Растојање — разлика између измена

С Википедије, слободне енциклопедије
Садржај обрисан Садржај додат
м Dcirovic преместио је страницу Пређени пут на Растојање: spajanje
.
Ред 6: Ред 6:
== Пређени пут ==
== Пређени пут ==
{{Разликовати|[[Положај|Положајeм]]|[[Вектор положаја|Вектором положаја]]|[[Померај|Померајем]]|[[Вектор помераја|Вектором помераја]]}}
{{Разликовати|[[Положај|Положајeм]]|[[Вектор положаја|Вектором положаја]]|[[Померај|Померајем]]|[[Вектор помераја|Вектором помераја]]}}
[[Датотека:Distancedisplacement-sr.svg|250п|мини|десно|[[Вектор помераја]] (зелена права испрекидана линија), пређени пут (љубичаста крива испрекидана линија) и путања (плава линија)]]


[[Датотека:Distancedisplacement-sr.svg|220п|мини|десно|[[Вектор помераја]] (зелена права испрекидана линија), пређени пут (љубичаста крива испрекидана линија) и путања (плава линија)]]
'''Пређени пут''' ({{јез-eнгл|distance travelled}}; -{SI}- ознака — <math>\boldsymbol{s}</math>) јест једнак интензитету ([[апсолутна вредност|апсолутној вредности]]) [[вектор помераја|векторa помераја]]:
'''Пређени пут''' ({{јез-eнгл|distance travelled}}; -{SI}- ознака — <math>\boldsymbol{s}</math>) јест једнак интензитету ([[апсолутна вредност|апсолутној вредности]]) [[вектор помераја|векторa помераја]]:


Ред 23: Ред 23:


Пређени пут је [[скaлар]]на величина.
Пређени пут је [[скaлар]]на величина.

== Преглед и дефиниције ==
{{rut}}
=== Физичке удаљености ===
[[File:Greatcircle Jetstream routes.svg|thumb|400px|Airline routes between [[Los Angeles]] and [[Tokyo]] approximately follow a direct [[great circle]] route (top), but use the [[jet stream]] (bottom) when heading eastwards. Note that the shortest route appears as a curve rather than a straight line because this map is a [[Mercator projection]], which does not scale all distances equally compared to the real spherical surface of the Earth.]]
[[File:Manhattan distance.svg|thumb|250px|left|"[[Manhattan distance]]" on a grid]]

A physical distance can mean several different things:
* Distance traveled: The length of a specific path traveled between two points,<ref>{{Cite web|title=What is displacement? (article)|url=https://www.khanacademy.org/science/physics/one-dimensional-motion/displacement-velocity-time/a/what-is-displacement|access-date=2020-07-20|website=Khan Academy|language=en}}</ref> such as the distance walked while navigating a maze
* Straight-line (Euclidean) distance: The length of the shortest possible path through space, between two points, that could be taken if there were no obstacles (usually formalized as [[Euclidean distance]])
* Geodesic distance: The length of the shortest path between two points while remaining on some surface, such as the [[great-circle distance]] along the [[Figure of the Earth|curve of the Earth]]
* The length of a specific path that returns to the starting point, such as a ball thrown straight up, or the Earth when it completes one [[orbit]].
[[File:Distance board in Vizag.jpg|thumb|250px|left|A board showing distances near [[Visakhapatnam]]]]

"Circular distance" is the distance traveled by a wheel, which can be useful when designing vehicles or mechanical gears. The circumference of the wheel is 2''&pi;''&nbsp;&times;&nbsp;radius, and assuming the radius to be&nbsp;1, then each revolution of the wheel is equivalent of the distance 2''&pi;'' radians. In engineering ''&omega;''&nbsp;=&nbsp;2''&pi;&fnof;'' is often used, where ''&fnof;'' is the [[frequency]].

Unusual definitions of distance can be helpful to model certain physical situations, but are also used in theoretical mathematics:
* "[[Manhattan distance]]" is a rectilinear distance, named after the number of blocks (in the north, south, east or west directions) a taxicab must travel on, in order to reach its destination on the grid of streets in parts of New York City.
* "Chessboard distance", formalized as [[Chebyshev distance]], is the minimum number of moves a king must make on a [[chessboard]], in order to travel between two squares.

[[Distance measures (cosmology)|Distance measures in cosmology]] are complicated by the [[expansion of the universe]], and by effects described by the [[theory of relativity]] (such as [[length contraction]] of moving objects).

=== Теоријске удаљености ===

The term "distance" is also used by analogy to measure non-physical entities in certain ways.

In [[computer science]], there is the notion of the "[[edit distance]]" between two strings. For example, the words "dog" and "dot", which vary by only one letter, are closer than "dog" and "cat", which differ by three letters. This idea is used in [[spell checker]]s and in [[coding theory]], and is mathematically formalized in several different ways such as:
* [[Levenshtein distance]]
* [[Hamming distance]]
* [[Lee distance]]
* [[Jaro–Winkler distance]]

In mathematics, a [[metric space]] is a set for which distances between all members of the set are defined. In this way, many different types of "distances" can be calculated, such as for [[Graph traversal|traversal of graphs]], comparison of distributions and curves, and using unusual definitions of "space" (for example using a [[manifold]] or [[Reflection (mathematics)|reflections]]). The notion of [[Distance (graph theory)|distance in graph theory]] has been used to describe [[social network]]s, for example with the [[Erdős number]] or the [[Bacon number]]—the number of collaborative relationships away a person is from prolific mathematician [[Paul Erdős]] and actor [[Kevin Bacon]], respectively.

In psychology, human geography, and the social sciences, distance is often theorized not as an objective metric, but as a subjective experience.<ref>{{Cite web|title=SOCIAL DISTANCES|url=https://www.hawaii.edu/powerkills/TCH.CHAP16.HTM|access-date=2020-07-20|website=www.hawaii.edu}}</ref>


== Види још ==
== Види још ==
Ред 38: Ред 73:


== Литература ==
== Литература ==
{{refbegin}}
{{refbegin|30em}}
* {{cite book | vauthors = Deza E, Deza M |author2-link=Michel Deza|title=Dictionary of Distances|year=2006|publisher=Elsevier|isbn=0-444-52087-2}}
* {{cite book | vauthors = Deza E, Deza M |author2-link=Michel Deza|title=Dictionary of Distances|year=2006|publisher=Elsevier|isbn=0-444-52087-2}}
* {{citation
| last1 = Aldrovandi | first1 = Ruben
| last2 = Pereira | first2 = José Geraldo
| edition = 2nd
| isbn = 978-981-3146-81-5
| location = Hackensack, New Jersey
| mr = 3561561
| page = 20
| publisher = World Scientific
| title = An Introduction to Geometrical Physics
| url = https://books.google.com/books?id=NWhtDQAAQBAJ&pg=PA20
| year = 2017}}
*{{citation
| last1 = Arkhangel'skii | first1 = A. V. | author1-link = Alexander Arhangelskii
| last2 = Pontryagin | first2 = L. S. | author2-link = Lev Pontryagin
| isbn = 3-540-18178-4
| publisher = [[Springer Science+Business Media|Springer]]
| series = Encyclopaedia of Mathematical Sciences
| title = General Topology I: Basic Concepts and Constructions Dimension Theory
| year = 1990}}
*{{citation
| last1 = Buldygin | first1 = V. V.
| last2 = Kozachenko | first2 = Yu. V.
| doi = 10.1090/mmono/188
| isbn = 0-8218-0533-9
| mr = 1743716
| page = 129
| publisher = American Mathematical Society | location = Providence, Rhode Island
| series = Translations of Mathematical Monographs
| title = Metric Characterization of Random Variables and Random Orocesses
| url = https://books.google.com/books?id=ePDXvIhdEjoC&pg=PA129
| volume = 188
| year = 2000}}
*{{citation
| last = Čech | first = Eduard | author-link = Eduard Čech
| location = New York
| page = 42
| publisher = Academic Press
| title = Point Sets
| year = 1969}}
*{{citation
| last = Cecil | first = Thomas E.
| edition = 2nd
| isbn = 978-0-387-74655-5
| mr = 2361414
| page = 9
| publisher = Springer | location = New York
| series = Universitext
| title = Lie Sphere Geometry: With Applications to Submanifolds
| url = https://books.google.com/books?id=bT3rBwAAQBAJ&pg=PA9
| year = 2008}}
*{{citation
| last1 = Cohen | first1 = Andrew R.
| last2 = Vitányi | first2 = Paul M. B. | author2-link = Paul Vitányi
| arxiv = 1212.5711
| doi = 10.1109/TPAMI.2014.2375175
| issue = 8
| journal = IEEE Transactions on Pattern Analysis and Machine Intelligence
| pages = 1602–1614
| pmc = 4566858
| pmid = 26352998
| title = Normalized compression distance of multisets with applications
| volume = 37
| year = 2012}}
*{{citation
| last1 = Deza | first1 = Michel Marie | author1-link = Michel Deza
| last2 = Laurent | first2 = Monique | author2-link = Monique Laurent
| doi = 10.1007/978-3-642-04295-9
| isbn = 3-540-61611-X
| mr = 1460488
| page = 27
| publisher = Springer-Verlag, Berlin
| series = Algorithms and Combinatorics
| title = Geometry of Cuts and Metrics
| url = https://books.google.com/books?id=XujvCAAAQBAJ&pg=PA27
| volume = 15
| year = 1997}}
*{{citation
| last1 = Fraigniaud | first1 = P.
| last2 = Lebhar | first2 = E.
| last3 = Viennot | first3 = L.
| citeseerx = 10.1.1.113.6748
| contribution = The inframetric model for the internet
| doi = 10.1109/INFOCOM.2008.163
| isbn = 978-1-4244-2026-1
| pages = 1085–1093
| s2cid = 5733968
| title = 2008 IEEE INFOCOM - The 27th Conference on Computer Communications
| year = 2008}}
*{{citation
| last = Helemskii | first = A. Ya.
| doi = 10.1090/mmono/233
| isbn = 978-0-8218-4098-6
| mr = 2248303
| page = 14
| publisher = American Mathematical Society | location = Providence, Rhode Island
| series = Translations of Mathematical Monographs
| title = Lectures and Exercises on Functional Analysis
| url = https://books.google.com/books?id=wjzZCLzx6hUC&pg=PA14
| volume = 233
| year = 2006}}
*{{citation
| last = Lawvere | first = F. William | author-link =
William Lawvere
| issue = 1
| journal = Reprints in Theory and Applications of Categories
| mr = 1925933
| pages = 1–37
| title = Metric spaces, generalized logic, and closed categories
| url = http://tac.mta.ca/tac/reprints/articles/1/tr1.pdf
| year = 2002}}; reprinted with added commentary from {{citation
| last = Lawvere | first = F. William
| doi = 10.1007/BF02924844
| journal = Rendiconti del Seminario Matematico e Fisico di Milano
| mr = 352214
| pages = 135–166 (1974)
| title = Metric spaces, generalized logic, and closed categories
| volume = 43
| year = 1973}}
*{{citation
| last = Parrott | first = Stephen
| doi = 10.1007/978-1-4612-4684-8
| isbn = 0-387-96435-5
| mr = 867408
| page = 4
| publisher = Springer-Verlag | location = New York
| title = Relativistic Electrodynamics and Differential Geometry
| url = https://books.google.com/books?id=NUnxBwAAQBAJ&pg=PA4
| year = 1987}}
*{{citation
| last = Rolewicz | first = Stefan
| isbn = 90-277-2186-6
| publisher = [[Springer Science+Business Media|Springer]]
| title = Functional Analysis and Control Theory: Linear Systems
| year = 1987}}
*{{citation
| last = Smyth | first = M.
| editor1-last = Main | editor1-first = M.
| editor2-last = Melton | editor2-first = A.
| editor3-last = Mislove | editor3-first = M.
| editor4-last = Schmidt | editor4-first = D.
| contribution = Quasi uniformities: reconciling domains with metric spaces
| doi = 10.1007/3-540-19020-1_12
| pages = 236–253
| publisher = Springer-Verlag
| series = Lecture Notes in Computer Science
| title = 3rd Conference on Mathematical Foundations of Programming Language Semantics
| volume = 298
| year = 1987}}
*{{citation
| last1 = Steen | first1 = Lynn Arthur
| last2 = Seebach | first2 = J. Arthur Jr.
| isbn = 978-0-486-68735-3
| mr = 507446
| publisher = [[Dover Publications|Dover]]
| title = Counterexamples in Topology | title-link=Counterexamples in Topology
| year = 1995 | orig-year = 1978}}
*{{citation
| last = Vitányi | first = Paul M. B. | author-link = Paul Vitányi
| arxiv = 0905.3347
| doi = 10.1109/TIT.2011.2110130
| issue = 4
| journal = IEEE Transactions on Information Theory
| pages = 2451–2456
| s2cid = 6302496
| title = Information distance in multiples
| volume = 57
| year = 2011}}
*{{citation
| last = Väisälä | first = Jussi
| doi = 10.1016/j.exmath.2005.01.010
| issue = 3
| journal = Expositiones Mathematicae
| mr = 2164775
| pages = 187–231
| title = Gromov hyperbolic spaces
| url = http://www.helsinki.fi/~jvaisala/grobok.pdf
| volume = 23
| year = 2005| doi-access = free
}}
*{{citation
| last = Vickers | first = Steven
| issue = 15
| journal = Theory and Applications of Categories
| mr = 2182680
| pages = 328–356
| title = Localic completion of generalized metric spaces, I
| url = https://www.tac.mta.ca/tac/volumes/14/15/14-15abs.html
| volume = 14
| year = 2005}}
*{{citation
| last = Xia | first = Qinglan
| arxiv = 0807.3377
| issue = 2
| journal = Journal of Geometric Analysis
| pages = 452–479
| title = The geodesic problem in nearmetric spaces
| volume = 19
| year = 2008}}
*{{citation
| last = Xia | first = Q.
| arxiv = 0807.3377
| s2cid = 17475581
| doi = 10.1007/s12220-008-9065-4
| issue = 2
| journal = Journal of Geometric Analysis
| pages = 452–479
| title = The geodesic problem in quasimetric spaces
| volume = 19
| year = 2009}}
* {{citation|title=Precalculus: A Functional Approach to Graphing and Problem Solving|first=Karl|last=Smith|publisher=Jones & Bartlett Publishers|year=2013 |isbn=978-0-7637-5177-7|page=8 |url=https://books.google.com/books?id=ZUJbVQN37bIC&pg=PA8}}
* {{citation|title=Precalculus: A Problems-Oriented Approach|first=David|last=Cohen|edition=6th|publisher=Cengage Learning|year=2004|isbn=978-0-534-40212-9|page=698|url=https://books.google.com/books?id=_6ukev29gmgC&pg=PA698}}
* {{citation|title=College Trigonometry|first1=Richard N.|last1=Aufmann|first2=Vernon C.|last2=Barker|first3=Richard D.|last3=Nation|edition=6th|publisher=Cengage Learning|year=2007 |isbn=978-1-111-80864-8 |page=17|url=https://books.google.com/books?id=kZ8HAAAAQBAJ&pg=PA17}}
{{refend}}
{{refend}}


Ред 47: Ред 295:
* [https://docs.scipy.org/doc/scipy/reference/spatial.distance.html SciPy] -Distance computations (<code>scipy.spatial.distance</code>)
* [https://docs.scipy.org/doc/scipy/reference/spatial.distance.html SciPy] -Distance computations (<code>scipy.spatial.distance</code>)
* [https://github.com/JuliaStats/Distances.jl Julia Statistics Distance] -A Julia package for evaluating distances (metrics) between vectors.
* [https://github.com/JuliaStats/Distances.jl Julia Statistics Distance] -A Julia package for evaluating distances (metrics) between vectors.
* {{cite web |title=The Directed Distance |url=http://www.ittc.ku.edu/~jstiles/220/handouts/The%20Directed%20Distance.pdf |website=Information and Telecommunication Technology Center |publisher=University of Kansas |access-date=18 September 2018 |archive-url=https://web.archive.org/web/20161110044317/http://www.ittc.ku.edu/~jstiles/220/handouts/The%20Directed%20Distance.pdf |archive-date=10 November 2016}}


{{Authority control}}
{{Authority control}}

Верзија на датум 21. децембар 2021. у 20:15

Растојање је бројно мерење удаљености објеката.[1] У физици или свакодневној употреби, растојање се може односити на физичку дужину или процену засновану на другим критеријима (нпр. „две жупаније”). У већини случајева, „растојање између А и Б” је заменљиво са „растојањем између Б и А”. У математици, функција растојања или метрика је генерализација концепта физичког растојања. Метрика је функција која се понаша у складу са одређеним скупом правила и представља начин описивања шта то значи за елементе неког простора да буду „близу” или „далеко” један од другог.[2]

Пређени пут

Вектор помераја (зелена права испрекидана линија), пређени пут (љубичаста крива испрекидана линија) и путања (плава линија)

Пређени пут (енгл. distance travelled; SI ознака — ) јест једнак интензитету (апсолутној вредности) векторa помераја:

односно:

где је вектор положаја у тренутку и вектор положаја у тренутку .

Укупни пређени пут је једнак збиру интензитета појединих векторa помераја:

Пређени пут је скaларна величина.

Преглед и дефиниције

Физичке удаљености

Airline routes between Los Angeles and Tokyo approximately follow a direct great circle route (top), but use the jet stream (bottom) when heading eastwards. Note that the shortest route appears as a curve rather than a straight line because this map is a Mercator projection, which does not scale all distances equally compared to the real spherical surface of the Earth.
"Manhattan distance" on a grid

A physical distance can mean several different things:

  • Distance traveled: The length of a specific path traveled between two points,[3] such as the distance walked while navigating a maze
  • Straight-line (Euclidean) distance: The length of the shortest possible path through space, between two points, that could be taken if there were no obstacles (usually formalized as Euclidean distance)
  • Geodesic distance: The length of the shortest path between two points while remaining on some surface, such as the great-circle distance along the curve of the Earth
  • The length of a specific path that returns to the starting point, such as a ball thrown straight up, or the Earth when it completes one orbit.
A board showing distances near Visakhapatnam

"Circular distance" is the distance traveled by a wheel, which can be useful when designing vehicles or mechanical gears. The circumference of the wheel is 2π × radius, and assuming the radius to be 1, then each revolution of the wheel is equivalent of the distance 2π radians. In engineering ω = 2πƒ is often used, where ƒ is the frequency.

Unusual definitions of distance can be helpful to model certain physical situations, but are also used in theoretical mathematics:

  • "Manhattan distance" is a rectilinear distance, named after the number of blocks (in the north, south, east or west directions) a taxicab must travel on, in order to reach its destination on the grid of streets in parts of New York City.
  • "Chessboard distance", formalized as Chebyshev distance, is the minimum number of moves a king must make on a chessboard, in order to travel between two squares.

Distance measures in cosmology are complicated by the expansion of the universe, and by effects described by the theory of relativity (such as length contraction of moving objects).

Теоријске удаљености

The term "distance" is also used by analogy to measure non-physical entities in certain ways.

In computer science, there is the notion of the "edit distance" between two strings. For example, the words "dog" and "dot", which vary by only one letter, are closer than "dog" and "cat", which differ by three letters. This idea is used in spell checkers and in coding theory, and is mathematically formalized in several different ways such as:

In mathematics, a metric space is a set for which distances between all members of the set are defined. In this way, many different types of "distances" can be calculated, such as for traversal of graphs, comparison of distributions and curves, and using unusual definitions of "space" (for example using a manifold or reflections). The notion of distance in graph theory has been used to describe social networks, for example with the Erdős number or the Bacon number—the number of collaborative relationships away a person is from prolific mathematician Paul Erdős and actor Kevin Bacon, respectively.

In psychology, human geography, and the social sciences, distance is often theorized not as an objective metric, but as a subjective experience.[4]

Види још

Референце

  1. ^ „Compendium of Mathematical Symbols”. Math Vault (на језику: енглески). 2020-03-01. Приступљено 2020-09-01. 
  2. ^ Deza, E.; Deza, M. (2006), Dictionary of Distances, Elsevier, ISBN 978-0-444-52087-6 
  3. ^ „What is displacement? (article)”. Khan Academy (на језику: енглески). Приступљено 2020-07-20. 
  4. ^ „SOCIAL DISTANCES”. www.hawaii.edu. Приступљено 2020-07-20. 

Литература

Спољашње везе

  • Interspace -A package for finding the distance between two vectors, numbers, strings etc.
  • SciPy -Distance computations (scipy.spatial.distance)
  • Julia Statistics Distance -A Julia package for evaluating distances (metrics) between vectors.
  • „The Directed Distance” (PDF). Information and Telecommunication Technology Center. University of Kansas. Архивирано из оригинала (PDF) 10. 11. 2016. г. Приступљено 18. 9. 2018.