Комутативност — разлика између измена

С Википедије, слободне енциклопедије
Садржај обрисан Садржај додат
.
Ред 1: Ред 1:
{{Short description|Својство математичке операције}}{{рут}}
{{Правила трансформације}}
{{Правила трансформације}}

Појам '''комутативности''' се најчешће везује за [[бинарна операција|бинарне математичке операције]] код којих редослед операнада не утиче на резултат операције.<br><br>
Појам '''комутативности''' се најчешће везује за [[бинарна операција|бинарне математичке операције]] код којих редослед операнада не утиче на резултат операције. It is a fundamental property of many binary operations, and many [[mathematical proof]]s depend on it. Most familiar as the name of the property that says something like {{nowrap|1="3 + 4 = 4 + 3"}} or {{nowrap|1="2 × 5 = 5 × 2"}}, the property can also be used in more advanced settings. The name is needed because there are operations, such as [[division (mathematics)|division]] and [[subtraction]], that do not have it (for example, {{nowrap|"3 − 5 ≠ 5 − 3"}}); such operations are ''not'' commutative, and so are referred to as ''noncommutative operations''. The idea that simple operations, such as the [[multiplication (mathematics)|multiplication]] and [[addition]] of numbers, are commutative was for many years implicitly assumed. Thus, this property was not named until the 19th century, when mathematics started to become formalized.<ref name="Cabillón" /><ref name=Flood11 /> A corresponding property exists for [[binary relation]]s; a binary relation is said to be [[symmetric relation|symmetric]] if the relation applies regardless of the order of its operands; for example, [[Equality (mathematics)|equality]] is symmetric as two equal mathematical objects are equal regardless of their order.<ref>{{MathWorld|id=SymmetricRelation|title=Symmetric Relation}}</ref>

== Математичке дефиниције ==
A [[binary operation]] <math>*</math> on a [[Set (mathematics)|set]] ''S'' is called ''commutative'' if<ref name="Krowne, p.1">Krowne, p.1</ref><ref>Weisstein, ''Commute'', p.1</ref>
<math display="block">x * y = y * x\qquad\mbox{for all }x,y\in S.</math>
An operation that does not satisfy the above property is called ''non-commutative''.

One says that {{mvar|x}} ''commutes'' with {{math|''y''}} or that {{mvar|x}} and {{mvar|y}} ''commute'' under <math>*</math> if
<math display="block"> x * y = y * x.</math>
In other words, an operation is commutative if every pair of elements commute.

A [[binary function]] <math>f \colon A \times A \to B</math> is sometimes called ''commutative'' if
<math display="block">f(x, y) = f(y, x)\qquad\mbox{for all }x,y\in A.</math> Such a function is more commonly called a [[symmetric function]].


== Пример ==
== Пример ==
Ред 17: Ред 31:
<math>a_1 \otimes a_2 \otimes \dots \otimes a_n = a_{\sigma(1)} \otimes a_{\sigma(2)} \otimes \dots \otimes a_{\sigma(n)}</math>
<math>a_1 \otimes a_2 \otimes \dots \otimes a_n = a_{\sigma(1)} \otimes a_{\sigma(2)} \otimes \dots \otimes a_{\sigma(n)}</math>


== Историја и етимологија ==
== Литература ==
[[File:Commutative Word Origin.PNG|right|thumb|250px|The first known use of the term was in a French Journal published in 1814]]
* {{cite book|author=Ayres, Frank|title=Schaum's Outline of Modern Abstract Algebra|location=|publisher=McGraw-Hill|edition=1st|year=1965|isbn=9780070026551|pages=}}

Records of the implicit use of the commutative property go back to ancient times. The [[Egypt]]ians used the commutative property of [[multiplication]] to simplify computing [[Product (mathematics)|products]].<ref>{{harvnb|Lumpkin|1997|p=11}}</ref><ref>{{harvnb|Gay|Shute|1987}}</ref> [[Euclid]] is known to have assumed the commutative property of multiplication in his book [[Euclid's Elements|''Elements'']].<ref> O'Conner & Robertson ''Real Numbers''</ref> Formal uses of the commutative property arose in the late 18th and early 19th centuries, when mathematicians began to work on a theory of functions. Today the commutative property is a well-known and basic property used in most branches of mathematics.

The first recorded use of the term ''commutative'' was in a memoir by [[François-Joseph Servois|François Servois]] in 1814,<ref name="Cabillón">{{harvnb|Cabillón|Miller|loc=''Commutative and Distributive''}}</ref><ref>O'Conner & Robertson, ''Servois''</ref> which used the word ''commutatives'' when describing functions that have what is now called the commutative property. The word is a combination of the French word ''commuter'' meaning "to substitute or switch" and the suffix ''-ative'' meaning "tending to" so the word literally means "tending to substitute or switch". The term then appeared in English in 1838.<ref name=Flood11>{{cite book|title=Mathematics in Victorian Britain|editor1-first=Raymond|editor1-last=Flood|editor2-first=Adrian|editor2-last=Rice|editor3-first=Robin|editor3-last=Wilson|editor3-link=Robin Wilson (mathematician)|publisher=[[Oxford University Press]]|year=2011|url=https://books.google.com/books?id=YruifIx88AQC&pg=PA4|page=4|isbn=9780191627941}}</ref> in [[Duncan Farquharson Gregory]]'s article entitled "On the real nature of symbolical algebra" published in 1840 in the [[Royal Society of Edinburgh|Transactions of the Royal Society of Edinburgh]].<ref>{{Cite journal|first=D. F. |last=Gregory|title=On the real nature of symbolical algebra|periodical=Transactions of the Royal Society of Edinburgh|volume=14|pages=208–216|year=1840|url=https://archive.org/details/transactionsofro14royal}}</ref>

== Пропозициона логика ==

=== Rule of replacement ===
In truth-functional propositional logic, ''commutation'',<ref>Moore and Parker</ref><ref>{{harvnb|Copi|Cohen|2005}}</ref> or ''commutativity''<ref>{{harvnb|Hurley|Watson|2016}}</ref> refer to two [[Validity (logic)|valid]] [[rule of replacement|rules of replacement]]. The rules allow one to transpose [[propositional variable]]s within [[well-formed formula|logical expressions]] in [[formal proof|logical proofs]]. The rules are:

:<math>(P \lor Q) \Leftrightarrow (Q \lor P)</math>
and
:<math>(P \land Q) \Leftrightarrow (Q \land P)</math>

where "<math>\Leftrightarrow</math>" is a [[metalogic]]al [[Symbol (formal)|symbol]] representing "can be replaced in a [[Formal proof|proof]] with".

=== Truth functional connectives ===

''Commutativity'' is a property of some [[logical connective]]s of truth functional [[propositional logic]]. The following [[logical equivalence]]s demonstrate that commutativity is a property of particular connectives. The following are truth-functional [[tautology (logic)|tautologies]].

;Commutativity of conjunction:<math>(P \land Q) \leftrightarrow (Q \land P)</math>
;Commutativity of disjunction:<math>(P \lor Q) \leftrightarrow (Q \lor P)</math>
;Commutativity of implication (also called the law of permutation):<math>(P \to (Q \to R)) \leftrightarrow (Q \to (P \to R))</math>
;Commutativity of equivalence (also called the complete commutative law of equivalence):<math>(P \leftrightarrow Q) \leftrightarrow (Q \leftrightarrow P)</math>

== Теорија скупова ==
In [[group theory|group]] and [[set theory]], many algebraic structures are called commutative when certain operands satisfy the commutative property. In higher branches of mathematics, such as [[Mathematical analysis|analysis]] and [[linear algebra]] the commutativity of well-known operations (such as [[addition]] and [[multiplication]] on real and complex numbers) is often used (or implicitly assumed) in proofs.<ref>{{harvnb|Axler|1997|p=2}}</ref><ref name="Gallian, p.34">{{harvnb|Gallian|2006|p=34}}</ref><ref>{{harvnb|Gallian|2006|pp=26,87}}</ref>

== Математичке структуре и комутативност ==
* A [[commutative semigroup]] is a set endowed with a total, [[associativity|associative]] and commutative operation.<ref>[[A. H. Clifford]], [[G. B. Preston]] (1964). ''The Algebraic Theory of Semigroups Vol. I'' (Second Edition). [[American Mathematical Society]]. {{isbn|978-0-8218-0272-4}}</ref><ref>A. H. Clifford, G. B. Preston (1967). ''The Algebraic Theory of Semigroups Vol. II'' (Second Edition). [[American Mathematical Society]]. {{isbn|0-8218-0272-0}}</ref>
* If the operation additionally has an [[identity element]], we have a [[commutative monoid]]<ref>{{cite book|first1=Michel |last1=Gondran |first2=Michel |last2=Minoux |title=Graphs, Dioids and Semirings: New Models and Algorithms |year=2008 |location=Dordrecht |publisher=[[Springer-Verlag]] |isbn=978-0-387-75450-5 |zbl=1201.16038 |series=Operations Research/Computer Science Interfaces Series |volume=41 | page=13}}</ref>
* An [[abelian group]], or ''commutative group'' is a [[group (mathematics)|group]] whose group operation is commutative.<ref name="Gallian, p.34"/>
* A [[commutative ring]] is a [[ring (mathematics)|ring]] whose [[multiplication]] is commutative. (Addition in a ring is always commutative.)<ref>{{harvnb|Gallian|2006|p=236}}</ref>
* In a [[field (mathematics)|field]] both addition and multiplication are commutative.<ref>{{harvnb|Gallian|2006|p=250}}</ref>


== Види још ==
== Види још ==
Ред 24: Ред 72:
* [[Антикомутативност]]
* [[Антикомутативност]]
* [[Дистрибутивност]]
* [[Дистрибутивност]]

== Референце ==
{{reflist|}}

== Литература ==
{{refbegin|30em}}
* {{cite book|author=Ayres, Frank|title=Schaum's Outline of Modern Abstract Algebra|location=|publisher=McGraw-Hill|edition=1st|year=1965|isbn=9780070026551|pages=}}
* {{Cite book| first=Sheldon | last=Axler | title=Linear Algebra Done Right, 2e | publisher=Springer | year=1997 | isbn=0-387-98258-2}}
* {{Cite book |last1=Copi |first1=Irving M. |last2=Cohen |first2=Carl |title=Introduction to Logic |publisher=Prentice Hall |year=2005 |edition=12th |isbn=9780131898349 }}
* {{Cite book|first=Joseph|last=Gallian|title=Contemporary Abstract Algebra |edition=6e|year=2006|isbn=0-618-51471-6|publisher=Houghton Mifflin }}
* {{Cite book| first=Frederick | last=Goodman | title=Algebra: Abstract and Concrete, Stressing Symmetry |edition=2e | publisher=Prentice Hall | year=2003 | isbn=0-13-067342-0}}
* {{cite book |first1=Patrick J. |last1=Hurley |first2=Lori |last2=Watson |title=A Concise Introduction to Logic |url=https://books.google.com/books?id=l-W5DQAAQBAJ&pg=PA675 |date=2016 |publisher=Cengage Learning |isbn=978-1-337-51478-1 |edition=12th}}
* {{cite web |url=http://www.ethnomath.org/resources/lumpkin1997.pdf |last=Lumpkin |first=B. |year=1997 |title=The Mathematical Legacy Of Ancient Egypt — A Response To Robert Palter |archive-url=https://web.archive.org/web/20070713072942/http://www.ethnomath.org/resources/lumpkin1997.pdf |archive-date=13 July 2007 |type=Unpublished manuscript}}
* {{cite book |first1=Robins R. |last1=Gay |first2=Charles C. D. |last2=Shute |year=1987 |title=The Rhind Mathematical Papyrus: An Ancient Egyptian Text |publisher=British Museum |isbn=0-7141-0944-4}}
* {{springer|title=Commutativity|id=p/c023420|ref=none}}
* Krowne, Aaron, {{PlanetMath|title=Commutative|urlname=Commutative}}, Accessed 8 August 2007.
* {{MathWorld|title=Commute|urlname=Commute}}, Accessed 8 August 2007.
* {{cite web |url=http://planetmath.org/?op=getuser&id=2760 |title=Yark |ref={{harvid|Yark}}}} {{PlanetMath|title=Examples of non-commutative operations|urlname=ExampleOfCommutative}}, Accessed 8 August 2007
* {{cite web |last1=O'Conner |first1=J.J. |last2=Robertson |first2=E.F. |url=http://www-history.mcs.st-andrews.ac.uk/HistTopics/Real_numbers_1.html |title=History of real numbers |work=MacTutor |access-date=8 August 2007 }}
* {{cite web |last1=Cabillón |first1=Julio |last2=Miller |first2=Jeff |url=http://jeff560.tripod.com/c.html |title=Earliest Known Uses Of Mathematical Terms |access-date=22 November 2008}}
* {{cite web |last1=O'Conner |first1=J.J. |last2=Robertson |first2=E.F. |url=http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Servois.html |title=biography of François Servois |work=MacTutor |access-date=8 August 2007 }}
* Brown, Frank Markham (2003), ''Boolean Reasoning: The Logic of Boolean Equations'', 1st edition, Kluwer Academic Publishers, Norwell, MA. 2nd edition, Dover Publications, Mineola, NY.
* [[Chen Chung Chang|Chang, C.C.]] and [[Howard Jerome Keisler|Keisler, H.J.]] (1973), ''Model Theory'', North-Holland, Amsterdam, Netherlands.
* Kohavi, Zvi (1978), ''Switching and Finite Automata Theory'', 1st edition, McGraw–Hill, 1970. 2nd edition, McGraw–Hill, 1978.
* [[Robert R. Korfhage|Korfhage, Robert R.]] (1974), ''Discrete Computational Structures'', Academic Press, New York, NY.
* [[Joachim Lambek|Lambek, J.]] and Scott, P.J. (1986), ''Introduction to Higher Order Categorical Logic'', Cambridge University Press, Cambridge, UK.
* Mendelson, Elliot (1964), ''Introduction to Mathematical Logic'', D. Van Nostrand Company.
* {{Cite book|last=Hofstadter |first=Douglas |author-link=Douglas Hofstadter |title=[[Gödel, Escher, Bach|Gödel, Escher, Bach: An Eternal Golden Braid]] |year=1979 |publisher=[[Basic Books]] |isbn=978-0-465-02656-2 }}
* [[Kevin C. Klement|Klement, Kevin C.]] (2006), "Propositional Logic", in James Fieser and Bradley Dowden (eds.), ''[[Internet Encyclopedia of Philosophy]]'', [http://www.iep.utm.edu/p/prop-log.htm Eprint].
* [http://www.qedeq.org/current/doc/math/qedeq_formal_logic_v1_en.pdf Formal Predicate Calculus], contains a systematic formal development along the lines of [[Propositional calculus#Alternative calculus|Alternative calculus]]
* ''[http://www.fecundity.com/logic/ forall x: an introduction to formal logic]'', by [[P.D. Magnus]], covers formal semantics and [[proof theory]] for sentential logic.
* {{citation|last=Fraleigh|first=John B.|title=A First Course in Abstract Algebra|edition=2nd|publisher=Addison-Wesley|place=Reading|year=1976|isbn=0-201-01984-1}}
* {{citation|last=Hall Jr.|first= Marshall|title=The Theory of Groups|publisher=Macmillan|place=New York|year=1959}}
* {{citation|last1=Hardy|first1=Darel W.|last2=Walker|first2=Carol L.|title=Applied Algebra: Codes, Ciphers and Discrete Algorithms|publisher=Prentice-Hall|place=Upper Saddle River, NJ|year=2002|isbn=0-13-067464-8}}
* {{citation|last=Rotman|first=Joseph J.|title=The Theory of Groups: An Introduction|publisher=Allyn and Bacon|place=Boston|year=1973|edition=2nd}}
* Attila Nagy (2001). ''Special Classes of Semigroups''. [[Springer Science+Business Media|Springer]]. {{isbn|978-0-7923-6890-8}}
* {{citation | first=John M. | last=Howie | author-link=John Mackintosh Howie | title=Fundamentals of Semigroup Theory | series=London Mathematical Society Monographs. New Series | volume=12 | year=1995 | publisher=Clarendon Press | location=Oxford | isbn=0-19-851194-9 | zbl=0835.20077 }}
* {{citation | last=Jacobson | first=Nathan | author-link=Nathan Jacobson | title=Lectures in Abstract Algebra | volume=I | publisher=D. Van Nostrand Company | year=1951 | isbn=0-387-90122-1}}
* {{Citation|last=Jacobson |first=Nathan |author-link=Nathan Jacobson |year=2009 |title=Basic algebra |edition=2nd |volume=1 |publisher=Dover |isbn=978-0-486-47189-1 }}
* {{citation | zbl=0945.20036 | last1=Kilp | first1=Mati | last2=Knauer | first2=Ulrich | last3=Mikhalev | first3=Alexander V. | title=Monoids, acts and categories. With applications to wreath products and graphs. A handbook for students and researchers| series=de Gruyter Expositions in Mathematics | volume=29 | location=Berlin | publisher=Walter de Gruyter | year=2000 | isbn=3-11-015248-7 }}
* {{citation | last=Lothaire | first=M. | author-link=M. Lothaire | others=Perrin, D.; Reutenauer, C.; Berstel, J.; Pin, J. E.; Pirillo, G.; Foata, D.; Sakarovitch, J.; Simon, I.; Schützenberger, M. P.; Choffrut, C.; Cori, R.; Lyndon, Roger; Rota, Gian-Carlo. Foreword by Roger Lyndon | editor1-first=M | editor1-last=Lothaire | title=Combinatorics on words | edition=2nd | series=Encyclopedia of Mathematics and Its Applications | volume=17 | publisher=[[Cambridge University Press]] | year=1997 | doi = 10.1017/CBO9780511566097 | isbn=0-521-59924-5 | mr = 1475463 | zbl=0874.20040 }}

{{refend}}

== Спољашње везе ==
{{Commons category-lat|Commutative property}}
* [http://logicinaction.org/docs/ch2.pdf Chapter 2 / Propositional Logic] from [http://logicinaction.org Logic In Action]
* [https://www.nayuki.io/page/propositional-sequent-calculus-prover Propositional sequent calculus prover] on Project Nayuki. (''note'': implication can be input in the form <tt>!X|Y</tt>, and a sequent can be a single formula prefixed with <tt>></tt> and having no commas)
* [https://docs.google.com/document/d/1DhtRAPcMwJmiQnbdmFcHWaOddQ7kuqqDnWp2LZcGlnY/edit?usp=sharing Propositional Logic - A Generative Grammar]
* {{MathWorld|title=Binary Operation|urlname=BinaryOperation}}


{{нормативна контрола}}
{{нормативна контрола}}

Верзија на датум 17. јул 2022. у 17:58

Појам комутативности се најчешће везује за бинарне математичке операције код којих редослед операнада не утиче на резултат операције. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Most familiar as the name of the property that says something like "3 + 4 = 4 + 3" or "2 × 5 = 5 × 2", the property can also be used in more advanced settings. The name is needed because there are operations, such as division and subtraction, that do not have it (for example, "3 − 5 ≠ 5 − 3"); such operations are not commutative, and so are referred to as noncommutative operations. The idea that simple operations, such as the multiplication and addition of numbers, are commutative was for many years implicitly assumed. Thus, this property was not named until the 19th century, when mathematics started to become formalized.[1][2] A corresponding property exists for binary relations; a binary relation is said to be symmetric if the relation applies regardless of the order of its operands; for example, equality is symmetric as two equal mathematical objects are equal regardless of their order.[3]

Математичке дефиниције

A binary operation on a set S is called commutative if[4][5]

An operation that does not satisfy the above property is called non-commutative.

One says that x commutes with y or that x and y commute under if

In other words, an operation is commutative if every pair of elements commute.

A binary function is sometimes called commutative if

Such a function is more commonly called a symmetric function.

Пример

Операција комутативности.

Рецимо да је дефинисана бинарна операција тако да за важи:



Онда је ова операција према дефиницији комутативна.

Уопштење

Овде се може направити и уопштење за , . Операција је комутативна ако за сваку и сваку њену пермутацију важи:

тј.

Историја и етимологија

The first known use of the term was in a French Journal published in 1814

Records of the implicit use of the commutative property go back to ancient times. The Egyptians used the commutative property of multiplication to simplify computing products.[6][7] Euclid is known to have assumed the commutative property of multiplication in his book Elements.[8] Formal uses of the commutative property arose in the late 18th and early 19th centuries, when mathematicians began to work on a theory of functions. Today the commutative property is a well-known and basic property used in most branches of mathematics.

The first recorded use of the term commutative was in a memoir by François Servois in 1814,[1][9] which used the word commutatives when describing functions that have what is now called the commutative property. The word is a combination of the French word commuter meaning "to substitute or switch" and the suffix -ative meaning "tending to" so the word literally means "tending to substitute or switch". The term then appeared in English in 1838.[2] in Duncan Farquharson Gregory's article entitled "On the real nature of symbolical algebra" published in 1840 in the Transactions of the Royal Society of Edinburgh.[10]

Пропозициона логика

Rule of replacement

In truth-functional propositional logic, commutation,[11][12] or commutativity[13] refer to two valid rules of replacement. The rules allow one to transpose propositional variables within logical expressions in logical proofs. The rules are:

and

where "" is a metalogical symbol representing "can be replaced in a proof with".

Truth functional connectives

Commutativity is a property of some logical connectives of truth functional propositional logic. The following logical equivalences demonstrate that commutativity is a property of particular connectives. The following are truth-functional tautologies.

Commutativity of conjunction
Commutativity of disjunction
Commutativity of implication (also called the law of permutation)
Commutativity of equivalence (also called the complete commutative law of equivalence)

Теорија скупова

In group and set theory, many algebraic structures are called commutative when certain operands satisfy the commutative property. In higher branches of mathematics, such as analysis and linear algebra the commutativity of well-known operations (such as addition and multiplication on real and complex numbers) is often used (or implicitly assumed) in proofs.[14][15][16]

Математичке структуре и комутативност

Види још

Референце

  1. ^ а б Cabillón & Miller, Commutative and Distributive
  2. ^ а б Flood, Raymond; Rice, Adrian; Wilson, Robin, ур. (2011). Mathematics in Victorian Britain. Oxford University Press. стр. 4. ISBN 9780191627941. 
  3. ^ Weisstein, Eric W. „Symmetric Relation”. MathWorld. 
  4. ^ Krowne, p.1
  5. ^ Weisstein, Commute, p.1
  6. ^ Lumpkin 1997, стр. 11
  7. ^ Gay & Shute 1987
  8. ^ O'Conner & Robertson Real Numbers
  9. ^ O'Conner & Robertson, Servois
  10. ^ Gregory, D. F. (1840). „On the real nature of symbolical algebra”. Transactions of the Royal Society of Edinburgh. 14: 208—216. 
  11. ^ Moore and Parker
  12. ^ Copi & Cohen 2005
  13. ^ Hurley & Watson 2016
  14. ^ Axler 1997, стр. 2
  15. ^ а б Gallian 2006, стр. 34
  16. ^ Gallian 2006, стр. 26, 87
  17. ^ A. H. Clifford, G. B. Preston (1964). The Algebraic Theory of Semigroups Vol. I (Second Edition). American Mathematical Society. ISBN 978-0-8218-0272-4
  18. ^ A. H. Clifford, G. B. Preston (1967). The Algebraic Theory of Semigroups Vol. II (Second Edition). American Mathematical Society. ISBN 0-8218-0272-0
  19. ^ Gondran, Michel; Minoux, Michel (2008). Graphs, Dioids and Semirings: New Models and Algorithms. Operations Research/Computer Science Interfaces Series. 41. Dordrecht: Springer-Verlag. стр. 13. ISBN 978-0-387-75450-5. Zbl 1201.16038. 
  20. ^ Gallian 2006, стр. 236
  21. ^ Gallian 2006, стр. 250

Литература

Спољашње везе