Фазна трансформација — разлика између измена

С Википедије, слободне енциклопедије
Садржај обрисан Садржај додат
м Бот: исправљена преусмерења; козметичке измене
.
Ред 1: Ред 1:
{{short description|Физички процес прелаза између основних стања материје}}
'''Фазна трансформација''' ([[Фаза|фазна]] промена) унутар једног физичко—хемијског система је промена једног [[агрегатна стања|агрегатног стања]] или [[макроскопско]]г уређења у друго. Та промена се манифестује наглом променом једне (или више) физичко—хемијских особина, у зависности од промене неке од [[функција стања]] (нпр. [[температура]] или [[притисак]]).


Фазне трансформације у домену притисак-запремина-температура спадају у област физике под именом [[термодинамика]]. У фазне промене се убрајају и квалитативне промене које изазива [[магнетно поље|магнетско поље]] (област [[електромагнетизам|електромагнетизма]]).
'''Фазна трансформација''' ([[Фаза (термодинамика)|фазна]] промена) унутар једног физичко—хемијског система је промена једног [[агрегатна стања|агрегатног стања]] или [[макроскопско]]г уређења у друго. Та промена се манифестује наглом променом једне (или више) физичко—хемијских особина, у зависности од промене неке од [[функција стања]] (нпр. [[температура]] или [[притисак]]). Фазне трансформације у домену притисак-запремина-температура спадају у област физике под именом [[термодинамика]]. У фазне промене се убрајају и квалитативне промене које изазива [[магнетно поље|магнетско поље]] (област [[електромагнетизам|електромагнетизма]]).


== Класификације ==
Примери фазних трансформација:
{{рут}}
=== Еренфестова класификација ===

[[Paul Ehrenfest]] classified phase transitions based on the behavior of the [[thermodynamic free energy]] as a function of other thermodynamic variables.<ref name="ReferenceA">{{cite journal|last1=Jaeger|first1=Gregg|title=The Ehrenfest Classification of Phase Transitions: Introduction and Evolution|journal=Archive for History of Exact Sciences|date=1 May 1998|volume=53|issue=1|pages=51–81|doi=10.1007/s004070050021|s2cid=121525126}}</ref> Under this scheme, phase transitions were labeled by the lowest derivative of the free energy that is discontinuous at the transition. ''First-order phase transitions'' exhibit a discontinuity in the first derivative of the free energy with respect to some thermodynamic variable.<ref name = Blundell>{{Cite book | last = Blundell | first = Stephen J. |author2=Katherine M. Blundell | title = Concepts in Thermal Physics | publisher = Oxford University Press | year = 2008 | isbn = 978-0-19-856770-7}}</ref> The various solid/liquid/gas transitions are classified as first-order transitions because they involve a discontinuous change in density, which is the (inverse of the) first derivative of the free energy with respect to pressure. ''Second-order phase transitions'' are continuous in the first derivative (the [[#order parameters|order parameter]], which is the first derivative of the free energy with respect to the external field, is continuous across the transition) but exhibit discontinuity in a second derivative of the free energy.<ref name = Blundell/> These include the ferromagnetic phase transition in materials such as iron, where the [[magnetization]], which is the first derivative of the free energy with respect to the applied magnetic field strength, increases continuously from zero as the temperature is lowered below the [[Curie temperature]]. The [[magnetic susceptibility]], the second derivative of the free energy with the field, changes discontinuously. Under the Ehrenfest classification scheme, there could in principle be third, fourth, and higher-order phase transitions.

=== Савремене класификације ===
In the modern classification scheme, phase transitions are divided into two broad categories, named similarly to the Ehrenfest classes:<ref name="ReferenceA"/>

'''First-order phase transitions''' are those that involve a [[latent heat]]. During such a transition, a system either absorbs or releases a fixed (and typically large) amount of energy per volume. During this process, the temperature of the system will stay constant as heat is added: the system is in a "mixed-phase regime" in which some parts of the system have completed the transition and others have not.<ref>Faghri, A., and Zhang, Y., [https://books.google.com/books?id=bxndY2KSuQsC&printsec=frontcover&dq=Transport+Phenomena+in+Multiphase+Systems&hl=en&ei=JJdqTIikDZLdngfY4fjxAQ&sa=X&oi=book_result&ct=result&resnum=1&ved=0CC8Q6AEwAA#v=onepage&q&f=false ''Transport Phenomena in Multiphase Systems''], Elsevier, Burlington, MA, 2006,</ref><ref>Faghri, A., and Zhang, Y., [https://www.springer.com/gp/book/9783030221362 ''Fundamentals of Multiphase Heat Transfer and Flow''], Springer, New York, NY, 2020</ref> Familiar examples are the melting of ice or the boiling of water (the water does not instantly turn into [[water vapor|vapor]], but forms a [[turbulence|turbulent]] mixture of liquid water and vapor bubbles). [[Yoseph Imry]] and Michael Wortis showed that [[quenched disorder]] can broaden a first-order transition. That is, the transformation is completed over a finite range of temperatures, but phenomena like supercooling and superheating survive and hysteresis is observed on thermal cycling.<ref>{{cite journal | last1 = Imry | first1 = Y. | last2 = Wortis | first2 = M. | year = 1979 | title = Influence of quenched impurities on first-order phase transitions| journal = Phys. Rev. B | volume = 19 | issue = 7| pages = 3580–3585 | doi=10.1103/physrevb.19.3580|bibcode = 1979PhRvB..19.3580I }}</ref><ref name="KumarPramanik2006">{{cite journal|last1=Kumar|first1=Kranti|last2=Pramanik|first2=A. K.|last3=Banerjee|first3=A.|last4=Chaddah|first4=P.|last5=Roy|first5=S. B.|last6=Park|first6=S.|last7=Zhang|first7=C. L.|last8=Cheong|first8=S.-W.|title=Relating supercooling and glass-like arrest of kinetics for phase separated systems: DopedCeFe2and(La,Pr,Ca)MnO3|journal=Physical Review B|volume=73|issue=18|pages=184435|year=2006|issn=1098-0121|doi=10.1103/PhysRevB.73.184435|arxiv = cond-mat/0602627 |bibcode = 2006PhRvB..73r4435K |s2cid=117080049}}</ref><ref name="PasquiniDaroca2008">{{cite journal|last1=Pasquini|first1=G.|last2=Daroca|first2=D. Pérez|last3=Chiliotte|first3=C.|last4=Lozano|first4=G. S.|last5=Bekeris|first5=V.|title=Ordered, Disordered, and Coexistent Stable Vortex Lattices inNbSe2Single Crystals|journal=Physical Review Letters|volume=100|issue=24|pages=247003|year=2008|issn=0031-9007|doi=10.1103/PhysRevLett.100.247003|pmid=18643617|bibcode=2008PhRvL.100x7003P|arxiv=0803.0307|s2cid=1568288}}</ref>

'''Second-order phase transitions''' are also called ''"continuous phase transitions"''. They are characterized by a divergent susceptibility, an infinite [[Correlation function (statistical mechanics)|correlation length]], and a [[power law]] decay of correlations near [[Critical point (thermodynamics)|criticality]]. Examples of second-order phase transitions are the [[Ferromagnetism|ferromagnetic]] transition, superconducting transition (for a [[Type-I superconductor]] the phase transition is second-order at zero external field and for a [[Type-II superconductor]] the phase transition is second-order for both normal-state–mixed-state and mixed-state–superconducting-state transitions) and the [[superfluid]] transition. In contrast to viscosity, thermal expansion and heat capacity of amorphous materials show a relatively sudden change at the glass transition temperature<ref name="J. Non-Cryst 2013">{{cite journal | last1 = Ojovan | first1 = M.I. | year = 2013 | title = Ordering and structural changes at the glass-liquid transition | journal = J. Non-Cryst. Solids | volume = 382 | pages = 79–86 | doi = 10.1016/j.jnoncrysol.2013.10.016 |bibcode = 2013JNCS..382...79O }}</ref> which enables accurate detection using [[differential scanning calorimetry]] measurements. [[Lev Landau]] gave a [[Phenomenology (particle physics)|phenomenological]] [[Landau theory|theory]] of second-order phase transitions.

Apart from isolated, simple phase transitions, there exist transition lines as well as [[multicritical point]]s, when varying external parameters like the magnetic field or composition.

Several transitions are known as ''infinite-order phase transitions''.
They are continuous but break no [[#Symmetry|symmetries]]. The most famous example is the [[Kosterlitz–Thouless transition]] in the two-dimensional [[XY model]]. Many [[quantum phase transition]]s, e.g., in [[two-dimensional electron gas]]es, belong to this class.

The [[glass transition|liquid–glass transition]] is observed in many [[polymers]] and other liquids that can be [[supercooling|supercooled]] far below the melting point of the crystalline phase. This is atypical in several respects. It is not a transition between thermodynamic ground states: it is widely believed that the true ground state is always crystalline. Glass is a ''[[quenched disorder]]'' state, and its entropy, density, and so on, depend on the thermal history. Therefore, the glass transition is primarily a dynamic phenomenon: on cooling a liquid, internal degrees of freedom successively fall out of equilibrium. Some theoretical methods predict an underlying phase transition in the hypothetical limit of infinitely long relaxation times.<ref>Gotze, Wolfgang. "Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory."</ref><ref>{{cite journal | last1 = Lubchenko | first1 = V. Wolynes | last2 = Wolynes | first2 = Peter G. | year = 2007 | title = Theory of Structural Glasses and Supercooled Liquids | journal = Annual Review of Physical Chemistry | volume = 58 | pages = 235–266 | doi=10.1146/annurev.physchem.58.032806.104653| pmid = 17067282 |arxiv = cond-mat/0607349 |bibcode = 2007ARPC...58..235L | s2cid = 46089564 }}</ref> No direct experimental evidence supports the existence of these transitions.

The [[gelation]] transition of [[colloids|colloidal particles]] has been shown to be a second-order phase transition under [[nonequilibrium thermodynamics|nonequilibrium]] conditions.<ref>{{cite journal | last1 = Rouwhorst | first1 = J |last2 = Ness | first2 = C. | last3 = Soyanov | first3 = S. | last4=Zaccone | first4=A. | last5=Schall | first5=P | year = 2020 | title = Nonequilibrium continuous phase transition in colloidal gelation with short-range attraction | journal = Nature Communications | volume = 11 | issue = 1| pages = 3558 | doi=10.1038/s41467-020-17353-8| pmid = 32678089 | arxiv = 2007.10691 | bibcode = 2020NatCo..11.3558R | doi-access = free }}</ref>

== Карактеристична својства ==

=== Фазна коегзистенција ===

A disorder-broadened first-order transition occurs over a finite range of temperatures where the fraction of the low-temperature equilibrium phase grows from zero to one (100%) as the temperature is lowered. This continuous variation of the coexisting fractions with temperature raised interesting possibilities. On cooling, some liquids vitrify into a glass rather than transform to the equilibrium crystal phase. This happens if the cooling rate is faster than a critical cooling rate, and is attributed to the molecular motions becoming so slow that the molecules cannot rearrange into the crystal positions.<ref>{{cite journal | year = 1995 | title = Metallic Glasses| journal = Science | volume = 267 | issue = 5206| pages = 1947–1953 |bibcode = 1995Sci...267.1947G |doi = 10.1126/science.267.5206.1947 | pmid = 17770105| last1 = Greer| first1 = A. L.| s2cid = 220105648}}</ref> This slowing down happens below a glass-formation temperature ''T''<sub>g</sub>, which may depend on the applied pressure.<ref name="J. Non-Cryst 2013"/><ref>{{cite journal | last1 = Tarjus | first1 = G. | year = 2007 | title = Materials science: Metal turned to glass| journal = Nature | volume = 448 | issue = 7155| pages = 758–759 | doi=10.1038/448758a| pmid = 17700684 |bibcode = 2007Natur.448..758T | s2cid = 4410586 | doi-access = free }}</ref> If the first-order freezing transition occurs over a range of temperatures, and ''T''<sub>g</sub> falls within this range, then there is an interesting possibility that the transition is arrested when it is partial and incomplete. Extending these ideas to first-order magnetic transitions being arrested at low temperatures, resulted in the observation of incomplete magnetic transitions, with two magnetic phases coexisting, down to the lowest temperature. First reported in the case of a ferromagnetic to anti-ferromagnetic transition,<ref name="ManekarChaudhary2001">{{cite journal |last1=Manekar |first1=M. A. |last2=Chaudhary |first2=S. |last3=Chattopadhyay |first3=M. K. |last4=Singh |first4=K. J. |last5=Roy |first5=S. B. |last6=Chaddah |first6=P. |title=First-order transition from antiferromagnetism to ferromagnetism inCe(Fe<sub>0.96</sub>Al<sub>0.04</sub>)<sub>2</sub> |journal=Physical Review B |volume=64 |issue=10 |pages=104416 |year=2001 |issn=0163-1829 |doi=10.1103/PhysRevB.64.104416 |arxiv=cond-mat/0012472 |bibcode=2001PhRvB..64j4416M|s2cid=16851501 }}</ref> such persistent phase coexistence has now been reported across a variety of first-order magnetic transitions. These include colossal-magnetoresistance manganite materials,<ref>{{cite journal|doi=10.1088/0953-8984/18/49/L02|arxiv = cond-mat/0611152 |bibcode = 2006JPCM...18L.605B |title = Coexisting tunable fractions of glassy and equilibrium long-range-order phases in manganites |journal = Journal of Physics: Condensed Matter |volume = 18 |issue = 49 |pages = L605 |year = 2006 |last1 = Banerjee |first1 = A. |last2 = Pramanik |first2 = A. K. |last3 = Kumar |first3 = Kranti |last4 = Chaddah |first4 = P. |s2cid = 98145553 }}</ref><ref>{{cite journal |author = Wu W. |author2 = Israel C. |author3 = Hur N. |author4 = Park S. |author5 = Cheong S. W. |author6 = de Lozanne A. | year = 2006 | title = Magnetic imaging of a supercooling glass transition in a weakly disordered ferromagnet| journal = Nature Materials | volume = 5 | issue = 11| pages = 881–886 |bibcode = 2006NatMa...5..881W |doi = 10.1038/nmat1743 | pmid = 17028576 | s2cid = 9036412 }}</ref> magnetocaloric materials,<ref name="RoyChattopadhyay2006">{{cite journal |last1=Roy |first1=S. B. |last2=Chattopadhyay |first2=M. K. |last3=Chaddah |first3=P. |last4=Moore |first4=J. D. |last5=Perkins |first5=G. K. |last6=Cohen |first6=L. F. |last7=Gschneidner |first7=K. A. |last8=Pecharsky |first8=V. K. |title=Evidence of a magnetic glass state in the magnetocaloric material Gd<sub>5</sub>Ge<sub>4</sub> |journal=Physical Review B |volume=74 |issue=1 |pages=012403 |year=2006 |issn=1098-0121 |doi=10.1103/PhysRevB.74.012403 |bibcode = 2006PhRvB..74a2403R }}</ref> magnetic shape memory materials,<ref name="LakhaniBanerjee2012">{{cite journal |last1=Lakhani |first1=Archana |last2=Banerjee |first2=A. |last3=Chaddah |first3=P. |last4=Chen |first4=X. |last5=Ramanujan |first5=R. V. |title=Magnetic glass in shape memory alloy: Ni<sub>45</sub>Co<sub>5</sub>Mn<sub>38</sub>Sn<sub>12</sub> |journal=Journal of Physics: Condensed Matter |volume=24 |issue=38 |year=2012 |pages=386004 |issn=0953-8984 |doi=10.1088/0953-8984/24/38/386004 |pmid=22927562 |arxiv = 1206.2024 |bibcode = 2012JPCM...24L6004L |s2cid=206037831 }}</ref> and other materials.<ref name="KushwahaLakhani2009">{{cite journal |last1=Kushwaha |first1=Pallavi |last2=Lakhani |first2=Archana |last3=Rawat |first3=R. |last4=Chaddah |first4=P. |title=Low-temperature study of field-induced antiferromagnetic-ferromagnetic transition in Pd-doped Fe-Rh |journal=Physical Review B |volume=80 |issue=17 |pages=174413 |year=2009 |issn=1098-0121 |doi=10.1103/PhysRevB.80.174413 |arxiv=0911.4552 |bibcode=2009PhRvB..80q4413K|s2cid=119165221 }}</ref>
The interesting feature of these observations of ''T''<sub>g</sub> falling within the temperature range over which the transition occurs is that the first-order magnetic transition is influenced by magnetic field, just like the structural transition is influenced by pressure. The relative ease with which magnetic fields can be controlled, in contrast to pressure, raises the possibility that one can study the interplay between ''T''<sub>g</sub> and ''T''<sub>c</sub> in an exhaustive way. Phase coexistence across first-order magnetic transitions will then enable the resolution of outstanding issues in understanding glasses.

== Примери фазних трансформација ==
* Фазна трансформације [[чврсто агрегатно стање|чврсто]]-[[флуид|течно]]-[[гас]] једнокомпонентног система под утицајем [[Температура|температуре]] и/или [[Притисак|притиска]]:
* Фазна трансформације [[чврсто агрегатно стање|чврсто]]-[[флуид|течно]]-[[гас]] једнокомпонентног система под утицајем [[Температура|температуре]] и/или [[Притисак|притиска]]:
:{| class="wikitable"
:{| class="wikitable"
Ред 45: Ред 74:
* Прелазак у стање [[суперфлуиди|суперфлуидности]]
* Прелазак у стање [[суперфлуиди|суперфлуидности]]
* Прелазак у стање [[суперпроводност|суперпроводљивости]]
* Прелазак у стање [[суперпроводност|суперпроводљивости]]

== Референце ==
{{reflist|}}

== Литература ==
{{refbegin|30em}}
* [[Philip Warren Anderson|Anderson, P.W.]], ''Basic Notions of Condensed Matter Physics'', [[Perseus Publishing]] (1997).
* [[Amir Faghri|Faghri, A.]], and [[Yuwen Zhang|Zhang, Y.]], [https://www.springer.com/gp/book/9783030221362 Fundamentals of Multiphase Heat Transfer and Flow], [[Springer Nature]] Switzerland AG, 2020.
* {{cite journal | last1 = Fisher | first1 = M.E. | author-link = Michael E. Fisher | year = 1974 | title = The renormalization group in the theory of critical behavior | journal = Rev. Mod. Phys. | volume = 46 | issue = 4| pages = 597–616 | doi=10.1103/revmodphys.46.597|bibcode = 1974RvMP...46..597F }}
* Goldenfeld, N., ''Lectures on Phase Transitions and the Renormalization Group'', Perseus Publishing (1992).
*{{citation |year=2008 |author=Ivancevic, Vladimir G |author2=Ivancevic, Tijana T |title=Chaos, Phase Transitions, Topology Change and Path Integrals |url=https://books.google.com/books?id=wpsPgHgtxEYC&q=complex+nonlinearity |place=Berlin |publisher=Springer |isbn=978-3-540-79356-4 |access-date=14 March 2013 }}
* M.R.Khoshbin-e-Khoshnazar, ''Ice Phase Transition as a sample of finite system phase transition'', (Physics Education(India)Volume 32. No. 2, Apr - Jun 2016)[http://www.physedu.in/uploads/publication/23/371/4.-Ice-Phase-transition-as-a-sample-of-finite-system-phase--transition.pdf]
* [[Hagen Kleinert|Kleinert, H.]], ''Gauge Fields in Condensed Matter'', Vol. I, "[[:de:Supraflüssigkeit|Superfluid]] and [[vortex|Vortex lines]]; Disorder Fields, [[Phase Transition]]s,", pp.&nbsp;1–742, [https://archive.is/20060514143926/http://www.worldscibooks.com/physics/0356.htm World Scientific (Singapore, 1989)]; Paperback {{ISBN|9971-5-0210-0}} (readable online [http://www.physik.fu-berlin.de/~kleinert/kleiner_reb1/contents1.html physik.fu-berlin.de])
* [[Hagen Kleinert|Kleinert, H.]] and Verena Schulte-Frohlinde, ''Critical Properties of φ<sup>4</sup>-Theories'', [https://web.archive.org/web/20080226151023/http://www.worldscibooks.com/physics/4733.html World Scientific (Singapore, 2001)]; Paperback {{ISBN|981-02-4659-5}}'' (readable online [http://www.physik.fu-berlin.de/~kleinert/b8 here]).''
* {{cite journal | last1 = Kogut | first1 = J. | author-link2 = Kenneth G. Wilson | last2 = Wilson | first2 = K | year = 1974 | title = The Renormalization Group and the epsilon-Expansion | journal = Phys. Rep. | volume = 12 | issue = 2| pages = 75–199 |bibcode = 1974PhR....12...75W |doi = 10.1016/0370-1573(74)90023-4 }}
* Krieger, Martin H., ''Constitutions of matter : mathematically modelling the most everyday of physical phenomena'', [[University of Chicago Press]], 1996. Contains a detailed pedagogical discussion of [[Lars Onsager|Onsager]]'s solution of the 2-D Ising Model.
* [[Lev Davidovich Landau|Landau, L.D.]] and [[Evgeny Mikhailovich Lifshitz|Lifshitz, E.M.]], ''Statistical Physics Part 1'', vol. 5 of ''[[Course of Theoretical Physics]]'', Pergamon Press, 3rd Ed. (1994).
* Mussardo G., "Statistical Field Theory. An Introduction to Exactly Solved Models of Statistical Physics", Oxford University Press, 2010.
*[[Manfred R. Schroeder|Schroeder, Manfred R.]], ''Fractals, chaos, power laws : minutes from an infinite paradise'', New York: [[W. H. Freeman]], 1991. Very well-written book in "semi-popular" style—not a textbook—aimed at an audience with some training in mathematics and the physical sciences. Explains what scaling in phase transitions is all about, among other things.
* H. E. Stanley, ''Introduction to Phase Transitions and Critical Phenomena'' (Oxford University Press, Oxford and New York 1971).
* Yeomans J. M., ''Statistical Mechanics of Phase Transitions'', Oxford University Press, 1992.
{{refend}}


== Спољашње везе ==
== Спољашње везе ==
{{Commonscat|Phase changes}}
{{Commons category|Phase changes}}
* [http://www.ibiblio.org/e-notes/Perc/contents.htm Interactive Phase Transitions on lattices] with Java applets
* [https://web.archive.org/web/20160204235430/http://www.sklogwiki.org/SklogWiki/index.php/Universality_classes Universality classes] from Sklogwiki

{{Authority control}}


[[Категорија:Термодинамика]]
[[Категорија:Термодинамика]]

Верзија на датум 21. новембар 2021. у 17:21

Фазна трансформација (фазна промена) унутар једног физичко—хемијског система је промена једног агрегатног стања или макроскопског уређења у друго. Та промена се манифестује наглом променом једне (или више) физичко—хемијских особина, у зависности од промене неке од функција стања (нпр. температура или притисак). Фазне трансформације у домену притисак-запремина-температура спадају у област физике под именом термодинамика. У фазне промене се убрајају и квалитативне промене које изазива магнетско поље (област електромагнетизма).

Класификације

Еренфестова класификација

Paul Ehrenfest classified phase transitions based on the behavior of the thermodynamic free energy as a function of other thermodynamic variables.[1] Under this scheme, phase transitions were labeled by the lowest derivative of the free energy that is discontinuous at the transition. First-order phase transitions exhibit a discontinuity in the first derivative of the free energy with respect to some thermodynamic variable.[2] The various solid/liquid/gas transitions are classified as first-order transitions because they involve a discontinuous change in density, which is the (inverse of the) first derivative of the free energy with respect to pressure. Second-order phase transitions are continuous in the first derivative (the order parameter, which is the first derivative of the free energy with respect to the external field, is continuous across the transition) but exhibit discontinuity in a second derivative of the free energy.[2] These include the ferromagnetic phase transition in materials such as iron, where the magnetization, which is the first derivative of the free energy with respect to the applied magnetic field strength, increases continuously from zero as the temperature is lowered below the Curie temperature. The magnetic susceptibility, the second derivative of the free energy with the field, changes discontinuously. Under the Ehrenfest classification scheme, there could in principle be third, fourth, and higher-order phase transitions.

Савремене класификације

In the modern classification scheme, phase transitions are divided into two broad categories, named similarly to the Ehrenfest classes:[1]

First-order phase transitions are those that involve a latent heat. During such a transition, a system either absorbs or releases a fixed (and typically large) amount of energy per volume. During this process, the temperature of the system will stay constant as heat is added: the system is in a "mixed-phase regime" in which some parts of the system have completed the transition and others have not.[3][4] Familiar examples are the melting of ice or the boiling of water (the water does not instantly turn into vapor, but forms a turbulent mixture of liquid water and vapor bubbles). Yoseph Imry and Michael Wortis showed that quenched disorder can broaden a first-order transition. That is, the transformation is completed over a finite range of temperatures, but phenomena like supercooling and superheating survive and hysteresis is observed on thermal cycling.[5][6][7]

Second-order phase transitions are also called "continuous phase transitions". They are characterized by a divergent susceptibility, an infinite correlation length, and a power law decay of correlations near criticality. Examples of second-order phase transitions are the ferromagnetic transition, superconducting transition (for a Type-I superconductor the phase transition is second-order at zero external field and for a Type-II superconductor the phase transition is second-order for both normal-state–mixed-state and mixed-state–superconducting-state transitions) and the superfluid transition. In contrast to viscosity, thermal expansion and heat capacity of amorphous materials show a relatively sudden change at the glass transition temperature[8] which enables accurate detection using differential scanning calorimetry measurements. Lev Landau gave a phenomenological theory of second-order phase transitions.

Apart from isolated, simple phase transitions, there exist transition lines as well as multicritical points, when varying external parameters like the magnetic field or composition.

Several transitions are known as infinite-order phase transitions. They are continuous but break no symmetries. The most famous example is the Kosterlitz–Thouless transition in the two-dimensional XY model. Many quantum phase transitions, e.g., in two-dimensional electron gases, belong to this class.

The liquid–glass transition is observed in many polymers and other liquids that can be supercooled far below the melting point of the crystalline phase. This is atypical in several respects. It is not a transition between thermodynamic ground states: it is widely believed that the true ground state is always crystalline. Glass is a quenched disorder state, and its entropy, density, and so on, depend on the thermal history. Therefore, the glass transition is primarily a dynamic phenomenon: on cooling a liquid, internal degrees of freedom successively fall out of equilibrium. Some theoretical methods predict an underlying phase transition in the hypothetical limit of infinitely long relaxation times.[9][10] No direct experimental evidence supports the existence of these transitions.

The gelation transition of colloidal particles has been shown to be a second-order phase transition under nonequilibrium conditions.[11]

Карактеристична својства

Фазна коегзистенција

A disorder-broadened first-order transition occurs over a finite range of temperatures where the fraction of the low-temperature equilibrium phase grows from zero to one (100%) as the temperature is lowered. This continuous variation of the coexisting fractions with temperature raised interesting possibilities. On cooling, some liquids vitrify into a glass rather than transform to the equilibrium crystal phase. This happens if the cooling rate is faster than a critical cooling rate, and is attributed to the molecular motions becoming so slow that the molecules cannot rearrange into the crystal positions.[12] This slowing down happens below a glass-formation temperature Tg, which may depend on the applied pressure.[8][13] If the first-order freezing transition occurs over a range of temperatures, and Tg falls within this range, then there is an interesting possibility that the transition is arrested when it is partial and incomplete. Extending these ideas to first-order magnetic transitions being arrested at low temperatures, resulted in the observation of incomplete magnetic transitions, with two magnetic phases coexisting, down to the lowest temperature. First reported in the case of a ferromagnetic to anti-ferromagnetic transition,[14] such persistent phase coexistence has now been reported across a variety of first-order magnetic transitions. These include colossal-magnetoresistance manganite materials,[15][16] magnetocaloric materials,[17] magnetic shape memory materials,[18] and other materials.[19] The interesting feature of these observations of Tg falling within the temperature range over which the transition occurs is that the first-order magnetic transition is influenced by magnetic field, just like the structural transition is influenced by pressure. The relative ease with which magnetic fields can be controlled, in contrast to pressure, raises the possibility that one can study the interplay between Tg and Tc in an exhaustive way. Phase coexistence across first-order magnetic transitions will then enable the resolution of outstanding issues in understanding glasses.

Примери фазних трансформација

Фазна промена
Почетно стање Чврсто Течно Гасовито Плазма
Чврсто Чврсто-Чврсто Топљење Сублимација -
Течно Мржњење - Испаравање -
Гас Ресублимација Кондензација - Јонизација
Плазма - - Рекомбинација/Неутрализација јона -

Референце

  1. ^ а б Jaeger, Gregg (1. 5. 1998). „The Ehrenfest Classification of Phase Transitions: Introduction and Evolution”. Archive for History of Exact Sciences. 53 (1): 51—81. S2CID 121525126. doi:10.1007/s004070050021. 
  2. ^ а б Blundell, Stephen J.; Katherine M. Blundell (2008). Concepts in Thermal Physics. Oxford University Press. ISBN 978-0-19-856770-7. 
  3. ^ Faghri, A., and Zhang, Y., Transport Phenomena in Multiphase Systems, Elsevier, Burlington, MA, 2006,
  4. ^ Faghri, A., and Zhang, Y., Fundamentals of Multiphase Heat Transfer and Flow, Springer, New York, NY, 2020
  5. ^ Imry, Y.; Wortis, M. (1979). „Influence of quenched impurities on first-order phase transitions”. Phys. Rev. B. 19 (7): 3580—3585. Bibcode:1979PhRvB..19.3580I. doi:10.1103/physrevb.19.3580. 
  6. ^ Kumar, Kranti; Pramanik, A. K.; Banerjee, A.; Chaddah, P.; Roy, S. B.; Park, S.; Zhang, C. L.; Cheong, S.-W. (2006). „Relating supercooling and glass-like arrest of kinetics for phase separated systems: DopedCeFe2and(La,Pr,Ca)MnO3”. Physical Review B. 73 (18): 184435. Bibcode:2006PhRvB..73r4435K. ISSN 1098-0121. S2CID 117080049. arXiv:cond-mat/0602627Слободан приступ. doi:10.1103/PhysRevB.73.184435. 
  7. ^ Pasquini, G.; Daroca, D. Pérez; Chiliotte, C.; Lozano, G. S.; Bekeris, V. (2008). „Ordered, Disordered, and Coexistent Stable Vortex Lattices inNbSe2Single Crystals”. Physical Review Letters. 100 (24): 247003. Bibcode:2008PhRvL.100x7003P. ISSN 0031-9007. PMID 18643617. S2CID 1568288. arXiv:0803.0307Слободан приступ. doi:10.1103/PhysRevLett.100.247003. 
  8. ^ а б Ojovan, M.I. (2013). „Ordering and structural changes at the glass-liquid transition”. J. Non-Cryst. Solids. 382: 79—86. Bibcode:2013JNCS..382...79O. doi:10.1016/j.jnoncrysol.2013.10.016. 
  9. ^ Gotze, Wolfgang. "Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory."
  10. ^ Lubchenko, V. Wolynes; Wolynes, Peter G. (2007). „Theory of Structural Glasses and Supercooled Liquids”. Annual Review of Physical Chemistry. 58: 235—266. Bibcode:2007ARPC...58..235L. PMID 17067282. S2CID 46089564. arXiv:cond-mat/0607349Слободан приступ. doi:10.1146/annurev.physchem.58.032806.104653. 
  11. ^ Rouwhorst, J; Ness, C.; Soyanov, S.; Zaccone, A.; Schall, P (2020). „Nonequilibrium continuous phase transition in colloidal gelation with short-range attraction”. Nature Communications. 11 (1): 3558. Bibcode:2020NatCo..11.3558R. PMID 32678089. arXiv:2007.10691Слободан приступ. doi:10.1038/s41467-020-17353-8Слободан приступ. 
  12. ^ Greer, A. L. (1995). „Metallic Glasses”. Science. 267 (5206): 1947—1953. Bibcode:1995Sci...267.1947G. PMID 17770105. S2CID 220105648. doi:10.1126/science.267.5206.1947. 
  13. ^ Tarjus, G. (2007). „Materials science: Metal turned to glass”. Nature. 448 (7155): 758—759. Bibcode:2007Natur.448..758T. PMID 17700684. S2CID 4410586. doi:10.1038/448758aСлободан приступ. 
  14. ^ Manekar, M. A.; Chaudhary, S.; Chattopadhyay, M. K.; Singh, K. J.; Roy, S. B.; Chaddah, P. (2001). „First-order transition from antiferromagnetism to ferromagnetism inCe(Fe0.96Al0.04)2”. Physical Review B. 64 (10): 104416. Bibcode:2001PhRvB..64j4416M. ISSN 0163-1829. S2CID 16851501. arXiv:cond-mat/0012472Слободан приступ. doi:10.1103/PhysRevB.64.104416. 
  15. ^ Banerjee, A.; Pramanik, A. K.; Kumar, Kranti; Chaddah, P. (2006). „Coexisting tunable fractions of glassy and equilibrium long-range-order phases in manganites”. Journal of Physics: Condensed Matter. 18 (49): L605. Bibcode:2006JPCM...18L.605B. S2CID 98145553. arXiv:cond-mat/0611152Слободан приступ. doi:10.1088/0953-8984/18/49/L02. 
  16. ^ Wu W.; Israel C.; Hur N.; Park S.; Cheong S. W.; de Lozanne A. (2006). „Magnetic imaging of a supercooling glass transition in a weakly disordered ferromagnet”. Nature Materials. 5 (11): 881—886. Bibcode:2006NatMa...5..881W. PMID 17028576. S2CID 9036412. doi:10.1038/nmat1743. 
  17. ^ Roy, S. B.; Chattopadhyay, M. K.; Chaddah, P.; Moore, J. D.; Perkins, G. K.; Cohen, L. F.; Gschneidner, K. A.; Pecharsky, V. K. (2006). „Evidence of a magnetic glass state in the magnetocaloric material Gd5Ge4”. Physical Review B. 74 (1): 012403. Bibcode:2006PhRvB..74a2403R. ISSN 1098-0121. doi:10.1103/PhysRevB.74.012403. 
  18. ^ Lakhani, Archana; Banerjee, A.; Chaddah, P.; Chen, X.; Ramanujan, R. V. (2012). „Magnetic glass in shape memory alloy: Ni45Co5Mn38Sn12”. Journal of Physics: Condensed Matter. 24 (38): 386004. Bibcode:2012JPCM...24L6004L. ISSN 0953-8984. PMID 22927562. S2CID 206037831. arXiv:1206.2024Слободан приступ. doi:10.1088/0953-8984/24/38/386004. 
  19. ^ Kushwaha, Pallavi; Lakhani, Archana; Rawat, R.; Chaddah, P. (2009). „Low-temperature study of field-induced antiferromagnetic-ferromagnetic transition in Pd-doped Fe-Rh”. Physical Review B. 80 (17): 174413. Bibcode:2009PhRvB..80q4413K. ISSN 1098-0121. S2CID 119165221. arXiv:0911.4552Слободан приступ. doi:10.1103/PhysRevB.80.174413. 

Литература

Спољашње везе