Интерспецијски односи — разлика између измена

С Википедије, слободне енциклопедије
Садржај обрисан Садржај додат
.
ознака: везе до вишезначних одредница
Ред 1: Ред 1:
{{Short description|Утицај који организми имају на друге организме}}
'''Интерспецијски односи''' ({{јез-лат|inter}} – између; {{јез-лат|species}} – врста) представљају еколошке (биолошке) односе између различитих [[Врста (биологија)|врста]] у [[екосистем]]у.
[[File:Black Walnut middle.JPG|250п|thumb|[[black walnut|Црни орах]] из свог корена лучи хемикалију која штети суседним биљкама, што је пример [[competition (biology)|компетитивног]] [[antagonism (phytopathology)|антагонизма]]. ]]


'''Интерспецијски односи''' ({{јез-лат|inter}} – између; {{јез-лат|species}} – врста) представљају еколошке (биолошке) односе између различитих [[Врста (биологија)|врста]] у [[екосистем]]у. У њих се убрајају:
У њих се убрајају:
* [[предаторство]], које представља односе исхране између предатора и плена којим се предатор храни (нпр. лав и антилопа);
* [[предаторство]], које представља односе исхране између предатора и плена којим се предатор храни (нпр. лав и антилопа);
* [[компетиција]] за храну, простор, партнера за парење и др.
* [[компетиција]] за храну, простор, партнера за парење и др.
Ред 9: Ред 10:


Постоји и други тип односа — тзв. [[интраспецијски односи]] ({{јез-лат|intra}} – унутар), који представљају односе између јединки и популација у оквиру исте врсте.
Постоји и други тип односа — тзв. [[интраспецијски односи]] ({{јез-лат|intra}} – унутар), који представљају односе између јединки и популација у оквиру исте врсте.

Ови ефекти могу бити краткорочни, попут [[pollination|опрашивања]] и [[predation|предације]], или дугорочни; оба често снажно утичу на [[evolution|еволуцију]] укључених врста. Дуготрајна интеракција се назива [[симбиоза]]. Симбиозе се крећу од [[Mutualism (biology)|мутуализма]], корисне за оба партнера, до [[competition (biology)|конкуренције]], штетне за оба партнера.<ref>{{cite journal |last1=Wootton |first1=JT |last2=Emmerson |first2=M |title=Measurement of Interaction Strength in Nature |journal=[[Annual Review of Ecology, Evolution, and Systematics]] |volume=36|pages=419–44|year=2005|jstor=30033811 |doi=10.1146/annurev.ecolsys.36.091704.175535}}</ref> Интеракције могу бити индиректне, преко посредника као што су заједнички ресурси или заједнички непријатељи. Ова врста односа се може приказати нето ефектом заснованим на појединачним ефектима на оба организма који произилазе из односа.

== Историја ==
{{рут}}
Although biological interactions, more or less individually, were studied earlier, [[Edward Haskell]] (1949) gave an integrative approach to the thematic, proposing a classification of "co-actions",<ref>Haskell, E. F. (1949). A clarification of social science. ''Main Currents in Modern Thought'' 7: 45–51.</ref> later adopted by biologists as "interactions". Close and long-term interactions are described as [[symbiosis]];{{efn|Symbiosis was formerly used to mean a mutualism.}} symbioses that are mutually beneficial are called [[mutualism (biology)|mutualistic]].<ref>Burkholder, P. R. (1952) Cooperation and Conflict among Primitive Organisms. ''American Scientist'', 40, 601–631. [https://www.jstor.org/stable/27826458?seq=1#page_scan_tab_contents link].</ref><ref>Bronstein, J. L. (2015). The study of mutualism. In: Bronstein, J. L. (ed.). ''Mutualism''. Oxford University Press, Oxford. [https://books.google.com/books?id=hbgVDAAAQBAJ link].</ref><ref>Pringle, E. G. (2016). Orienting the Interaction Compass: Resource Availability as a Major Driver of Context Dependence. ''PLoS Biology'', 14(10), e2000891. http://doi.org/10.1371/journal.pbio.2000891.</ref>

== Краткорочне интеракције ==
[[File:Osprey eating a fish.jpg|thumb|250п|[[Predation]] is a short-term interaction, in which the predator, here an [[osprey]], kills and eats its prey.]]

Short-term interactions, including [[predation]] and [[pollination]], are extremely important in [[ecology]] and [[evolution]]. These are short-lived in terms of the duration of a single interaction: a predator kills and eats a prey; a pollinator transfers pollen from one flower to another; but they are extremely durable in terms of their influence on the evolution of both partners. As a result, the partners [[coevolution|coevolve]].<ref name="Bengtson2002"/><ref name=Lunau/>

=== Предација ===

In predation, one organism, the predator, kills and eats another organism, its prey. Predators are adapted and often highly specialized for hunting, with acute senses such as [[eye|vision]], [[hearing]], or [[olfaction|smell]]. Many predatory animals, both [[vertebrate]] and [[invertebrate]], have sharp [[claw]]s or [[jaw]]s to grip, kill, and cut up their prey. Other adaptations include stealth and [[aggressive mimicry]] that improve hunting efficiency. Predation has a powerful [[selection pressure|selective effect]] on prey, causing them to develop [[antipredator adaptation]]s such as [[aposematism|warning coloration]], [[alarm call]]s and other [[signalling theory|signals]], [[camouflage]] and defensive spines and chemicals.<ref>{{cite web |last1=Bar-Yam |title=Predator-Prey Relationships |url=http://necsi.edu/projects/evolution/co-evolution/pred-prey/co-evolution_predator.html |publisher=New England Complex Systems Institute |access-date=7 September 2018}}</ref><ref name="RSM2012">{{cite web |title=Predator & Prey: Adaptations |url=https://royalsaskmuseum.ca/pub/Lesson%20Plans/Resources/Predator%20and%20Prey%20Adaptations.pdf |publisher=Royal Saskatchewan Museum |access-date=19 April 2018 |date=2012 |archive-date=3 April 2018 |archive-url=https://web.archive.org/web/20180403131659/http://royalsaskmuseum.ca/pub/Lesson%20Plans/Resources/Predator%20and%20Prey%20Adaptations.pdf |url-status=dead }}</ref><ref>{{cite book |last=Vermeij |first=Geerat J. |title=Evolution and Escalation: An Ecological History of Life |url=https://books.google.com/books?id=M3pCQ6ks5PEC&pg=PR11 |year=1993 |publisher=Princeton University Press |isbn=978-0-691-00080-0 |pages=11 and passim}}</ref> Predation has been a major driver of evolution since at least the [[Cambrian]] period.<ref name="Bengtson2002">{{cite book |author=Bengtson, S. |year=2002 |contribution=Origins and early evolution of predation |title=The fossil record of predation. The Paleontological Society Papers 8 |editor-last1=Kowalewski |editor-first1=M. |editor-last2=Kelley |editor-first2=P. H. |pages=289–317 |publisher=The Paleontological Society |url=http://www.nrm.se/download/18.4e32c81078a8d9249800021552/Bengtson2002predation.pdf}}</ref>

===Pollination===
[[File:Hummingbird hawkmoth a.jpg|thumb|250п|[[Pollination]] has driven the [[coevolution]] of [[flowering plant]]s and their animal [[pollinator]]s for over 100 million years.]]

In pollination, pollinators including [[insect]]s ([[entomophily]]), some [[bird]]s ([[ornithophily]]), and some [[bat]]s, transfer [[pollen]] from a male flower part to a female flower part, enabling [[fertilisation]], in return for a reward of pollen or nectar.<ref name="crop_Type">{{Cite web | title=Types of Pollination, Pollinators and Terminology | work=CropsReview.Com | access-date=2015-10-20 | url=http://www.cropsreview.com/types-of-pollination.html}}</ref> The partners have coevolved through geological time; in the case of insects and [[flowering plant]]s, the coevolution has continued for over 100 million years. Insect-pollinated flowers are [[adaptation|adapted]] with shaped structures, bright colours, patterns, scent, nectar, and sticky pollen to attract insects, guide them to pick up and deposit pollen, and reward them for the service. Pollinator insects like [[bee]]s are adapted to detect flowers by colour, pattern, and scent, to collect and transport pollen (such as with bristles shaped to form pollen baskets on their hind legs), and to collect and process nectar (in the case of [[honey bee]]s, making and storing [[honey]]). The adaptations on each side of the interaction match the adaptations on the other side, and have been shaped by [[natural selection]] on their effectiveness of pollination.<ref name=Lunau>{{cite journal |last1=Lunau |first1=Klaus |title=Adaptive radiation and coevolution — pollination biology case studies |journal=Organisms Diversity & Evolution |date=2004 |volume=4 |issue=3 |pages=207–224 |doi=10.1016/j.ode.2004.02.002}}</ref><ref name=Pollan2001>{{cite book |author=Pollan, Michael |title=The Botany of Desire: A Plant's-eye View of the World |publisher=Bloomsbury |isbn=978-0-7475-6300-6 |date=2001|title-link=The Botany of Desire }}</ref><ref>{{cite journal | last1=Ehrlich | first1=Paul R. |author1-link=Paul R. Ehrlich | last2=Raven | first2=Peter H. | author2-link=Peter H. Raven | year=1964 | title=Butterflies and Plants: A Study in Coevolution | journal=Evolution | volume=18 | issue=4 | pages=586–608 | doi=10.2307/2406212| jstor=2406212 }}</ref>

=== Seed dispersal ===

'''Seed dispersal''' is the movement, spread or transport of [[seed]]s away from the parent plant. Plants have limited mobility and rely upon a variety of [[dispersal vector]]s to transport their propagules, including both [[abiotic]] vectors such as the wind and living ([[Biotic component|biotic]]) vectors like birds.<ref>{{Cite journal|last1=Lim|first1=Ganges|last2=Burns|first2=Kevin C.|date=2021-11-24|title=Do fruit reflectance properties affect avian frugivory in New Zealand?|url=https://doi.org/10.1080/0028825X.2021.2001664|journal=New Zealand Journal of Botany|pages=1–11|doi=10.1080/0028825X.2021.2001664|s2cid=244683146|issn=0028-825X}}</ref> Seeds can be dispersed away from the parent plant individually or collectively, as well as dispersed in both space and time. The patterns of seed dispersal are determined in large part by the dispersal mechanism and this has important implications for the demographic and genetic structure of plant populations, as well as migration patterns and species interactions. There are five main modes of seed dispersal: [[Gravitation|gravity]], wind, ballistic, water, and by animals. Some plants are [[serotinous]] and only disperse their seeds in response to an environmental stimulus. Dispersal involves the letting go or detachment of a diaspore from the main parent plant.<ref>{{Cite journal|last=Academic Search Premier|date=1970|title=Annual review of ecology and systematics|url=https://www.worldcat.org/title/annual-review-of-ecology-and-systematics/oclc/1091085133|journal=Annual Review of Ecology and Systematics|language=English|oclc=1091085133}}</ref>

==Symbiosis: long-term interactions==
[[File:Symbiotic relationships diagram.svg|thumb|250п|The six possible types of [[symbiosis|symbiotic relationship]], from mutual benefit to mutual harm]]
The six possible types of [[symbiosis]] are mutualism, commensalism, parasitism, neutralism, amensalism, and competition. These are distinguished by the degree of benefit or harm they cause to each partner.

=== Mutualism ===

Mutualism is an interaction between two or more species, where species derive a mutual benefit, for example an increased [[carrying capacity]]. Similar interactions within a species are known as [[Co-operation (evolution)|co-operation]]. Mutualism may be classified in terms of the closeness of association, the closest being symbiosis, which is often confused with mutualism. One or both species involved in the interaction may be [[wikt:obligate|obligate]], meaning they cannot survive in the short or long term without the other species. Though mutualism has historically received less attention than other interactions such as predation,<ref name="Begon96">Begon, M., J.L. Harper and C.R. Townsend. 1996. ''Ecology: individuals, populations, and communities'', Third Edition. Blackwell Science Ltd., Cambridge, Massachusetts, USA.</ref> it is an important subject in ecology. Examples include [[cleaning symbiosis]], [[gut flora]], [[Müllerian mimicry]], and [[nitrogen fixation]] by bacteria in the root nodules of [[legumes]].

=== Commensalism ===

Commensalism benefits one organism and the other organism is neither benefited nor harmed. It occurs when one organism takes benefits by interacting with another organism by which the host organism is not affected. A good example is a [[remora]] living with a [[manatee]]. Remoras feed on the manatee's faeces. The manatee is not affected by this interaction, as the remora does not deplete the manatee's resources.<ref name="Echeneid-sirenian associations, with information on sharksucker diet">{{cite journal |last1=Williams E, Mignucci, Williams L & Bonde |title=Echeneid-sirenian associations, with information on sharksucker diet |journal=Journal of Fish Biology |date=November 2003 |volume=5 |issue=63 |pages=1176–1183 |doi=10.1046/j.1095-8649.2003.00236.x |url=https://www.researchgate.net/publication/253117307 |access-date=17 June 2020}}</ref>

=== Паразитизам ===

Parasitism is a relationship between species, where one organism, the [[parasite]], lives on or in another organism, the [[Host (biology)|host]], causing it some harm, and is [[adaptation (biology)|adapted]] structurally to this way of life.<ref>{{cite book | last=Poulin | first=Robert | author-link=Robert Poulin (zoologist) | title=Evolutionary Ecology of Parasites | publisher=Princeton University Press | year=2007 | isbn=978-0-691-12085-0 | pages=[https://archive.org/details/evolutionaryecol0000poul/page/4 4–5] | url=https://archive.org/details/evolutionaryecol0000poul/page/4 }}</ref> The parasite either feeds on the host, or, in the case of intestinal parasites, consumes some of its food.<ref>{{cite journal |title=Current usage of symbiosis and associated terminology |last1=Martin |first1= Bradford D. |last2= Schwab |first2=Ernest |year=2013 |journal=International Journal of Biology |volume=5 |issue=1 |pages=32–45 |doi=10.5539/ijb.v5n1p32|doi-access=free }}</ref>

===Neutralism===
Neutralism (a term introduced by [[Eugene Odum]])<ref>Toepfer, G. "Neutralism". In: ''BioConcepts''. [http://www.biological-concepts.com/views/search.php?term=1441 link].</ref> describes the relationship between two species that interact but do not affect each other. Examples of true neutralism are virtually impossible to prove; the term is in practice used to describe situations where interactions are negligible or insignificant.<ref>(Morris et al., 2013)</ref><ref>{{cite journal | doi=10.2307/1307540 | author=Lidicker W. Z. | year=1979 | title=A Clarification of Interactions in Ecological Systems | jstor=1307540| journal=BioScience | volume=29 | issue=8 | pages=475–477 }} [https://www.researchgate.net/publication/279970449_A_Clarification_of_Interactions_in_Ecological_Systems Researchgate].</ref>

===Amensalism===

Amensalism (a term introduced by Haskell)<ref>Toepfer, G. "Amensalism". In: ''BioConcepts''. [http://www.biological-concepts.com/views/search.php?term=1440 link].</ref> is an interaction where an organism inflicts harm to another organism without any costs or benefits received by itself.<ref name="Willey, Joanne M. 2011">{{cite book |last1=Willey |first1=Joanne M. |last2=Sherwood |first2=Linda M. |last3=Woolverton |first3=Cristopher J. |year=2013 |title=Prescott's Microbiology |edition=9th |pages=713–38 |isbn=978-0-07-751066-4}}</ref> Amensalism describes the adverse effect that one organism has on another organism (figure 32.1). This is a unidirectional process based on the release of a specific compound by one organism that has a negative effect on another. A classic example of amensalism is the microbial production of antibiotics that can inhibit or kill other, susceptible microorganisms.

A clear case of amensalism is where sheep or cattle trample grass. Whilst the presence of the grass causes negligible detrimental effects to the animal's hoof, the grass suffers from being crushed. Amensalism is often used to describe strongly asymmetrical competitive interactions, such as has been observed between the Spanish ibex and weevils of the genus ''Timarcha'' which feed upon the same type of shrub. Whilst the presence of the weevil has almost no influence on food availability, the presence of ibex has an enormous detrimental effect on weevil numbers, as they consume significant quantities of plant matter and incidentally ingest the weevils upon it.<ref name="Gómez J., González-Megías A. 2002">{{cite journal |last1=Gómez |first1=José M. |last2=González-Megías |first2=Adela |year=2002 |title=Asymmetrical interactions between ungulates and phytophagous insects: Being different matters |journal=Ecology |volume=83 |issue=1 |pages=203–11 |doi=10.1890/0012-9658(2002)083[0203:AIBUAP]2.0.CO;2}}</ref>

===Competition===
[[File:Hirschkampf.jpg|right|thumb|250п|Male-male interference competition in [[red deer]].]]

Competition can be defined as an interaction between [[organism]]s or species, in which the [[fitness (biology)|fitness]] of one is lowered by the presence of another. Competition is often for a resource such as [[food]], [[water]], or [[territory (animal)|territory]] in [[Limiting factor|limited]] supply, or for access to females for reproduction.<ref name="Begon96"/> Competition among members of the same species is known as [[intraspecific competition]], while competition between individuals of different species is known as [[interspecific competition]]. According to the [[competitive exclusion principle]], species less suited to compete for resources should either [[adaptation|adapt]] or [[extinction|die out]].<ref name=hardin60>{{cite journal |author=Hardin, Garrett |title=The competitive exclusion principle |journal=Science |volume=131 |pages=1292–1297 |issue=3409 |year=1960 |url=http://www.esf.edu/efb/schulz/seminars/hardin.pdf |doi=10.1126/science.131.3409.1292 |pmid=14399717|bibcode=1960Sci...131.1292H }}</ref><ref name=Pocheville2015>{{cite book | last=Pocheville | first=Arnaud | year=2015 | chapter=The Ecological Niche: History and Recent Controversies | chapter-url=https://www.academia.edu/6188833 | editor1-last=Heams | editor1-first=Thomas | editor2-last=Huneman | editor2-first=Philippe | editor3-last=Lecointre | editor3-first=Guillaume |display-editors=3 | editor4-last=Silberstein | editor4-first=Marc | title=Handbook of Evolutionary Thinking in the Sciences | location=Dordrecht | publisher=Springer | publication-date=2015 | pages=547–586 | isbn=978-94-017-9014-7}}</ref> According to [[evolutionary theory]], this competition within and between species for resources plays a critical role in [[natural selection]].<ref name="SahneyBentonFerry2010LinksDiversityVertebrates">{{cite journal |last1=Sahney |first1=Sarda |last2=Benton |first2=Michael J. |author-link2=Michael Benton |last3=Ferry |first3=Paul A. |date=23 August 2010 |title=Links between global taxonomic diversity, ecological diversity and the expansion of vertebrates on land |journal=[[Biology Letters]] |volume=6 |issue=4 |pages=544–547 |doi=10.1098/rsbl.2009.1024 |pmc=2936204 |pmid=20106856 }}</ref>

== Види још ==
* [[Алтруизам]]
* [[Ланац исхране]]

== Напомене ==
{{notelist}}

== Референце ==
{{reflist}}


== Литература ==
== Литература ==
{{refbegin|}}
* Јанковић, М., Ђорђевић, В: ''Примењена екологија'', [[Научна књига]], Београд, 1981.
* Јанковић, М., Ђорђевић, В: ''Примењена екологија'', [[Научна књига]], Београд, 1981.
* Ђукановић, Мара: ''Еколошки изазов'', Београд, 1991.
* Ђукановић, Мара: ''Еколошки изазов'', Београд, 1991.
* Станковић, С: ''Екологија животиња'', Београд, 1979.
* Станковић, С: ''Екологија животиња'', Београд, 1979.
* Јанковић, М: ''Фитоекологија'', Београд, 1986.
* Јанковић, М: ''Фитоекологија'', Београд, 1986.
* Snow, B. K. & Snow, D. W. (1988). ''Birds and berries: a study of an ecological interaction''. Poyser, London {{ISBN|0-85661-049-6}}
{{refend}}

== Спољашње везе ==
== Спољашње везе ==
{{commons category|Ecological interactions}}
* [http://www.bionet-skola.com/w/Interspecijski_odnosi Бионет школа]
* [http://www.bionet-skola.com/w/Interspecijski_odnosi Бионет школа]

{{клица-биол}}


{{Интерспецијске еколошке интеракције}}
{{Интерспецијске еколошке интеракције}}

Верзија на датум 11. мај 2022. у 20:09

Црни орах из свог корена лучи хемикалију која штети суседним биљкама, што је пример компетитивног антагонизма.

Интерспецијски односи (лат. inter – између; лат. species – врста) представљају еколошке (биолошке) односе између различитих врста у екосистему. У њих се убрајају:

  • предаторство, које представља односе исхране између предатора и плена којим се предатор храни (нпр. лав и антилопа);
  • компетиција за храну, простор, партнера за парење и др.
  • коменсализам (симбиоза) је таква врста заједнице у којој сви чланови имају користи (најпознатији пример су лишајеви који представљају заједницу алге и гљиве, где алга обавља фотосинтезу чиме ствара храну, а гљива хифама упија воду);
  • аменсализам представља односе у којима једна врста изазива штету другој врсти (нпр. дејство антибиотика које стварају одређени микророрганизми и који убијају друге микроорганизме).
  • паразитизам је такав однос у коме једна врста живи на рачун друге (пример за најистакнутије паразите су вируси који само на тај начин могу да живе).

Постоји и други тип односа — тзв. интраспецијски односи (лат. intra – унутар), који представљају односе између јединки и популација у оквиру исте врсте.

Ови ефекти могу бити краткорочни, попут опрашивања и предације, или дугорочни; оба често снажно утичу на еволуцију укључених врста. Дуготрајна интеракција се назива симбиоза. Симбиозе се крећу од мутуализма, корисне за оба партнера, до конкуренције, штетне за оба партнера.[1] Интеракције могу бити индиректне, преко посредника као што су заједнички ресурси или заједнички непријатељи. Ова врста односа се може приказати нето ефектом заснованим на појединачним ефектима на оба организма који произилазе из односа.

Историја

Although biological interactions, more or less individually, were studied earlier, Edward Haskell (1949) gave an integrative approach to the thematic, proposing a classification of "co-actions",[2] later adopted by biologists as "interactions". Close and long-term interactions are described as symbiosis;[а] symbioses that are mutually beneficial are called mutualistic.[3][4][5]

Краткорочне интеракције

Predation is a short-term interaction, in which the predator, here an osprey, kills and eats its prey.

Short-term interactions, including predation and pollination, are extremely important in ecology and evolution. These are short-lived in terms of the duration of a single interaction: a predator kills and eats a prey; a pollinator transfers pollen from one flower to another; but they are extremely durable in terms of their influence on the evolution of both partners. As a result, the partners coevolve.[6][7]

Предација

In predation, one organism, the predator, kills and eats another organism, its prey. Predators are adapted and often highly specialized for hunting, with acute senses such as vision, hearing, or smell. Many predatory animals, both vertebrate and invertebrate, have sharp claws or jaws to grip, kill, and cut up their prey. Other adaptations include stealth and aggressive mimicry that improve hunting efficiency. Predation has a powerful selective effect on prey, causing them to develop antipredator adaptations such as warning coloration, alarm calls and other signals, camouflage and defensive spines and chemicals.[8][9][10] Predation has been a major driver of evolution since at least the Cambrian period.[6]

Pollination

Pollination has driven the coevolution of flowering plants and their animal pollinators for over 100 million years.

In pollination, pollinators including insects (entomophily), some birds (ornithophily), and some bats, transfer pollen from a male flower part to a female flower part, enabling fertilisation, in return for a reward of pollen or nectar.[11] The partners have coevolved through geological time; in the case of insects and flowering plants, the coevolution has continued for over 100 million years. Insect-pollinated flowers are adapted with shaped structures, bright colours, patterns, scent, nectar, and sticky pollen to attract insects, guide them to pick up and deposit pollen, and reward them for the service. Pollinator insects like bees are adapted to detect flowers by colour, pattern, and scent, to collect and transport pollen (such as with bristles shaped to form pollen baskets on their hind legs), and to collect and process nectar (in the case of honey bees, making and storing honey). The adaptations on each side of the interaction match the adaptations on the other side, and have been shaped by natural selection on their effectiveness of pollination.[7][12][13]

Seed dispersal

Seed dispersal is the movement, spread or transport of seeds away from the parent plant. Plants have limited mobility and rely upon a variety of dispersal vectors to transport their propagules, including both abiotic vectors such as the wind and living (biotic) vectors like birds.[14] Seeds can be dispersed away from the parent plant individually or collectively, as well as dispersed in both space and time. The patterns of seed dispersal are determined in large part by the dispersal mechanism and this has important implications for the demographic and genetic structure of plant populations, as well as migration patterns and species interactions. There are five main modes of seed dispersal: gravity, wind, ballistic, water, and by animals. Some plants are serotinous and only disperse their seeds in response to an environmental stimulus. Dispersal involves the letting go or detachment of a diaspore from the main parent plant.[15]

Symbiosis: long-term interactions

The six possible types of symbiotic relationship, from mutual benefit to mutual harm

The six possible types of symbiosis are mutualism, commensalism, parasitism, neutralism, amensalism, and competition. These are distinguished by the degree of benefit or harm they cause to each partner.

Mutualism

Mutualism is an interaction between two or more species, where species derive a mutual benefit, for example an increased carrying capacity. Similar interactions within a species are known as co-operation. Mutualism may be classified in terms of the closeness of association, the closest being symbiosis, which is often confused with mutualism. One or both species involved in the interaction may be obligate, meaning they cannot survive in the short or long term without the other species. Though mutualism has historically received less attention than other interactions such as predation,[16] it is an important subject in ecology. Examples include cleaning symbiosis, gut flora, Müllerian mimicry, and nitrogen fixation by bacteria in the root nodules of legumes.

Commensalism

Commensalism benefits one organism and the other organism is neither benefited nor harmed. It occurs when one organism takes benefits by interacting with another organism by which the host organism is not affected. A good example is a remora living with a manatee. Remoras feed on the manatee's faeces. The manatee is not affected by this interaction, as the remora does not deplete the manatee's resources.[17]

Паразитизам

Parasitism is a relationship between species, where one organism, the parasite, lives on or in another organism, the host, causing it some harm, and is adapted structurally to this way of life.[18] The parasite either feeds on the host, or, in the case of intestinal parasites, consumes some of its food.[19]

Neutralism

Neutralism (a term introduced by Eugene Odum)[20] describes the relationship between two species that interact but do not affect each other. Examples of true neutralism are virtually impossible to prove; the term is in practice used to describe situations where interactions are negligible or insignificant.[21][22]

Amensalism

Amensalism (a term introduced by Haskell)[23] is an interaction where an organism inflicts harm to another organism without any costs or benefits received by itself.[24] Amensalism describes the adverse effect that one organism has on another organism (figure 32.1). This is a unidirectional process based on the release of a specific compound by one organism that has a negative effect on another. A classic example of amensalism is the microbial production of antibiotics that can inhibit or kill other, susceptible microorganisms.

A clear case of amensalism is where sheep or cattle trample grass. Whilst the presence of the grass causes negligible detrimental effects to the animal's hoof, the grass suffers from being crushed. Amensalism is often used to describe strongly asymmetrical competitive interactions, such as has been observed between the Spanish ibex and weevils of the genus Timarcha which feed upon the same type of shrub. Whilst the presence of the weevil has almost no influence on food availability, the presence of ibex has an enormous detrimental effect on weevil numbers, as they consume significant quantities of plant matter and incidentally ingest the weevils upon it.[25]

Competition

Male-male interference competition in red deer.

Competition can be defined as an interaction between organisms or species, in which the fitness of one is lowered by the presence of another. Competition is often for a resource such as food, water, or territory in limited supply, or for access to females for reproduction.[16] Competition among members of the same species is known as intraspecific competition, while competition between individuals of different species is known as interspecific competition. According to the competitive exclusion principle, species less suited to compete for resources should either adapt or die out.[26][27] According to evolutionary theory, this competition within and between species for resources plays a critical role in natural selection.[28]

Види још

Напомене

  1. ^ Symbiosis was formerly used to mean a mutualism.

Референце

  1. ^ Wootton, JT; Emmerson, M (2005). „Measurement of Interaction Strength in Nature”. Annual Review of Ecology, Evolution, and Systematics. 36: 419—44. JSTOR 30033811. doi:10.1146/annurev.ecolsys.36.091704.175535. 
  2. ^ Haskell, E. F. (1949). A clarification of social science. Main Currents in Modern Thought 7: 45–51.
  3. ^ Burkholder, P. R. (1952) Cooperation and Conflict among Primitive Organisms. American Scientist, 40, 601–631. link.
  4. ^ Bronstein, J. L. (2015). The study of mutualism. In: Bronstein, J. L. (ed.). Mutualism. Oxford University Press, Oxford. link.
  5. ^ Pringle, E. G. (2016). Orienting the Interaction Compass: Resource Availability as a Major Driver of Context Dependence. PLoS Biology, 14(10), e2000891. http://doi.org/10.1371/journal.pbio.2000891.
  6. ^ а б Bengtson, S. (2002). „Origins and early evolution of predation”. Ур.: Kowalewski, M.; Kelley, P. H. The fossil record of predation. The Paleontological Society Papers 8 (PDF). The Paleontological Society. стр. 289—317. 
  7. ^ а б Lunau, Klaus (2004). „Adaptive radiation and coevolution — pollination biology case studies”. Organisms Diversity & Evolution. 4 (3): 207—224. doi:10.1016/j.ode.2004.02.002. 
  8. ^ Bar-Yam. „Predator-Prey Relationships”. New England Complex Systems Institute. Приступљено 7. 9. 2018. 
  9. ^ „Predator & Prey: Adaptations” (PDF). Royal Saskatchewan Museum. 2012. Архивирано из оригинала (PDF) 3. 4. 2018. г. Приступљено 19. 4. 2018. 
  10. ^ Vermeij, Geerat J. (1993). Evolution and Escalation: An Ecological History of Life. Princeton University Press. стр. 11 and passim. ISBN 978-0-691-00080-0. 
  11. ^ „Types of Pollination, Pollinators and Terminology”. CropsReview.Com. Приступљено 2015-10-20. 
  12. ^ Pollan, Michael (2001). The Botany of Desire: A Plant's-eye View of the World. Bloomsbury. ISBN 978-0-7475-6300-6. 
  13. ^ Ehrlich, Paul R.; Raven, Peter H. (1964). „Butterflies and Plants: A Study in Coevolution”. Evolution. 18 (4): 586—608. JSTOR 2406212. doi:10.2307/2406212. 
  14. ^ Lim, Ganges; Burns, Kevin C. (2021-11-24). „Do fruit reflectance properties affect avian frugivory in New Zealand?”. New Zealand Journal of Botany: 1—11. ISSN 0028-825X. S2CID 244683146. doi:10.1080/0028825X.2021.2001664. 
  15. ^ Academic Search Premier (1970). „Annual review of ecology and systematics”. Annual Review of Ecology and Systematics (на језику: енглески). OCLC 1091085133. 
  16. ^ а б Begon, M., J.L. Harper and C.R. Townsend. 1996. Ecology: individuals, populations, and communities, Third Edition. Blackwell Science Ltd., Cambridge, Massachusetts, USA.
  17. ^ Williams E, Mignucci, Williams L & Bonde (новембар 2003). „Echeneid-sirenian associations, with information on sharksucker diet”. Journal of Fish Biology. 5 (63): 1176—1183. doi:10.1046/j.1095-8649.2003.00236.x. Приступљено 17. 6. 2020. 
  18. ^ Poulin, Robert (2007). Evolutionary Ecology of Parasites. Princeton University Press. стр. 4–5. ISBN 978-0-691-12085-0. 
  19. ^ Martin, Bradford D.; Schwab, Ernest (2013). „Current usage of symbiosis and associated terminology”. International Journal of Biology. 5 (1): 32—45. doi:10.5539/ijb.v5n1p32Слободан приступ. 
  20. ^ Toepfer, G. "Neutralism". In: BioConcepts. link.
  21. ^ (Morris et al., 2013)
  22. ^ Lidicker W. Z. (1979). „A Clarification of Interactions in Ecological Systems”. BioScience. 29 (8): 475—477. JSTOR 1307540. doi:10.2307/1307540.  Researchgate.
  23. ^ Toepfer, G. "Amensalism". In: BioConcepts. link.
  24. ^ Willey, Joanne M.; Sherwood, Linda M.; Woolverton, Cristopher J. (2013). Prescott's Microbiology (9th изд.). стр. 713—38. ISBN 978-0-07-751066-4. 
  25. ^ Gómez, José M.; González-Megías, Adela (2002). „Asymmetrical interactions between ungulates and phytophagous insects: Being different matters”. Ecology. 83 (1): 203—11. doi:10.1890/0012-9658(2002)083[0203:AIBUAP]2.0.CO;2. 
  26. ^ Hardin, Garrett (1960). „The competitive exclusion principle” (PDF). Science. 131 (3409): 1292—1297. Bibcode:1960Sci...131.1292H. PMID 14399717. doi:10.1126/science.131.3409.1292. 
  27. ^ Pocheville, Arnaud (2015). „The Ecological Niche: History and Recent Controversies”. Ур.: Heams, Thomas; Huneman, Philippe; Lecointre, Guillaume; et al. Handbook of Evolutionary Thinking in the Sciences. Dordrecht: Springer. стр. 547—586. ISBN 978-94-017-9014-7. 
  28. ^ Sahney, Sarda; Benton, Michael J.; Ferry, Paul A. (23. 8. 2010). „Links between global taxonomic diversity, ecological diversity and the expansion of vertebrates on land”. Biology Letters. 6 (4): 544—547. PMC 2936204Слободан приступ. PMID 20106856. doi:10.1098/rsbl.2009.1024. 

Литература

  • Јанковић, М., Ђорђевић, В: Примењена екологија, Научна књига, Београд, 1981.
  • Ђукановић, Мара: Еколошки изазов, Београд, 1991.
  • Станковић, С: Екологија животиња, Београд, 1979.
  • Јанковић, М: Фитоекологија, Београд, 1986.
  • Snow, B. K. & Snow, D. W. (1988). Birds and berries: a study of an ecological interaction. Poyser, London ISBN 0-85661-049-6

Спољашње везе