Лимнологија — разлика између измена

С Википедије, слободне енциклопедије
Садржај обрисан Садржај додат
.
Ред 1: Ред 1:
{{Short description|Science of inland aquatic ecosystems}}{{рут}}
'''Лимнологија''' ([[грчки језик|грчки]] λίμνη; језеро + -логија), грана [[хидрологија|хидрологије]] која се бави истраживањем [[језеро|језера]], физичким и хемијским својствима језерске воде и [[биологија|биологијом]] језера.
[[Датотека:Jan Kwiatowski & Iwona Jasser - Wyprawa po sine runo - 03.jpg|мини|Микробиолошка истраживања на језеру Rang-kul]]
[[Датотека:Lake Hawea, New Zealand.jpg|thumb|250px|[[Lake Hāwea]], New Zealand]]
[[Датотека:Jan Kwiatowski & Iwona Jasser - Wyprawa po sine runo - 03.jpg|мини|250px|Микробиолошка истраживања на језеру Rang-kul]]

[[Франсоа Алфонс Форел]] (1841—1912) је основао поље лимнологије властитим проучавањем [[Женевско језеро|Женевског језера]]. Лимнологија је традиционално блиско сродна [[хидробиологија|хидробиологији]] која се бави примјеном принципа и метода [[физика|физике]], [[хемија|хемије]], [[геологија|геологије]] и [[географија|географије]] на [[екологија|еколошке]] проблеме.
'''Лимнологија''' ([[грчки језик|грчки]] λίμνη; језеро + -логија), грана [[хидрологија|хидрологије]] која се бави истраживањем [[језеро|језера]], физичким и хемијским својствима језерске воде и [[биологија|биологијом]] језера. [[Франсоа Алфонс Форел]] (1841—1912) је основао поље лимнологије властитим проучавањем [[Женевско језеро|Женевског језера]]. Лимнологија је традиционално блиско сродна [[хидробиологија|хидробиологији]] која се бави примјеном принципа и метода [[физика|физике]], [[хемија|хемије]], [[геологија|геологије]] и [[географија|географије]] на [[екологија|еколошке]] проблеме.

'''Limnology''' ({{IPAc-en|l|ɪ|m|ˈ|n|ɒ|l|ə|dʒ|i}} {{respell|lim|NOL|ə-jee}}; from Greek λίμνη, ''limne'', "lake" and λόγος, ''logos'', "knowledge") is the study of inland [[aquatic ecosystems]].<ref>{{Cite book|url=https://books.google.com/books?id=JIw76nEh0aoC&q=limnology+definition&pg=PR11|title=Fundamentals of Limnology|last=Kumar|first=Arvind|date=2005|publisher=APH Publishing|isbn=9788176489195}}</ref>
The study of limnology includes aspects of the [[biology|biological]], [[chemistry|chemical]], [[physics|physical]], and [[geology|geological]] characteristics of fresh and saline, natural and man-made bodies of water. This includes the study of [[lake]]s, [[reservoir]]s, [[pond]]s, [[river]]s, [[Spring (hydrosphere)|springs]], [[stream]]s, [[wetland]]s, and [[groundwater]].<ref name="Wetzel" >Wetzel, R.G. 2001. Limnology: Lake and River Ecosystems, 3rd ed. Academic Press ({{ISBN|0-12-744760-1}}){{pn|date=December 2020}}</ref> Water systems are often categorized as either running (lotic) or standing (lentic).<ref>{{Citation |last=Marsh |first=G. Alex |title=Lentic and lotic ecosystems |date=1999 |url=https://doi.org/10.1007/1-4020-4494-1_204 |work=Environmental Geology |pages=381–388 |place=Dordrecht |publisher=Springer Netherlands |language=en |doi=10.1007/1-4020-4494-1_204 |isbn=978-1-4020-4494-6 |access-date=2022-04-21 |last2=Fairbridge |first2=Rhodes W.}}</ref>

Limnology includes the study of the drainage basin, movement of water through the basin and biogeochemical changes that occur en route. A more recent sub-discipline of limnology, termed [[landscape limnology]], studies, manages, and seeks to conserve these [[ecosystem]]s using a landscape perspective, by explicitly examining connections between an aquatic ecosystem and its [[drainage basin]]. Recently, the need to understand global inland waters as part of the [[Earth system science|Earth System]] created a sub-discipline called global limnology.<ref>{{cite journal |last1=Downing |first1=John A. |title=Global limnology: up-scaling aquatic services and processes to planet Earth |journal=SIL Proceedings, 1922-2010 |date=January 2009 |volume=30 |issue=8 |pages=1149–1166 |doi=10.1080/03680770.2009.11923903 |s2cid=131488888 }}</ref> This approach considers processes in inland waters on a global scale, like the role of inland aquatic ecosystems in global [[biogeochemical cycle]]s.<ref>{{cite journal |last1=Cole |first1=J. J. |last2=Prairie |first2=Y. T. |last3=Caraco |first3=N. F. |last4=McDowell |first4=W. H. |last5=Tranvik |first5=L. J. |last6=Striegl |first6=R. G. |last7=Duarte |first7=C. M. |last8=Kortelainen |first8=P. |last9=Downing |first9=J. A. |last10=Middelburg |first10=J. J. |last11=Melack |first11=J. |title=Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget |journal=Ecosystems |date=23 May 2007 |volume=10 |issue=1 |pages=172–185 |doi=10.1007/s10021-006-9013-8 |citeseerx=10.1.1.177.3527 |s2cid=1728636 }}</ref><ref>{{cite journal |last1=Tranvik |first1=Lars J. |last2=Downing |first2=John A. |last3=Cotner |first3=James B. |last4=Loiselle |first4=Steven A. |last5=Striegl |first5=Robert G. |last6=Ballatore |first6=Thomas J. |last7=Dillon |first7=Peter |last8=Finlay |first8=Kerri |last9=Fortino |first9=Kenneth |last10=Knoll |first10=Lesley B. |last11=Kortelainen |first11=Pirkko L. |last12=Kutser |first12=Tiit |last13=Larsen |first13=Soren |last14=Laurion |first14=Isabelle |last15=Leech |first15=Dina M. |last16=McCallister |first16=S. Leigh |last17=McKnight |first17=Diane M. |last18=Melack |first18=John M. |last19=Overholt |first19=Erin |last20=Porter |first20=Jason A. |last21=Prairie |first21=Yves |last22=Renwick |first22=William H. |last23=Roland |first23=Fabio |last24=Sherman |first24=Bradford S. |last25=Schindler |first25=David W. |last26=Sobek |first26=Sebastian |last27=Tremblay |first27=Alain |last28=Vanni |first28=Michael J. |last29=Verschoor |first29=Antonie M. |last30=von Wachenfeldt |first30=Eddie |last31=Weyhenmeyer |first31=Gesa A. |title=Lakes and reservoirs as regulators of carbon cycling and climate |journal=Limnology and Oceanography |date=November 2009 |volume=54 |issue=6part2 |pages=2298–2314 |doi=10.4319/lo.2009.54.6_part_2.2298 |bibcode=2009LimOc..54.2298T |hdl=10852/11601 |doi-access=free }}</ref><ref>{{cite journal |last1=Raymond |first1=Peter A. |last2=Hartmann |first2=Jens |last3=Lauerwald |first3=Ronny |last4=Sobek |first4=Sebastian |last5=McDonald |first5=Cory |last6=Hoover |first6=Mark |last7=Butman |first7=David |last8=Striegl |first8=Robert |last9=Mayorga |first9=Emilio |last10=Humborg |first10=Christoph |last11=Kortelainen |first11=Pirkko |last12=Dürr |first12=Hans |last13=Meybeck |first13=Michel |last14=Ciais |first14=Philippe |last15=Guth |first15=Peter |title=Global carbon dioxide emissions from inland waters |journal=Nature |date=21 November 2013 |volume=503 |issue=7476 |pages=355–359 |doi=10.1038/nature12760 |pmid=24256802 |bibcode=2013Natur.503..355R |s2cid=4460910 |url=http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-213816 }}</ref><ref>{{cite journal |last1=Engel |first1=Fabian |last2=Farrell |first2=Kaitlin J. |last3=McCullough |first3=Ian M. |last4=Scordo |first4=Facundo |last5=Denfeld |first5=Blaize A. |last6=Dugan |first6=Hilary A. |last7=de Eyto |first7=Elvira |last8=Hanson |first8=Paul C. |last9=McClure |first9=Ryan P. |last10=Nõges |first10=Peeter |last11=Nõges |first11=Tiina |last12=Ryder |first12=Elizabeth |last13=Weathers |first13=Kathleen C. |last14=Weyhenmeyer |first14=Gesa A. |title=A lake classification concept for a more accurate global estimate of the dissolved inorganic carbon export from terrestrial ecosystems to inland waters |journal=The Science of Nature |date=26 March 2018 |volume=105 |issue=3 |pages=25 |doi=10.1007/s00114-018-1547-z |pmid=29582138 |pmc=5869952 |bibcode=2018SciNa.105...25E }}</ref><ref>{{cite journal |last1=O'Reilly |first1=Catherine M. |last2=Sharma |first2=Sapna |last3=Gray |first3=Derek K. |last4=Hampton |first4=Stephanie E. |last5=Read |first5=Jordan S. |last6=Rowley |first6=Rex J. |last7=Schneider |first7=Philipp |last8=Lenters |first8=John D. |last9=McIntyre |first9=Peter B. |last10=Kraemer |first10=Benjamin M. |last11=Weyhenmeyer |first11=Gesa A. |last12=Straile |first12=Dietmar |last13=Dong |first13=Bo |last14=Adrian |first14=Rita |last15=Allan |first15=Mathew G. |last16=Anneville |first16=Orlane |last17=Arvola |first17=Lauri |last18=Austin |first18=Jay |last19=Bailey |first19=John L. |last20=Baron |first20=Jill S. |last21=Brookes |first21=Justin D. |last22=Eyto |first22=Elvira de |last23=Dokulil |first23=Martin T. |last24=Hamilton |first24=David P. |last25=Havens |first25=Karl |last26=Hetherington |first26=Amy L. |last27=Higgins |first27=Scott N. |last28=Hook |first28=Simon |last29=Izmest'eva |first29=Lyubov R. |last30=Joehnk |first30=Klaus D. |last31=Kangur |first31=Kulli |last32=Kasprzak |first32=Peter |last33=Kumagai |first33=Michio |last34=Kuusisto |first34=Esko |last35=Leshkevich |first35=George |last36=Livingstone |first36=David M. |last37=MacIntyre |first37=Sally |last38=May |first38=Linda |last39=Melack |first39=John M. |last40=Mueller‐Navarra |first40=Doerthe C. |last41=Naumenko |first41=Mikhail |last42=Noges |first42=Peeter |last43=Noges |first43=Tiina |last44=North |first44=Ryan P. |last45=Plisnier |first45=Pierre-Denis |last46=Rigosi |first46=Anna |last47=Rimmer |first47=Alon |last48=Rogora |first48=Michela |last49=Rudstam |first49=Lars G. |last50=Rusak |first50=James A. |last51=Salmaso |first51=Nico |last52=Samal |first52=Nihar R. |last53=Schindler |first53=Daniel E. |last54=Schladow |first54=S. Geoffrey |last55=Schmid |first55=Martin |last56=Schmidt |first56=Silke R. |last57=Silow |first57=Eugene |last58=Soylu |first58=M. Evren |last59=Teubner |first59=Katrin |last60=Verburg |first60=Piet |last61=Voutilainen |first61=Ari |last62=Watkinson |first62=Andrew |last63=Williamson |first63=Craig E. |last64=Zhang |first64=Guoqing |title=Rapid and highly variable warming of lake surface waters around the globe |journal=Geophysical Research Letters |date=2015 |volume=42 |issue=24 |pages=10,773–10,781 |doi=10.1002/2015gl066235 |bibcode=2015GeoRL..4210773O |doi-access=free }}</ref>

== Историја ==
The term limnology was coined by [[François-Alphonse Forel]] (1841–1912) who established the field with his studies of [[Lake Geneva]]. Interest in the discipline rapidly expanded, and in 1922 [[August Thienemann]] (a German zoologist) and [[Einar Naumann]] (a Swedish botanist) co-founded the [[International Society of Limnology]] (SIL, from [[Societas Internationalis Limnologiae]]). Forel's original definition of limnology, "the [[oceanography]] of lakes", was expanded to encompass the study of all inland waters,<ref name="Wetzel"/> and influenced [[Benedykt Dybowski]]'s work on [[Lake Baikal]].

Prominent early American limnologists included [[G. Evelyn Hutchinson]] and [[Edward Smith Deevey, Jr.|Ed Deevey]].<ref>Frey, D.G. (ed.), 1963. Limnology in North America. University of Wisconsin Press, Madison</ref> At the [[University of Wisconsin–Madison|University of Wisconsin-Madison]], [[Edward Ashael Birge|Edward A. Birge]], [[Chancey Juday]], [[Charles R. Goldman]], and [[Arthur D. Hasler]] contributed to the development of the [[Center for Limnology]].<ref>{{Cite web|url=https://uwdc.library.wisc.edu/collections/uw/uwmadison/limnhist/|title=History of Limnology – UW Digital Collections|language=en-US|access-date=2019-05-02}}</ref><ref>{{Cite journal|last=Beckel|first=Annamarie L.|title=Breaking new waters : a century of limnology at the University of Wisconsin. Special issue|url=http://digicoll.library.wisc.edu/cgi-bin/WI/WI-idx?id=WI.WTBreakWaters|language=en-US}}</ref>

== Општа лимнологија ==

===Physical properties===
Physical properties of aquatic ecosystems are determined by a combination of heat, currents, waves and other seasonal distributions of environmental conditions.<ref name="limnology book">{{cite book|last1=Horne|first1=Alexander J|last2=Goldman|first2=Charles R|title=Limnology|date=1994|publisher=McGraw-Hill|location=United States of America|isbn=978-0-07-023673-8|edition= Second}}{{pn|date=December 2020}}</ref> The [[Morphometrics|morphometry]] of a body of water depends on the type of feature (such as a lake, river, stream, wetland, estuary etc.) and the structure of the earth surrounding the body of water. [[Lake#Limnology|Lakes]], for instance, are classified by their formation, and zones of lakes are defined by water depth.<ref>{{cite book|last1=Welch|first1=P.S.|title=Limnology (Zoological Science Publications)|date=1935|publisher=McGraw-Hill|location=United States of America|isbn=978-0-07-069179-7}}{{pn|date=December 2020}}</ref><ref name="Seekell 2021 e2021GL093366">{{Cite journal|last=Seekell|first=D.|last2=Cael|first2=B.|last3=Lindmark|first3=E.|last4=Byström|first4=P.|date=2021|title=The Fractal Scaling Relationship for River Inlets to Lakes|url=https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2021GL093366|journal=Geophysical Research Letters|language=en|volume=48|issue=9|pages=e2021GL093366|doi=10.1029/2021GL093366|issn=1944-8007}}</ref> [[River]] and [[stream]] system morphometry is driven by underlying geology of the area as well as the general velocity of the water.<ref name="limnology book"/> Stream morphometry is also influenced by topography (especially slope) as well as precipitation patterns and other factors such as vegetation and land development. Connectivity between streams and lakes relates to the landscape [[drainage density]], [[List of lakes by area|lake surface area]] and [[Shoreline development index|lake shape]].<ref name="Seekell 2021 e2021GL093366"/>
Other types of aquatic systems which fall within the study of limnology are [[estuaries]]. Estuaries are bodies of water classified by the interaction of a river and the ocean or sea.<ref name="limnology book"/> [[Wetland]]s vary in size, shape, and pattern however the most common types, marshes, bogs and swamps, often fluctuate between containing shallow, freshwater and being dry depending on the time of year.<ref name="limnology book"/>

====Light interactions====
Light zonation is the concept of how the amount of sunlight penetration into water influences the structure of a body of water.<ref name="limnology book"/> These zones define various levels of productivity within an aquatic ecosystems such as a lake. For instance, the depth of the water column which sunlight is able to penetrate and where most plant life is able to grow is known as the [[Photic zone|photic or euphotic]] zone. The rest of the water column which is deeper and does not receive sufficient amounts of sunlight for plant growth is known as the [[aphotic zone]].<ref name="limnology book"/>

====Thermal stratification====
Similar to light zonation, thermal [[Lake stratification|stratification]] or thermal zonation is a way of grouping parts of the water body within an aquatic system based on the temperature of different lake layers. The less [[Turbidity|turbid]] the water, the more light is able to penetrate, and thus heat is conveyed deeper in the water.<ref name="water quality book">{{cite book|title=Water Quality: An Introduction|date=2015|publisher=Springer|isbn=978-3-319-17445-7|edition= Second|location=Switzerland|last1=Boyd|first1=Claude E.}}{{pn|date=December 2020}}</ref> Heating declines exponentially with depth in the water column, so the water will be warmest near the surface but progressively cooler as moving downwards. There are three main sections that define thermal stratification in a lake. The [[epilimnion]] is closest to the water surface and absorbs long- and shortwave radiation to warm the water surface. During cooler months, wind shear can contribute to cooling of the water surface. The [[thermocline]] is an area within the water column where water temperatures rapidly decrease.<ref name="water quality book" /> The bottom layer is the [[hypolimnion]], which tends to have the coldest water because its depth restricts sunlight from reaching it.<ref name="water quality book" /> In temperate lakes, fall-season cooling of surface water results in turnover of the water column, where the thermocline is disrupted, and the lake temperature profile becomes more uniform. In cold climates, when water cools below 4<sup>o</sup>C (the temperature of maximum density) many lakes can experience an inverse thermal stratification in winter.<ref>{{Cite journal|last=Yang|first=Bernard|last2=Wells|first2=Mathew G.|last3=McMeans|first3=Bailey C.|last4=Dugan|first4=Hilary A.|last5=Rusak|first5=James A.|last6=Weyhenmeyer|first6=Gesa A.|last7=Brentrup|first7=Jennifer A.|last8=Hrycik|first8=Allison R.|last9=Laas|first9=Alo|last10=Pilla|first10=Rachel M.|last11=Austin|first11=Jay A.|date=2021|title=A New Thermal Categorization of Ice-Covered Lakes|url=https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020GL091374|journal=Geophysical Research Letters|language=en|volume=48|issue=3|pages=e2020GL091374|doi=10.1029/2020GL091374|issn=1944-8007}}</ref> These lakes are often [[Dimictic lake|dimictic]], with a brief spring overturn in addition to longer fall overturn. The [[relative thermal resistance]] is the energy needed to mix these strata of different temperatures.<ref name="auto">Wetzel, R. G. (2001). Limnology: Lake and river ecosystems. San Diego: Academic Press.{{pn|date=December 2020}}</ref>

===Chemical properties===
The chemical composition of water in aquatic ecosystems is influenced by natural characteristics and processes including [[precipitation]], underlying [[soil]] and [[bedrock]] in the [[drainage basin]], [[erosion]], [[evaporation]], and [[sedimentation]].<ref name="limnology book"/> All bodies of water have a certain composition of both [[Organic compound|organic]] and [[Inorganic compound|inorganic]] elements and compounds. Biological reactions also affect the chemical properties of water. In addition to natural processes, human activities strongly influence the chemical composition of aquatic systems and their water quality.<ref name="water quality book" />

==== Oxygen and carbon dioxide ====
[[Oxygen saturation|Dissolved oxygen]] and dissolved [[carbon dioxide]] are often discussed together due their coupled role in [[Cellular respiration|respiration]] and [[photosynthesis]]. Dissolved oxygen concentrations can be altered by physical, chemical, and biological processes and reaction. Physical processes including wind mixing can increase dissolved oxygen concentrations, particularly in surface waters of aquatic ecosystems. Because dissolved oxygen solubility is linked to water temperatures, changes in temperature affect dissolved oxygen concentrations as warmer water has a lower capacity to "hold" oxygen as colder water.<ref name=":0">{{Cite book|title=Freshwater ecology : concepts and environmental applications of limnology|last=Dodds|first=Walter K.|date=2010|publisher=Academic Press|others=Whiles, Matt R.|isbn=9780123747242|edition= 2nd|location=Burlington, MA|oclc=784140625}}{{pn|date=December 2020}}</ref> Biologically, both photosynthesis and aerobic respiration affect dissolved oxygen concentrations.<ref name="water quality book"/> Photosynthesis by [[Autotroph|autotrophic organisms]], such as [[phytoplankton]] and aquatic [[algae]], increases dissolved oxygen concentrations while simultaneously reducing carbon dioxide concentrations, since carbon dioxide is taken up during photosynthesis.<ref name=":0" /> All [[aerobic organism]]s in the aquatic environment take up dissolved oxygen during aerobic respiration, while carbon dioxide is released as a byproduct of this reaction. Because photosynthesis is light-limited, both photosynthesis and respiration occur during the [[daylight]] hours, while only respiration occurs during [[Night|dark]] hours or in dark portions of an ecosystem. The balance between dissolved oxygen production and consumption is calculated as the [[Lake metabolism|aquatic metabolism rate]].<ref>{{cite journal |last1=Cole |first1=Jonathan J. |last2=Caraco |first2=Nina F. |title=Carbon in catchments: connecting terrestrial carbon losses with aquatic metabolism |journal=Marine and Freshwater Research |date=2001 |volume=52 |issue=1 |pages=101 |doi=10.1071/mf00084 |s2cid=11143190 }}</ref>


== Познати лимнолози ==
== Познати лимнолози ==
Ред 18: Ред 49:
* [[Ихтиологија]]
* [[Ихтиологија]]


== Референце ==
<!--[[Категорија:Лимнологија]]-->
{{Reflist}}

== Литература ==
{{refbegin|30em}}
* Gerald A. Cole, ''Textbook of Limnology'', 4th ed. (Waveland Press, 1994) {{ISBN|0-88133-800-1}}
* Stanley Dodson, ''Introduction to Limnology'' (2005), {{ISBN|0-07-287935-1}}
* A.J.Horne and C.R. Goldman: ''Limnology'' (1994), {{ISBN|0-07-023673-9}}
* [[George Evelyn Hutchinson|G. E. Hutchinson]], ''A Treatise on Limnology'', 3 vols. (1957–1975) - classic but dated
* H.B.N. Hynes, ''The Ecology of Running Waters'' (1970)
* Jacob Kalff, ''Limnology'' ([[Prentice Hall]], 2001)
* B. Moss, ''Ecology of Fresh Waters'' ([[Wiley-Blackwell|Blackwell]], 1998)
* Robert G. Wetzel and [[Gene E. Likens]], ''Limnological Analyses'', 3rd ed. ([[Springer Science+Business Media|Springer-Verlag]], 2000)
* Patrick E. O'Sullivan and Colin S. Reynolds ''The Lakes Handbook: Limnology and limnetic ecology'' {{ISBN|0-632-04797-6}}
* Eslamian, S., 2014, (ed.) Handbook of Engineering Hydrology, Vol. 1: Fundamentals and Applications, Francis and Taylor, CRC Group, 636 Pages, USA.
* Eslamian, S., 2014, (ed.) Handbook of Engineering Hydrology, Vol. 2: Modeling, Climate Change and Variability, Francis and Taylor, CRC Group, 646 Pages, USA.
* Eslamian, S, 2014, (ed.) Handbook of Engineering Hydrology, Vol. 3: Environmental Hydrology and Water Management, Francis and Taylor, CRC Group, 606 Pages, USA.
* {{cite book|editor1-last=Anderson|editor1-first=Malcolm G.|editor2-first= Jeffrey J.|editor2-last=McDonnell|title=Encyclopedia of hydrological sciences|year=2005|publisher=Wiley|location=Hoboken, NJ|isbn=0-471-49103-9}}
* {{cite book|last=Hendriks|first=Martin R.|title=Introduction to physical hydrology|year=2010|publisher=Oxford University Press|location=Oxford|isbn=978-0-19-929684-2}}
* {{cite book|last1=Hornberger|first1=George M.|last2=Wiberg|first2=Patricia L.|author-link2=Patricia Wiberg|last3=Raffensperger|first3=Jeffrey P.|last4=D'Odorico|first4=Paolo P.|title=Elements of physical hydrology|date=2014|publisher=Johns Hopkins University Press|location=Baltimore, Md.|isbn=9781421413730|edition=2nd}}
* {{cite book|editor-last=Maidment|editor-first=David R.|title=Handbook of hydrology|year=1993|publisher=McGraw-Hill|location=New York|isbn=0-07-039732-5}}
* {{cite book|last=McCuen|first=Richard H.|title=Hydrologic analysis and design|year=2005|publisher=Pearson-Prentice Hall|location=Upper Saddle River, N.J.|isbn=0-13-142424-6|edition=3rd}}
* {{cite book|last=Viessman, Jr.|first=Warren|author2=Gary L. Lewis|title=Introduction to hydrology|year=2003|publisher=Pearson Education|location=Upper Saddle River, N.J.|isbn=0-673-99337-X|edition=5th}}
{{refend}}


== Спољашње везе ==
== Спољашње везе ==
{{Commonscat|Limnology}}
{{Commonscat|Limnology}}
* [http://www.limnology.org/ SIL official web site]


{{нормативна контрола}}
{{нормативна контрола}}

Верзија на датум 22. јун 2022. у 18:43

Lake Hāwea, New Zealand
Микробиолошка истраживања на језеру Rang-kul

Лимнологија (грчки λίμνη; језеро + -логија), грана хидрологије која се бави истраживањем језера, физичким и хемијским својствима језерске воде и биологијом језера. Франсоа Алфонс Форел (1841—1912) је основао поље лимнологије властитим проучавањем Женевског језера. Лимнологија је традиционално блиско сродна хидробиологији која се бави примјеном принципа и метода физике, хемије, геологије и географије на еколошке проблеме.

Limnology (/lɪmˈnɒləi/ lim-NOL-ə-jee; from Greek λίμνη, limne, "lake" and λόγος, logos, "knowledge") is the study of inland aquatic ecosystems.[1] The study of limnology includes aspects of the biological, chemical, physical, and geological characteristics of fresh and saline, natural and man-made bodies of water. This includes the study of lakes, reservoirs, ponds, rivers, springs, streams, wetlands, and groundwater.[2] Water systems are often categorized as either running (lotic) or standing (lentic).[3]

Limnology includes the study of the drainage basin, movement of water through the basin and biogeochemical changes that occur en route. A more recent sub-discipline of limnology, termed landscape limnology, studies, manages, and seeks to conserve these ecosystems using a landscape perspective, by explicitly examining connections between an aquatic ecosystem and its drainage basin. Recently, the need to understand global inland waters as part of the Earth System created a sub-discipline called global limnology.[4] This approach considers processes in inland waters on a global scale, like the role of inland aquatic ecosystems in global biogeochemical cycles.[5][6][7][8][9]

Историја

The term limnology was coined by François-Alphonse Forel (1841–1912) who established the field with his studies of Lake Geneva. Interest in the discipline rapidly expanded, and in 1922 August Thienemann (a German zoologist) and Einar Naumann (a Swedish botanist) co-founded the International Society of Limnology (SIL, from Societas Internationalis Limnologiae). Forel's original definition of limnology, "the oceanography of lakes", was expanded to encompass the study of all inland waters,[2] and influenced Benedykt Dybowski's work on Lake Baikal.

Prominent early American limnologists included G. Evelyn Hutchinson and Ed Deevey.[10] At the University of Wisconsin-Madison, Edward A. Birge, Chancey Juday, Charles R. Goldman, and Arthur D. Hasler contributed to the development of the Center for Limnology.[11][12]

Општа лимнологија

Physical properties

Physical properties of aquatic ecosystems are determined by a combination of heat, currents, waves and other seasonal distributions of environmental conditions.[13] The morphometry of a body of water depends on the type of feature (such as a lake, river, stream, wetland, estuary etc.) and the structure of the earth surrounding the body of water. Lakes, for instance, are classified by their formation, and zones of lakes are defined by water depth.[14][15] River and stream system morphometry is driven by underlying geology of the area as well as the general velocity of the water.[13] Stream morphometry is also influenced by topography (especially slope) as well as precipitation patterns and other factors such as vegetation and land development. Connectivity between streams and lakes relates to the landscape drainage density, lake surface area and lake shape.[15]

Other types of aquatic systems which fall within the study of limnology are estuaries. Estuaries are bodies of water classified by the interaction of a river and the ocean or sea.[13] Wetlands vary in size, shape, and pattern however the most common types, marshes, bogs and swamps, often fluctuate between containing shallow, freshwater and being dry depending on the time of year.[13]

Light interactions

Light zonation is the concept of how the amount of sunlight penetration into water influences the structure of a body of water.[13] These zones define various levels of productivity within an aquatic ecosystems such as a lake. For instance, the depth of the water column which sunlight is able to penetrate and where most plant life is able to grow is known as the photic or euphotic zone. The rest of the water column which is deeper and does not receive sufficient amounts of sunlight for plant growth is known as the aphotic zone.[13]

Thermal stratification

Similar to light zonation, thermal stratification or thermal zonation is a way of grouping parts of the water body within an aquatic system based on the temperature of different lake layers. The less turbid the water, the more light is able to penetrate, and thus heat is conveyed deeper in the water.[16] Heating declines exponentially with depth in the water column, so the water will be warmest near the surface but progressively cooler as moving downwards. There are three main sections that define thermal stratification in a lake. The epilimnion is closest to the water surface and absorbs long- and shortwave radiation to warm the water surface. During cooler months, wind shear can contribute to cooling of the water surface. The thermocline is an area within the water column where water temperatures rapidly decrease.[16] The bottom layer is the hypolimnion, which tends to have the coldest water because its depth restricts sunlight from reaching it.[16] In temperate lakes, fall-season cooling of surface water results in turnover of the water column, where the thermocline is disrupted, and the lake temperature profile becomes more uniform. In cold climates, when water cools below 4oC (the temperature of maximum density) many lakes can experience an inverse thermal stratification in winter.[17] These lakes are often dimictic, with a brief spring overturn in addition to longer fall overturn. The relative thermal resistance is the energy needed to mix these strata of different temperatures.[18]

Chemical properties

The chemical composition of water in aquatic ecosystems is influenced by natural characteristics and processes including precipitation, underlying soil and bedrock in the drainage basin, erosion, evaporation, and sedimentation.[13] All bodies of water have a certain composition of both organic and inorganic elements and compounds. Biological reactions also affect the chemical properties of water. In addition to natural processes, human activities strongly influence the chemical composition of aquatic systems and their water quality.[16]

Oxygen and carbon dioxide

Dissolved oxygen and dissolved carbon dioxide are often discussed together due their coupled role in respiration and photosynthesis. Dissolved oxygen concentrations can be altered by physical, chemical, and biological processes and reaction. Physical processes including wind mixing can increase dissolved oxygen concentrations, particularly in surface waters of aquatic ecosystems. Because dissolved oxygen solubility is linked to water temperatures, changes in temperature affect dissolved oxygen concentrations as warmer water has a lower capacity to "hold" oxygen as colder water.[19] Biologically, both photosynthesis and aerobic respiration affect dissolved oxygen concentrations.[16] Photosynthesis by autotrophic organisms, such as phytoplankton and aquatic algae, increases dissolved oxygen concentrations while simultaneously reducing carbon dioxide concentrations, since carbon dioxide is taken up during photosynthesis.[19] All aerobic organisms in the aquatic environment take up dissolved oxygen during aerobic respiration, while carbon dioxide is released as a byproduct of this reaction. Because photosynthesis is light-limited, both photosynthesis and respiration occur during the daylight hours, while only respiration occurs during dark hours or in dark portions of an ecosystem. The balance between dissolved oxygen production and consumption is calculated as the aquatic metabolism rate.[20]

Познати лимнолози

Организације

Види још

Референце

  1. ^ Kumar, Arvind (2005). Fundamentals of Limnology. APH Publishing. ISBN 9788176489195. 
  2. ^ а б Wetzel, R.G. 2001. Limnology: Lake and River Ecosystems, 3rd ed. Academic Press (ISBN 0-12-744760-1)[потребна страна]
  3. ^ Marsh, G. Alex; Fairbridge, Rhodes W. (1999), „Lentic and lotic ecosystems”, Environmental Geology (на језику: енглески), Dordrecht: Springer Netherlands, стр. 381—388, ISBN 978-1-4020-4494-6, doi:10.1007/1-4020-4494-1_204, Приступљено 2022-04-21 
  4. ^ Downing, John A. (јануар 2009). „Global limnology: up-scaling aquatic services and processes to planet Earth”. SIL Proceedings, 1922-2010. 30 (8): 1149—1166. S2CID 131488888. doi:10.1080/03680770.2009.11923903. 
  5. ^ Cole, J. J.; Prairie, Y. T.; Caraco, N. F.; McDowell, W. H.; Tranvik, L. J.; Striegl, R. G.; Duarte, C. M.; Kortelainen, P.; Downing, J. A.; Middelburg, J. J.; Melack, J. (23. 5. 2007). „Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget”. Ecosystems. 10 (1): 172—185. CiteSeerX 10.1.1.177.3527Слободан приступ. S2CID 1728636. doi:10.1007/s10021-006-9013-8. 
  6. ^ Tranvik, Lars J.; Downing, John A.; Cotner, James B.; Loiselle, Steven A.; Striegl, Robert G.; Ballatore, Thomas J.; Dillon, Peter; Finlay, Kerri; Fortino, Kenneth; Knoll, Lesley B.; Kortelainen, Pirkko L.; Kutser, Tiit; Larsen, Soren; Laurion, Isabelle; Leech, Dina M.; McCallister, S. Leigh; McKnight, Diane M.; Melack, John M.; Overholt, Erin; Porter, Jason A.; Prairie, Yves; Renwick, William H.; Roland, Fabio; Sherman, Bradford S.; Schindler, David W.; Sobek, Sebastian; Tremblay, Alain; Vanni, Michael J.; Verschoor, Antonie M.; von Wachenfeldt, Eddie; Weyhenmeyer, Gesa A. (новембар 2009). „Lakes and reservoirs as regulators of carbon cycling and climate”. Limnology and Oceanography. 54 (6part2): 2298—2314. Bibcode:2009LimOc..54.2298T. doi:10.4319/lo.2009.54.6_part_2.2298Слободан приступ. hdl:10852/11601. 
  7. ^ Raymond, Peter A.; Hartmann, Jens; Lauerwald, Ronny; Sobek, Sebastian; McDonald, Cory; Hoover, Mark; Butman, David; Striegl, Robert; Mayorga, Emilio; Humborg, Christoph; Kortelainen, Pirkko; Dürr, Hans; Meybeck, Michel; Ciais, Philippe; Guth, Peter (21. 11. 2013). „Global carbon dioxide emissions from inland waters”. Nature. 503 (7476): 355—359. Bibcode:2013Natur.503..355R. PMID 24256802. S2CID 4460910. doi:10.1038/nature12760. 
  8. ^ Engel, Fabian; Farrell, Kaitlin J.; McCullough, Ian M.; Scordo, Facundo; Denfeld, Blaize A.; Dugan, Hilary A.; de Eyto, Elvira; Hanson, Paul C.; McClure, Ryan P.; Nõges, Peeter; Nõges, Tiina; Ryder, Elizabeth; Weathers, Kathleen C.; Weyhenmeyer, Gesa A. (26. 3. 2018). „A lake classification concept for a more accurate global estimate of the dissolved inorganic carbon export from terrestrial ecosystems to inland waters”. The Science of Nature. 105 (3): 25. Bibcode:2018SciNa.105...25E. PMC 5869952Слободан приступ. PMID 29582138. doi:10.1007/s00114-018-1547-z. 
  9. ^ O'Reilly, Catherine M.; Sharma, Sapna; Gray, Derek K.; Hampton, Stephanie E.; Read, Jordan S.; Rowley, Rex J.; Schneider, Philipp; Lenters, John D.; McIntyre, Peter B.; Kraemer, Benjamin M.; Weyhenmeyer, Gesa A.; Straile, Dietmar; Dong, Bo; Adrian, Rita; Allan, Mathew G.; Anneville, Orlane; Arvola, Lauri; Austin, Jay; Bailey, John L.; Baron, Jill S.; Brookes, Justin D.; Eyto, Elvira de; Dokulil, Martin T.; Hamilton, David P.; Havens, Karl; Hetherington, Amy L.; Higgins, Scott N.; Hook, Simon; Izmest'eva, Lyubov R.; Joehnk, Klaus D.; Kangur, Kulli; Kasprzak, Peter; Kumagai, Michio; Kuusisto, Esko; Leshkevich, George; Livingstone, David M.; MacIntyre, Sally; May, Linda; Melack, John M.; Mueller‐Navarra, Doerthe C.; Naumenko, Mikhail; Noges, Peeter; Noges, Tiina; North, Ryan P.; Plisnier, Pierre-Denis; Rigosi, Anna; Rimmer, Alon; Rogora, Michela; Rudstam, Lars G.; Rusak, James A.; Salmaso, Nico; Samal, Nihar R.; Schindler, Daniel E.; Schladow, S. Geoffrey; Schmid, Martin; Schmidt, Silke R.; Silow, Eugene; Soylu, M. Evren; Teubner, Katrin; Verburg, Piet; Voutilainen, Ari; Watkinson, Andrew; Williamson, Craig E.; Zhang, Guoqing (2015). „Rapid and highly variable warming of lake surface waters around the globe”. Geophysical Research Letters. 42 (24): 10,773—10,781. Bibcode:2015GeoRL..4210773O. doi:10.1002/2015gl066235Слободан приступ. 
  10. ^ Frey, D.G. (ed.), 1963. Limnology in North America. University of Wisconsin Press, Madison
  11. ^ „History of Limnology – UW Digital Collections” (на језику: енглески). Приступљено 2019-05-02. 
  12. ^ Beckel, Annamarie L. „Breaking new waters : a century of limnology at the University of Wisconsin. Special issue” (на језику: енглески). 
  13. ^ а б в г д ђ е Horne, Alexander J; Goldman, Charles R (1994). Limnology (Second изд.). United States of America: McGraw-Hill. ISBN 978-0-07-023673-8. [потребна страна]
  14. ^ Welch, P.S. (1935). Limnology (Zoological Science Publications). United States of America: McGraw-Hill. ISBN 978-0-07-069179-7. [потребна страна]
  15. ^ а б Seekell, D.; Cael, B.; Lindmark, E.; Byström, P. (2021). „The Fractal Scaling Relationship for River Inlets to Lakes”. Geophysical Research Letters (на језику: енглески). 48 (9): e2021GL093366. ISSN 1944-8007. doi:10.1029/2021GL093366. 
  16. ^ а б в г д Boyd, Claude E. (2015). Water Quality: An Introduction (Second изд.). Switzerland: Springer. ISBN 978-3-319-17445-7. [потребна страна]
  17. ^ Yang, Bernard; Wells, Mathew G.; McMeans, Bailey C.; Dugan, Hilary A.; Rusak, James A.; Weyhenmeyer, Gesa A.; Brentrup, Jennifer A.; Hrycik, Allison R.; Laas, Alo; Pilla, Rachel M.; Austin, Jay A. (2021). „A New Thermal Categorization of Ice-Covered Lakes”. Geophysical Research Letters (на језику: енглески). 48 (3): e2020GL091374. ISSN 1944-8007. doi:10.1029/2020GL091374. 
  18. ^ Wetzel, R. G. (2001). Limnology: Lake and river ecosystems. San Diego: Academic Press.[потребна страна]
  19. ^ а б Dodds, Walter K. (2010). Freshwater ecology : concepts and environmental applications of limnology. Whiles, Matt R. (2nd изд.). Burlington, MA: Academic Press. ISBN 9780123747242. OCLC 784140625. [потребна страна]
  20. ^ Cole, Jonathan J.; Caraco, Nina F. (2001). „Carbon in catchments: connecting terrestrial carbon losses with aquatic metabolism”. Marine and Freshwater Research. 52 (1): 101. S2CID 11143190. doi:10.1071/mf00084. 

Литература

  • Gerald A. Cole, Textbook of Limnology, 4th ed. (Waveland Press, 1994) ISBN 0-88133-800-1
  • Stanley Dodson, Introduction to Limnology (2005), ISBN 0-07-287935-1
  • A.J.Horne and C.R. Goldman: Limnology (1994), ISBN 0-07-023673-9
  • G. E. Hutchinson, A Treatise on Limnology, 3 vols. (1957–1975) - classic but dated
  • H.B.N. Hynes, The Ecology of Running Waters (1970)
  • Jacob Kalff, Limnology (Prentice Hall, 2001)
  • B. Moss, Ecology of Fresh Waters (Blackwell, 1998)
  • Robert G. Wetzel and Gene E. Likens, Limnological Analyses, 3rd ed. (Springer-Verlag, 2000)
  • Patrick E. O'Sullivan and Colin S. Reynolds The Lakes Handbook: Limnology and limnetic ecology ISBN 0-632-04797-6
  • Eslamian, S., 2014, (ed.) Handbook of Engineering Hydrology, Vol. 1: Fundamentals and Applications, Francis and Taylor, CRC Group, 636 Pages, USA.
  • Eslamian, S., 2014, (ed.) Handbook of Engineering Hydrology, Vol. 2: Modeling, Climate Change and Variability, Francis and Taylor, CRC Group, 646 Pages, USA.
  • Eslamian, S, 2014, (ed.) Handbook of Engineering Hydrology, Vol. 3: Environmental Hydrology and Water Management, Francis and Taylor, CRC Group, 606 Pages, USA.
  • Anderson, Malcolm G.; McDonnell, Jeffrey J., ур. (2005). Encyclopedia of hydrological sciences. Hoboken, NJ: Wiley. ISBN 0-471-49103-9. 
  • Hendriks, Martin R. (2010). Introduction to physical hydrology. Oxford: Oxford University Press. ISBN 978-0-19-929684-2. 
  • Hornberger, George M.; Wiberg, Patricia L.; Raffensperger, Jeffrey P.; D'Odorico, Paolo P. (2014). Elements of physical hydrology (2nd изд.). Baltimore, Md.: Johns Hopkins University Press. ISBN 9781421413730. 
  • Maidment, David R., ур. (1993). Handbook of hydrology. New York: McGraw-Hill. ISBN 0-07-039732-5. 
  • McCuen, Richard H. (2005). Hydrologic analysis and design (3rd изд.). Upper Saddle River, N.J.: Pearson-Prentice Hall. ISBN 0-13-142424-6. 
  • Viessman, Jr., Warren; Gary L. Lewis (2003). Introduction to hydrology (5th изд.). Upper Saddle River, N.J.: Pearson Education. ISBN 0-673-99337-X. 

Спољашње везе