlocal constructs, and according to this usage of the term, it does not make sense to speak of an observer as having a location. In Fig. 1-1, imagine that the frame under consideration is equipped with a dense lattice of clocks, synchronized within this reference frame, that extends indefinitely throughout the three dimensions of space. Any specific location within the lattice is not important. The latticework of clocks is used to determine the time and position of events taking place within the whole frame. The term observer refers to the entire ensemble of clocks associated with one inertial frame of reference.[10]:17–22 In this idealized case, every point in space has a clock associated with it, and thus the clocks register each event instantly, with no time delay between an event and its recording. A real observer, however, will see a delay between the emission of a signal and its detection due to the speed of light. To synchronize the clocks, in the data reduction following an experiment, the time when a signal is received will be corrected to reflect its actual time were it to have been recorded by an idealized lattice of clocks.

In many books on special relativity, especially older ones, the word "observer" is used in the more ordinary sense of the word. It is usually clear from context which meaning has been adopted.

Physicists distinguish between what one measures or observes (after one has factored out signal propagation delays), versus what one visually sees without such corrections. Failure to understand the difference between what one measures/observes versus what one sees is the source of much error among beginning students of relativity.[11]

Историја

Figure 1-2. Michelson and Morley expected that motion through the aether would cause a differential phase shift between light traversing the two arms of their apparatus. The most logical explanation of their negative result, aether dragging, was in conflict with the observation of stellar aberration.

By the mid-1800s, various experiments such as the observation of the Arago spot and differential measurements of the speed of light in air versus water were considered to have proven the wave nature of light as opposed to a corpuscular theory.[12] Propagation of waves was then assumed to require the existence of a waving medium; in the case of light waves, this was considered to be a hypothetical luminiferous aether.[note 1] However, the various attempts to establish the properties of this hypothetical medium yielded contradictory results. For example, the Fizeau experiment of 1851 demonstrated that the speed of light in flowing water was less than the sum of the speed of light in air plus the speed of the water by an amount dependent on the water's index of refraction. Among other issues, the dependence of the partial aether-dragging implied by this experiment on the index of refraction (which is dependent on wavelength) led to the unpalatable conclusion that aether simultaneously flows at different speeds for different colors of light.[13] The famous Michelson–Morley experiment of 1887 (Fig. 1-2) showed no differential influence of Earth's motions through the hypothetical aether on the speed of light, and the most likely explanation, complete aether dragging, was in conflict with the observation of stellar aberration.[9]

Напомене

  1. ^ luminiferous from the Latin lumen, light, + ferens, carrying; aether from the Greek αἰθήρ (aithēr), pure air, clear sky

Референце

  1. ^ Логос 2017, стр. 128, 129.
  2. ^ Логос 2017, стр. 316.
  3. ^ „Albert Einstein on space-time”. Encyclopedia Britannica (на језику: енглески). Приступљено 2018-08-21. 
  4. ^ Diccionario Akal de filosofa̕. Audi, Robert, 1941-, Marraud, Huberto,, Alonso, Enrique,. Madrid, Espana: Akal Ediciones. 2004. ISBN 9788446026006. OCLC 643557942. 
  5. ^ Rynasiewicz, Robert. „Newton's Views on Space, Time, and Motion”. Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University. Приступљено 24. 3. 2017. 
  6. ^ Davis, Philip J. (2006). Mathematics & Common Sense: A Case of Creative Tension. Wellesley, Massachusetts: A.K. Peters. стр. 86. ISBN 9781439864326. 
  7. ^ Collier, Peter (2017). A Most Incomprehensible Thing: Notes Towards a Very Gentle Introduction to the Mathematics of Relativity (3rd изд.). Incomprehensible Books. ISBN 9780957389465. 
  8. ^ Rowland, Todd. „Manifold”. Wolfram Mathworld. Wolfram Research. Приступљено 24. 3. 2017. 
  9. ^ а б French, A.P. (1968). Special Relativity. Boca Raton, Florida: CRC Press. стр. 35—60. ISBN 0748764224. 
  10. ^ Taylor, Edwin F.; Wheeler, John Archibald (1992). Spacetime Physics: Introduction to Special Relativity (2nd изд.). San Francisco: Freeman. ISBN 071670336X. Приступљено 14. 4. 2017. 
  11. ^ Scherr, Rachel E.; Shaffer, Peter S.; Vokos, Stamatis (јул 2001). „Student understanding of time in special relativity: Simultaneity and reference frames” (PDF). American Journal of Physics. 69 (S1): S24—S35. Bibcode:2001AmJPh..69S..24S. S2CID 8146369. arXiv:physics/0207109Слободан приступ. doi:10.1119/1.1371254. Приступљено 11. 4. 2017. 
  12. ^ Hughes, Stefan (2013). Catchers of the Light: Catching Space: Origins, Lunar, Solar, Solar System and Deep Space. Paphos, Cyprus: ArtDeCiel Publishing. стр. 202—233. ISBN 9781467579926. 
  13. ^ Stachel, John (2005). „Fresnel’s (Dragging) Coefficient as a Challenge to 19th Century Optics of Moving Bodies.” (PDF). Ур.: Kox, A. J.; Eisenstaedt, Jean. The Universe of General Relativity. Boston: Birkhäuser. стр. 1—13. ISBN 081764380X. Архивирано из оригинала (PDF) 13. 4. 2017. г. 

Литература

  • Bucherer, A. H. (1908), „Messungen an Becquerelstrahlen. Die experimentelle Bestätigung der Lorentz–Einsteinschen Theorie. (Measurements of Becquerel rays. The Experimental Confirmation of the Lorentz–Einstein Theory)”, Physikalische Zeitschrift, 9 (22): 755—762 
  • Cohn, Emil (1901), „Über die Gleichungen der Electrodynamik für bewegte Körper”, Archives Néerlandaises des Sciences Exactes et Naturelles, 5: 516—523 

Спољашње везе