Пређи на садржај

Ват — разлика између измена

С Википедије, слободне енциклопедије
Садржај обрисан Садржај додат
.
ознака: везе до вишезначних одредница
Ред 1: Ред 1:
{{short description|СИ изведена јединица снаге}}
{{Infobox Unit
| bgcolour =
| name = Ват
| image =
| caption =
| standard = [[SI derived unit|СИ изведена јединица снаге]]
| quantity = [[Power (physics)|Снага]]
| symbol = W
| namedafter = [[James Watt|Џејмс Ват]]
| units1 = [[SI base unit|СИ основне јединице]]
| inunits1 = 1 [[kilogram|kg]]&sdot;[[metre|m]]<sup>2</sup>&sdot;[[second|s]]<sup>−3</sup>
| units2 = [[CGS unit|ЦГС јединице]]
| inunits2 = {{val|e=7|u=[[erg]]⋅[[second|s]]<sup>−1</sup>}}
| units3 = [[English Engineering Units|Енглеске инжењерске јединице]]
| inunits3 = {{cvt|1|W|ftlbf/s|sigfig=7|disp=out}} = {{cvt|1|W|hp|sigfig=7|disp=out}}
}}


'''Ват''' ({{јез-енг|watt}}; симбол: '''-{W}-''') је [[Међународни систем јединица|СИ]] [[сИ изведене јединице|изведена јединица]] за [[Снага (физика)|снагу]]. Једнак је једном [[џул]]у у [[секунд]]и (1 -{J/s}-), или у електричним јединицама, једном [[волт]] [[ампер]]у (1 -{V·A}-).
'''Ват''' ({{јез-енг|watt}}; симбол: '''-{W}-''') је [[Међународни систем јединица|СИ]] [[сИ изведене јединице|изведена јединица]] за [[Снага (физика)|снагу]].<ref>[[Bureau International des Poids et Mesures|Bureau international des poids et mesures]], [https://www.bipm.org/utils/common/pdf/si‑brochure/SI‑Brochure‑9.pdf ''Le Système international d’unités (SI) / The International System of Units (SI)'', 9th ed.] (Sèvres: 2019), ISBN 978‑92‑822‑2272‑0, §2.3.4, Table 4.</ref><ref>{{Cite book|last1=Yildiz|first1=I.|title=Comprehensive energy systems. Vol 1: Energy fundamentals|last2=Liu|first2=Y.|publisher=Elsevier|year=2018|isbn=9780128149256|editor1-last=Dincer|editor1-first=I.|pages=12–13|chapter=Energy units, conversions, and dimensional analysis}}</ref> 1&nbsp;kg⋅m<sup>2</sup>⋅s<sup>−3</sup> or, equivalently,<ref>{{SIBrochure8th|pages=118, 144}}</ref> Једнак је једном [[џул]]у у [[секунд]]и (1 -{J/s}-), или у електричним јединицама, једном [[волт]] [[ампер]]у (1 -{V·A}-). Ват је брзина, у џулима по секунди, којом се енергија претвара, користи или шири.

Ват је брзина, у џулима по секунди, којом се енергија претвара, користи или шири.

: <math>\mbox{W} = \frac{\mbox{J}} {\mbox{s}} = \frac{\mbox{Nm}} {\mbox{s}} = \frac{\mbox{kgm}^2} {\mbox{s}^3} = \mbox{VA}</math>
: <math>\mbox{W} = \frac{\mbox{J}} {\mbox{s}} = \frac{\mbox{Nm}} {\mbox{s}} = \frac{\mbox{kgm}^2} {\mbox{s}^3} = \mbox{VA}</math>


Јединица ''ват'' је добила име по [[Џејмс Ват|Џејмсу Вату]] због његових доприноса у развоју [[парна машина|парне машине]] и усвојена је на Другом Конгресу Британске асоцијације за напредак науке [[1889]]. године и на једанаестој [[Генерална конференција за тегове и мере|Генералној конференцији тежина и мера]] [[1960]]. године.
Јединица ''ват'' је добила име по [[Џејмс Ват|Џејмсу Вату]] због његових доприноса у развоју [[парна машина|парне машине]] и усвојена је на Другом Конгресу Британске асоцијације за напредак науке [[1889]]. године и на једанаестој [[Генерална конференција за тегове и мере|Генералној конференцији тежина и мера]] [[1960]]. године.

== Преглед ==
{{рут}}
When an object's [[velocity]] is held constant at one [[metre per second]] against a constant opposing force of one [[Newton (unit)|newton]], the rate at which [[Work (physics)|work]] is done is one watt.
: <math>\mathrm{1 ~ W = 1 ~ \frac{J}{s} = 1 ~ \frac{N {\cdot} m}{s} = 1 ~ \frac{kg {\cdot} m^2}{s^3}}</math>

In terms of [[electromagnetism]], one watt is the rate at which [[electrical work]] is performed when a current of one [[ampere]] (A) flows across an electrical [[potential difference]] of one [[volt]] (V), meaning the watt is equivalent to the [[volt-ampere]] (the latter unit, however, is used for a different quantity from the real power of an electrical circuit).
: <math>\mathrm{1 ~ W = 1 ~ V \cdot 1 ~ A}</math>

Two additional [[Conversion of units|unit conversions]] for watt can be found using the above equation and [[Ohm's law]].
: <math>\mathrm{1 ~ W = 1 ~ \frac{V^2}{\Omega} = 1 ~ A^2 {\cdot} \Omega}</math>
where [[ohm]] (<math>\Omega</math>) is the [[SI derived unit]] of [[electrical resistance]].

=== Examples ===
*A person having a mass of 100&nbsp;kg who climbs a 3-metre-high ladder in 5 seconds is doing work at a rate of about 600 watts. Mass times acceleration due to [[gravity]] times height divided by the time it takes to lift the object to the given height gives the ''rate of doing work'' or ''power''.
* A laborer over the course of an eight-hour day can sustain an average output of about 75 watts; higher power levels can be achieved for short intervals and by athletes.<ref>{{Citation | editor1-first = Eugene A | editor1-last = Avallone |display-editors=etal | year = 2007 | title = Marks' Standard Handbook for Mechanical Engineers | edition = 11th | publisher = Mc-Graw Hill | place = New York | isbn = 978-0-07-142867-5 | pages = 9–4}}.</ref>

== Настанак и усвајање као јединица СИ ==
The watt is named after the Scottish inventor [[James Watt]].<ref name=Klein>{{cite book |last=Klein |first=Herbert Arthur |year=1988 |location=New York |publisher=Dover |orig-year=1974 |title=The Science of measurement: A historical survey |isbn=9780486144979 |page=239 }}</ref> The unit name was proposed initially by [[Carl Wilhelm Siemens|C. William Siemens]] in August 1882 in his President's Address to the Fifty-Second Congress of the [[British Science Association|British Association for the Advancement of Science]].<ref name=Siemens>{{cite encyclopedia |url=https://www.biodiversitylibrary.org/item/95237#page/85/mode/1up |title= Address by C. William Siemens|pages=1–33|encyclopedia= Report of the Fifty-Second meeting of the British Association for the Advancement of Science |location=London| publisher = John Murray | year = 1883 |volume= 52}}</ref> Noting that units in the [[CGS#Practical cgs units|practical system of units]] were named after leading physicists, Siemens proposed that ''watt'' might be an appropriate name for a unit of power.<ref>Siemens supported his proposal by asserting that Watt was the first who "had a clear physical conception of power, and gave a rational method for measuring it." [https://www.biodiversitylibrary.org/item/95237#page/90/mode/1up "Siemens, 1883, p. 6"]</ref> Siemens defined the unit consistently within the then-existing system of practical units as "the power conveyed by a current of an [[Ampere|Ampère]] through the difference of potential of a Volt".<ref>[https://www.biodiversitylibrary.org/item/95237#page/89/mode/1up "Siemens", 1883, p. 5"]</ref>

In October 1908, at the International Conference on Electric Units and Standards in London,<ref>{{cite book | author=Tunbridge, P. | title=Lord Kelvin: His Influence on Electrical Measurements and Units | location=Peter Peregrinus | publisher=London | year=1992 |page=51 | isbn=0-86341-237-8}}</ref> so-called "international" definitions were established for practical electrical units.<ref name=EB11-742>{{cite EB1911|wstitle= Units, Physical | volume= 27 | pages = 738&ndash;745; see page 742 |last= Fleming |first= John Ambrose |author-link= John Ambrose Fleming}}</ref> Siemens' definition was adopted as the "international" watt. (Also used: 1&nbsp;A<sup>2</sup> × 1&nbsp;Ω.)<ref name=Klein/> The watt was defined as equal to 10<sup>7</sup> units of power in the "practical system" of units.<ref name=EB11-742/> The [[International System of Electrical and Magnetic Units#Overdefinition and the 1908 modification|"international units"]] were dominant from 1909 until 1948. After the 9th [[General Conference on Weights and Measures]] in 1948, the "international" watt was redefined from practical units to absolute units (i.e., using only length, mass, and time). Concretely, this meant that 1 watt was now defined as the quantity of energy transferred in a unit of time, namely 1 J/s. In this new definition, 1 "absolute" watt = 1.00019 "international" watts. Texts written before 1948 are likely to be using the "international" watt, which implies caution when comparing numerical values from this period with the post-1948 watt.<ref name=Klein/> In 1960, the 11th General Conference on Weights and Measures adopted the "absolute" watt into the [[International System of Units]] (SI) as the unit of power.<ref>{{cite web |url=https://www.bipm.org/en/CGPM/db/11/12/ |title= Resolution 12 of the 11th CGPM (1960)|author=<!--Not stated--> |publisher= Bureau International des Poids et Mesures (BIPM) |access-date=9 April 2018 }}</ref>

== Умношци ==

===Microwatt===
The microwatt (µW) is equal to one millionth of a watt (10<sup>−6</sup> W). Important powers that are measured in microwatts are typically stated in [[medical instrument]]ation systems such as the [[Electroencephalography|electroencephalograph]] (EEG) and the [[Electrocardiography|electrocardiograph]] (ECG), in a wide variety of scientific and engineering instruments and also in reference to radio and radar receivers. Compact [[solar cells]] for devices such as [[Solar-powered calculator|calculators]] and [[Solar-powered watch|watches]] are typically measured in microwatts.<ref>{{Citation | newspaper = The New York Times | url = https://www.nytimes.com/2010/07/18/business/18novel.html | title = Bye-Bye Batteries: Radio Waves as a Low-Power Source | date = Jul 18, 2010 | url-status = live | archive-url = https://web.archive.org/web/20170321231716/http://www.nytimes.com/2010/07/18/business/18novel.html | archive-date = 2017-03-21 }}.</ref>

===Milliwatt===
The milliwatt (mW) is equal to one thousandth of a watt (0.001 W or 10<sup>−3</sup> W). A typical [[laser pointer]] outputs about 5 milliwatts of light power, whereas a typical [[hearing aid]] uses less than 1 milliwatt.<ref>{{cite web | url = http://www.datasheetarchive.com/datasheet-pdf/019/DSA00333218.html | title = Low-Power Real-Time Programmable DSP Development Platform for Digital Hearing Aids | first1 = Trudy | last1 = Stetzler | first2 = Neeraj | last2 = Magotra | first3 = Pedro | last3 = Gelabert | first4 = Preethi | last4 = Kasthuri | first5 = Sridevi | last5 = Bangalore | publisher = Datasheet Archive | access-date = 8 February 2010 | url-status = live | archive-url = https://web.archive.org/web/20110303094710/http://www.datasheetarchive.com/datasheet-pdf/019/DSA00333218.html | archive-date = 3 March 2011 }}</ref> [[Audio signal]]s and other electronic signal levels are often measured in [[dBm]], referenced to 1 milliwatt.

===Kilowatt===

The kilowatt (kW) is equal to one [[thousand]] watts (1000 W or 10<sup>3</sup> W). This unit is typically used to express the output power of [[engine]]s and the power of [[electric motor]]s, tools, machines, and heaters. It is also a common unit used to express the [[Electromagnetic radiation|electromagnetic]] power output of broadcast radio and television [[transmitter]]s.

One kilowatt is approximately equal to 1.34 [[horsepower]]. A small electric heater with one [[heating element]] can use 1 kilowatt. The average [[Electric energy consumption|electric power consumption]] of a household in the United States is about 1 kilowatt.<ref>{{cite conference
|conference = ACEEE Summer Study on Energy Efficiency in Buildings
|year = 2008
|conference-url = http://aceee.org/conferences/2008/ssb
|publisher = American Council for an Energy-Efficient Economy
|location = [[Pacific Grove, California]]
|title = International Comparison of Household Energy Consumption and Its Indicator
|url = http://www.aceee.org/files/proceedings/2008/data/papers/8_24.pdf
|first1 = Hidetoshi
|last1 = Nakagami
|first2 = Chiharu
|last2 = Murakoshi
|first3 = Yumiko
|last3 = Iwafune
|at = Figure 3. Energy Consumption per Household by Fuel Type. 8:214–8:224
|access-date = 14 February 2013
|url-status = live
|archive-url = https://web.archive.org/web/20150109012214/http://www.aceee.org/files/proceedings/2008/data/papers/8_24.pdf
|archive-date = 9 January 2015
}}</ref>

A surface area of 1 square meter on Earth receives typically about 1 kilowatt of [[sunlight]] from the Sun (the [[solar irradiance]]) (on a clear day at midday, close to the equator).<ref>Elena Papadopoulou, ''Photovoltaic Industrial Systems: An Environmental Approach'' Springer 2011 {{ISBN|3642163017}}, p.153</ref>

===Megawatt===
The megawatt (MW) is equal to one [[million]] watts (10<sup>6</sup> W). Many events or machines produce or sustain the conversion of energy on this scale, including large electric motors; large warships such as aircraft carriers, cruisers, and submarines; large [[server farm]]s or [[Data center#Energy use|data centers]]; and some scientific research equipment, such as [[supercollider]]s, and the output pulses of very large lasers. A large residential or commercial building may use several megawatts in electric power and heat. On railways, modern high-powered [[electric locomotive]]s typically have a peak power output of {{val|5}}{{nbsp}}or{{nbsp}}{{val|6|u=MW}}, while some produce much more. The [[British Rail Class 373|Eurostar]], for example, uses more than {{val|12|u=MW}}, while heavy [[Diesel electric locomotive|diesel-electric locomotives]] typically produce/use {{val|3}}{{nbsp}}and{{nbsp}}{{val|5|u=MW}}. U.S. [[nuclear power plant]]s have net summer capacities between about {{val|500}}{{nbsp}}and{{nbsp}}{{val|1300|u=MW}}.<ref>{{cite report | url = https://www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr1350/v19/sr1350v19.pdf | publisher = [[Nuclear Regulatory Commission|United States Nuclear Regulatory Commission]] | language = en-us | date = 2007-08-01 | title = 2007–2008 Information Digest | chapter = Appendix A {{!}} U.S. Commercial Nuclear Power Reactors | pages = 84{{hyphen}}101 | issue = NUREG-1350 | volume = 19 | access-date = 2021-12-27 | url-status = dead | archive-url = https://web.archive.org/web/20080216073347/http://www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr1350/v19/sr1350v19.pdf | archive-date = 2008-02-16 | df = dmy-all }}</ref>{{rp|pp=84{{hyphen}}101}}

===Gigawatt===
The gigawatt (GW) is equal to one [[billion]] watts (10<sup>9</sup> W) or 1 gigawatt = 1000 megawatts. This unit is often used for large power plants or [[Electrical grid|power grids]]. For example, by the end of 2010, power shortages in China's [[Shanxi]] province were expected to increase to 5–6 GW<ref>{{cite web | place = Peking | first1 = Jim | last1 = Bai | first2 = Aizhu | last2 = Chen | editor-first = Chris | editor-last = Lewis | url = http://in.reuters.com/article/idINTOE6AA0AD20101111 | title = China's Shanxi to face 5–6 GW power shortage by yr-end – paper | date = 11 November 2010 | publisher = Reuters}}</ref> and the installed capacity of wind power in Germany was 25.8 GW.<ref>{{cite news | url=http://www.economist.com/node/16846774 | title=Not on my beach, please | newspaper=The Economist | date=19 August 2010 | url-status=live | archive-url=https://web.archive.org/web/20100824080835/http://www.economist.com/node/16846774 | archive-date=24 August 2010 }}</ref> The largest unit (out of four) of the Belgian [[Doel Nuclear Power Station]] has a peak output of 1.04 GW.<ref>{{cite web | language = fr | series = Who are we: Nuclear | url= http://www.electrabel.com/whoarewe/nuclear/keyfigures_doel.aspx | title = Chiffres clés |trans-title=Key numbers | year = 2011 | work = Electrabel |archive-url=https://web.archive.org/web/20110710180653/http://www.electrabel.com/whoarewe/nuclear/keyfigures_doel.aspx |archive-date=2011-07-10}}</ref> [[HVDC converter]]s have been built with power ratings of up to 2&nbsp;GW.<ref>{{Citation | last1 = Davidson | first1 = CC | last2 = Preedy | first2 = RM | last3 = Cao | first3 = J | last4 = Zhou | first4 = C | last5 = Fu | first5 = J | contribution = Ultra-High-Power Thyristor Valves for HVDC in Developing Countries | publisher = [[Institution of Engineering and Technology|IET]] | title = 9th International Conference on AC/DC Power Transmission | place = London | date = October 2010}}.</ref>

===Terawatt===
The terawatt (TW) is equal to one [[trillion]] watts (10<sup>12</sup> W). The [[primary energy]] used by humans worldwide was about 160,000&nbsp;terawatt-hours in 2019, corresponding to an average continuous power consumption of 18&nbsp;TW that year.<ref>{{Cite journal |url=https://ourworldindata.org/grapher/global-primary-energy?country=~OWID_WRL |title=Global Direct Primary Energy Consumption |author=Hannah Ritchie and Max Roser |journal=Our World in Data |publisher=Published online at OurWorldInData.org. |year=2020 |access-date=2020-02-09}}</ref> The most powerful lasers from the mid-1960s to the mid-1990s produced power in terawatts, but only for [[nanosecond]] intervals. The average lightning strike peaks at 1&nbsp;TW, but these strikes only last for 30 [[microsecond]]s.

===Petawatt===
The petawatt (PW) is equal to one quadrillion watts (10<sup>15</sup> W) and can be produced by the current generation of lasers for time scales on the order of picoseconds ({{10^|-12}}&nbsp;s). One such laser is the [[Lawrence Livermore National Laboratory|Lawrence Livermore]]'s [[Nova (laser)|Nova laser]], which achieved a power output of 1.25&nbsp;PW ({{val|1.25e15}}&nbsp;W) by a process called [[chirped pulse amplification]]. The duration of the pulse was roughly 0.5&nbsp;[[picosecond|ps]] ({{val|5e-13}}&nbsp;s), giving a total energy of 600&nbsp;J.<ref>{{cite web |url = https://www.llnl.gov/str/Petawatt.html |title = Crossing the Petawatt threshold |publisher = Lawrence Livermore National Laboratory |location = [[Livermore, California|Livermore]], [[California|CA]] |access-date = 19 June 2012 |url-status = live |archive-url = https://web.archive.org/web/20120915212555/https://www.llnl.gov/str/Petawatt.html |archive-date = 15 September 2012 }}</ref> Another example is the Laser for Fast Ignition Experiments (LFEX) at the Institute of Laser Engineering (ILE), [[Osaka University]], which achieved a power output of 2&nbsp;PW for a duration of approximately 1&nbsp;[[picosecond|ps]].<ref>{{citation | title = World's most powerful laser: 2 000 trillion watts. What's it? | publisher = IFL Science | url = http://www.iflscience.com/technology/world-s-most-powerful-laser-2000-trillion-watts-what-s-it | url-status = live | archive-url = https://web.archive.org/web/20150822093000/http://www.iflscience.com/technology/world-s-most-powerful-laser-2000-trillion-watts-what-s-it | archive-date = 2015-08-22 }}.</ref><ref>{{Citation | title = Eureka alert | type = publicity release | date = Aug 2015 | url = http://www.eurekalert.org/pub_releases/2015-08/ou-wpl080615.php | url-status = live | archive-url = https://web.archive.org/web/20150808055653/http://www.eurekalert.org/pub_releases/2015-08/ou-wpl080615.php | archive-date = 2015-08-08 }}.</ref>

Based on the average [[total solar irradiance]]<ref name=TSI>{{cite web | title = Construction of a Composite Total Solar Irradiance (TSI) Time Series from 1978 to present | publisher = PMODWRC | url = http://www.pmodwrc.ch/pmod.php?topic=tsi/composite/SolarConstant | place = [[Switzerland|CH]] | access-date = 2005-10-05 | url-status = live | archive-url = https://www.webcitation.org/618JfjgmL?url=http://www.pmodwrc.ch/pmod.php?topic=tsi%2Fcomposite%2FSolarConstant | archive-date = 2011-08-22 }}</ref> of 1.366&nbsp;kW/m<sup>2</sup>, the total power of sunlight striking Earth's atmosphere is estimated at 174&nbsp;PW. The planet's average rate of global warming, measured as [[Earth%27s_energy_budget#Earth's_energy_imbalance|Earth's energy imbalance]], reached about 0.5&nbsp;PW (0.3% of incident solar power) by 2019.<ref>{{cite journal |last1=Loeb |first1=Norman G. |last2=Johnson |first2=Gregory C. |last3=Thorsen |first3=Tyler J. |last4=Lyman |first4=John M. |last5=Rose |first5=Fred G. |last6=Kato |first6=Seiji |display-authors=4 |title=Satellite and Ocean Data Reveal Marked Increase in Earth's Heating Rate |journal=Geophysical Research Letters |date=15 June 2021 |volume=48 |issue=13 |doi=10.1029/2021GL093047 |bibcode=2021GeoRL..4893047L |doi-access=free }}</ref>


== Киловат-час ==
== Киловат-час ==
Ред 23: Ред 107:
* 1 коњска снага (електрична, Европа) = 736 -{W}-
* 1 коњска снага (електрична, Европа) = 736 -{W}-
* 1 коњска снага ("метрична") = 735.498 75 -{W}-
* 1 коњска снага ("метрична") = 735.498 75 -{W}-

== Види још ==
* [[Киловат час]]
* [[Конверзија мерних јединица]]

== Референце ==
{{reflist|}}


== Литература ==
== Литература ==
{{refbegin|2}}
{{refbegin|}}
* {{GreenBook3rd}}
* {{GreenBook3rd}}
* {{GreenBook2nd}}
* {{GreenBook2nd}}
{{Cite book | last = Nelson | first = Robert A. | url = http://www.aticourses.com/international_system_units.htm | title = The International System of Units: Its History and Use in Science and Industry | series = Via Satellite | date = February 2000 | publisher = ATI courses}}

{{refend}}
{{refend}}


== Спољашње везе ==
==Види још==
{{Commons category|Watt}}
* [[Киловат час]]
* {{Cite web | last = Borvon | first = Gérard | url = http://seaus.free.fr/spip.php?article964 | title = History of the electrical units }}
* [[Конверзија мерних јединица]]


{{СИ јединице}}
{{СИ јединице}}

Верзија на датум 20. јун 2022. у 04:56

Ват
СистемСИ изведена јединица снаге
ЈединицаСнага
СимболW 
Именован поЏејмс Ват
Јединична претварања
1 W у ...... је једнак са ...
   СИ основне јединице   1 kgm2s−3
   ЦГС јединице   107 ergs−1
   Енглеске инжењерске јединице   0,7375621 ft⋅lbf/s = 0,001341022 КС

Ват (енгл. watt; симбол: W) је СИ изведена јединица за снагу.[1][2] 1 kg⋅m2⋅s−3 or, equivalently,[3] Једнак је једном џулу у секунди (1 J/s), или у електричним јединицама, једном волт амперу (1 V·A). Ват је брзина, у џулима по секунди, којом се енергија претвара, користи или шири.

Јединица ват је добила име по Џејмсу Вату због његових доприноса у развоју парне машине и усвојена је на Другом Конгресу Британске асоцијације за напредак науке 1889. године и на једанаестој Генералној конференцији тежина и мера 1960. године.

Преглед

When an object's velocity is held constant at one metre per second against a constant opposing force of one newton, the rate at which work is done is one watt.

In terms of electromagnetism, one watt is the rate at which electrical work is performed when a current of one ampere (A) flows across an electrical potential difference of one volt (V), meaning the watt is equivalent to the volt-ampere (the latter unit, however, is used for a different quantity from the real power of an electrical circuit).

Two additional unit conversions for watt can be found using the above equation and Ohm's law.

where ohm () is the SI derived unit of electrical resistance.

Examples

  • A person having a mass of 100 kg who climbs a 3-metre-high ladder in 5 seconds is doing work at a rate of about 600 watts. Mass times acceleration due to gravity times height divided by the time it takes to lift the object to the given height gives the rate of doing work or power.
  • A laborer over the course of an eight-hour day can sustain an average output of about 75 watts; higher power levels can be achieved for short intervals and by athletes.[4]

Настанак и усвајање као јединица СИ

The watt is named after the Scottish inventor James Watt.[5] The unit name was proposed initially by C. William Siemens in August 1882 in his President's Address to the Fifty-Second Congress of the British Association for the Advancement of Science.[6] Noting that units in the practical system of units were named after leading physicists, Siemens proposed that watt might be an appropriate name for a unit of power.[7] Siemens defined the unit consistently within the then-existing system of practical units as "the power conveyed by a current of an Ampère through the difference of potential of a Volt".[8]

In October 1908, at the International Conference on Electric Units and Standards in London,[9] so-called "international" definitions were established for practical electrical units.[10] Siemens' definition was adopted as the "international" watt. (Also used: 1 A2 × 1 Ω.)[5] The watt was defined as equal to 107 units of power in the "practical system" of units.[10] The "international units" were dominant from 1909 until 1948. After the 9th General Conference on Weights and Measures in 1948, the "international" watt was redefined from practical units to absolute units (i.e., using only length, mass, and time). Concretely, this meant that 1 watt was now defined as the quantity of energy transferred in a unit of time, namely 1 J/s. In this new definition, 1 "absolute" watt = 1.00019 "international" watts. Texts written before 1948 are likely to be using the "international" watt, which implies caution when comparing numerical values from this period with the post-1948 watt.[5] In 1960, the 11th General Conference on Weights and Measures adopted the "absolute" watt into the International System of Units (SI) as the unit of power.[11]

Умношци

Microwatt

The microwatt (µW) is equal to one millionth of a watt (10−6 W). Important powers that are measured in microwatts are typically stated in medical instrumentation systems such as the electroencephalograph (EEG) and the electrocardiograph (ECG), in a wide variety of scientific and engineering instruments and also in reference to radio and radar receivers. Compact solar cells for devices such as calculators and watches are typically measured in microwatts.[12]

Milliwatt

The milliwatt (mW) is equal to one thousandth of a watt (0.001 W or 10−3 W). A typical laser pointer outputs about 5 milliwatts of light power, whereas a typical hearing aid uses less than 1 milliwatt.[13] Audio signals and other electronic signal levels are often measured in dBm, referenced to 1 milliwatt.

Kilowatt

The kilowatt (kW) is equal to one thousand watts (1000 W or 103 W). This unit is typically used to express the output power of engines and the power of electric motors, tools, machines, and heaters. It is also a common unit used to express the electromagnetic power output of broadcast radio and television transmitters.

One kilowatt is approximately equal to 1.34 horsepower. A small electric heater with one heating element can use 1 kilowatt. The average electric power consumption of a household in the United States is about 1 kilowatt.[14]

A surface area of 1 square meter on Earth receives typically about 1 kilowatt of sunlight from the Sun (the solar irradiance) (on a clear day at midday, close to the equator).[15]

Megawatt

The megawatt (MW) is equal to one million watts (106 W). Many events or machines produce or sustain the conversion of energy on this scale, including large electric motors; large warships such as aircraft carriers, cruisers, and submarines; large server farms or data centers; and some scientific research equipment, such as supercolliders, and the output pulses of very large lasers. A large residential or commercial building may use several megawatts in electric power and heat. On railways, modern high-powered electric locomotives typically have a peak power output of 5 or 6 MW, while some produce much more. The Eurostar, for example, uses more than 12 MW, while heavy diesel-electric locomotives typically produce/use 3 and 5 MW. U.S. nuclear power plants have net summer capacities between about 500 and 1300 MW.[16]:{{{1}}}

Gigawatt

The gigawatt (GW) is equal to one billion watts (109 W) or 1 gigawatt = 1000 megawatts. This unit is often used for large power plants or power grids. For example, by the end of 2010, power shortages in China's Shanxi province were expected to increase to 5–6 GW[17] and the installed capacity of wind power in Germany was 25.8 GW.[18] The largest unit (out of four) of the Belgian Doel Nuclear Power Station has a peak output of 1.04 GW.[19] HVDC converters have been built with power ratings of up to 2 GW.[20]

Terawatt

The terawatt (TW) is equal to one trillion watts (1012 W). The primary energy used by humans worldwide was about 160,000 terawatt-hours in 2019, corresponding to an average continuous power consumption of 18 TW that year.[21] The most powerful lasers from the mid-1960s to the mid-1990s produced power in terawatts, but only for nanosecond intervals. The average lightning strike peaks at 1 TW, but these strikes only last for 30 microseconds.

Petawatt

The petawatt (PW) is equal to one quadrillion watts (1015 W) and can be produced by the current generation of lasers for time scales on the order of picoseconds (1012 s). One such laser is the Lawrence Livermore's Nova laser, which achieved a power output of 1.25 PW (1,25×1015 W) by a process called chirped pulse amplification. The duration of the pulse was roughly 0.5 ps (5×10−13 s), giving a total energy of 600 J.[22] Another example is the Laser for Fast Ignition Experiments (LFEX) at the Institute of Laser Engineering (ILE), Osaka University, which achieved a power output of 2 PW for a duration of approximately 1 ps.[23][24]

Based on the average total solar irradiance[25] of 1.366 kW/m2, the total power of sunlight striking Earth's atmosphere is estimated at 174 PW. The planet's average rate of global warming, measured as Earth's energy imbalance, reached about 0.5 PW (0.3% of incident solar power) by 2019.[26]

Киловат-час

Јединица за снагу помножена јединицом за време је чест начин исказивања енергије. На пример, један киловат час, количина енергије коју утроши направа од једног киловата за један сат (1 сат = 3600 секунди) и износи 3,6 мегаџула.

Ова јединица се често користи у контексту електрана и рачуна за струју. Мегават дан (MWd или MW·d) је једнак 86,4 GJ.

Остале јединице снаге

  • 1 ват ≈ 3.412141630 BTU/h
  • 1 ват = 1 волт × 1 ампер
  • 1 коњска снага ≈ 745.700 W (заокружено са 745.69987158227022 W)
  • 1 коњска снага (електрична, Велика Британија) = 746 W
  • 1 коњска снага (електрична, Европа) = 736 W
  • 1 коњска снага ("метрична") = 735.498 75 W

Види још

Референце

  1. ^ Bureau international des poids et mesures, Le Système international d’unités (SI) / The International System of Units (SI), 9th ed. (Sèvres: 2019), ISBN 978‑92‑822‑2272‑0, §2.3.4, Table 4.
  2. ^ Yildiz, I.; Liu, Y. (2018). „Energy units, conversions, and dimensional analysis”. Ур.: Dincer, I. Comprehensive energy systems. Vol 1: Energy fundamentals. Elsevier. стр. 12—13. ISBN 9780128149256. 
  3. ^ International Bureau of Weights and Measures (2006), The International System of Units (SI) (PDF) (8th изд.), стр. 118, 144, ISBN 92-822-2213-6 
  4. ^ Avallone, Eugene A; et al., ур. (2007), Marks' Standard Handbook for Mechanical Engineers (11th изд.), New York: Mc-Graw Hill, стр. 9—4, ISBN 978-0-07-142867-5 .
  5. ^ а б в Klein, Herbert Arthur (1988) [1974]. The Science of measurement: A historical survey. New York: Dover. стр. 239. ISBN 9780486144979. 
  6. ^ „Address by C. William Siemens”. Report of the Fifty-Second meeting of the British Association for the Advancement of Science. 52. London: John Murray. 1883. стр. 1—33. 
  7. ^ Siemens supported his proposal by asserting that Watt was the first who "had a clear physical conception of power, and gave a rational method for measuring it." "Siemens, 1883, p. 6"
  8. ^ "Siemens", 1883, p. 5"
  9. ^ Tunbridge, P. (1992). Lord Kelvin: His Influence on Electrical Measurements and Units. Peter Peregrinus: London. стр. 51. ISBN 0-86341-237-8. 
  10. ^ а б Fleming, John Ambrose (1911). „Units, Physical”. Ур.: Chisholm, Hugh. Encyclopædia Britannica (на језику: енглески). 27 (11 изд.). Cambridge University Press. стр. 738–745; see page 742. 
  11. ^ „Resolution 12 of the 11th CGPM (1960)”. Bureau International des Poids et Mesures (BIPM). Приступљено 9. 4. 2018. 
  12. ^ „Bye-Bye Batteries: Radio Waves as a Low-Power Source”, The New York Times, 18. 7. 2010, Архивирано из оригинала 2017-03-21. г. .
  13. ^ Stetzler, Trudy; Magotra, Neeraj; Gelabert, Pedro; Kasthuri, Preethi; Bangalore, Sridevi. „Low-Power Real-Time Programmable DSP Development Platform for Digital Hearing Aids”. Datasheet Archive. Архивирано из оригинала 3. 3. 2011. г. Приступљено 8. 2. 2010. 
  14. ^ Nakagami, Hidetoshi; Murakoshi, Chiharu; Iwafune, Yumiko (2008). International Comparison of Household Energy Consumption and Its Indicator (PDF). ACEEE Summer Study on Energy Efficiency in Buildings. Pacific Grove, California: American Council for an Energy-Efficient Economy. Figure 3. Energy Consumption per Household by Fuel Type. 8:214–8:224. Архивирано (PDF) из оригинала 9. 1. 2015. г. Приступљено 14. 2. 2013. 
  15. ^ Elena Papadopoulou, Photovoltaic Industrial Systems: An Environmental Approach Springer 2011 ISBN 3642163017, p.153
  16. ^ „Appendix A | U.S. Commercial Nuclear Power Reactors”. 2007–2008 Information Digest (PDF) (Извештај) (на језику: енглески). 19. United States Nuclear Regulatory Commission. 2007-08-01. стр. 84-101. Архивирано из оригинала (PDF) 2008-02-16. г. Приступљено 2021-12-27. 
  17. ^ Bai, Jim; Chen, Aizhu (11. 11. 2010). Lewis, Chris, ур. „China's Shanxi to face 5–6 GW power shortage by yr-end – paper”. Peking: Reuters. 
  18. ^ „Not on my beach, please”. The Economist. 19. 8. 2010. Архивирано из оригинала 24. 8. 2010. г. 
  19. ^ „Chiffres clés” [Key numbers]. Electrabel. Who are we: Nuclear (на језику: француски). 2011. Архивирано из оригинала 2011-07-10. г. 
  20. ^ Davidson, CC; Preedy, RM; Cao, J; Zhou, C; Fu, J (октобар 2010), „Ultra-High-Power Thyristor Valves for HVDC in Developing Countries”, 9th International Conference on AC/DC Power Transmission, London: IET .
  21. ^ Hannah Ritchie and Max Roser (2020). „Global Direct Primary Energy Consumption”. Our World in Data. Published online at OurWorldInData.org. Приступљено 2020-02-09. 
  22. ^ „Crossing the Petawatt threshold”. Livermore, CA: Lawrence Livermore National Laboratory. Архивирано из оригинала 15. 9. 2012. г. Приступљено 19. 6. 2012. 
  23. ^ World's most powerful laser: 2 000 trillion watts. What's it?, IFL Science, Архивирано из оригинала 2015-08-22. г. .
  24. ^ Eureka alert (publicity release), август 2015, Архивирано из оригинала 2015-08-08. г. .
  25. ^ „Construction of a Composite Total Solar Irradiance (TSI) Time Series from 1978 to present”. CH: PMODWRC. Архивирано из оригинала 2011-08-22. г. Приступљено 2005-10-05. 
  26. ^ Loeb, Norman G.; Johnson, Gregory C.; Thorsen, Tyler J.; Lyman, John M.; et al. (15. 6. 2021). „Satellite and Ocean Data Reveal Marked Increase in Earth's Heating Rate”. Geophysical Research Letters. 48 (13). Bibcode:2021GeoRL..4893047L. doi:10.1029/2021GL093047Слободан приступ. 

Литература

Nelson, Robert A. (фебруар 2000). The International System of Units: Its History and Use in Science and Industry. Via Satellite. ATI courses. 

Спољашње везе