Plankovo vreme — разлика између измена

С Википедије, слободне енциклопедије
Садржај обрисан Садржај додат
Спашавам 2 извора и означавам 0 мртвим.) #IABot (v2.0.9.3
.
ознака: везе до вишезначних одредница
Ред 1: Ред 1:

U [[quantum mechanics|kvantnoj mehanici]], '''Plankovo vreme''' ({{math|<var>t</var><sub>P</sub>}}) je [[jedinica vremena]] u sistemu [[Природне јединице|prirodnih jedinica]] poznatih kao [[Природне јединице|Plankove jedinice]]. Plankova vremenska jedinica je [[vreme]] potrebno za putovanje [[svetlost]]i na udaljenost od 1 [[Планкова дужина|Plankove dužine]] u [[vakuum]]u, što je vremenski interval od približno 5.39 × 10 <sup>−44</sup> s.<ref name="gsu_hbase">{{cite web | url = http://hyperphysics.phy-astr.gsu.edu/hbase/astro/planck.html | title = Big Bang models back to Planck time | publisher = [[Georgia State University]] | date=19. 6. 2005}}</ref> Ova jedinica je nazvana po [[Max Planck|Maksu Planku]], koji je prvi predložio njeno postojanje.
U [[quantum mechanics|kvantnoj mehanici]], '''Plankovo vreme''' ({{math|<var>t</var><sub>P</sub>}}) je [[jedinica vremena]] u sistemu [[Природне јединице|prirodnih jedinica]] poznatih kao [[Природне јединице|Plankove jedinice]]. Plankova vremenska jedinica je [[vreme]] potrebno za putovanje [[svetlost]]i na udaljenost od 1 [[Планкова дужина|Plankove dužine]] u [[vakuum]]u, što je vremenski interval od približno 5.39 × 10 <sup>−44</sup> s.<ref name="gsu_hbase">{{cite web | url = http://hyperphysics.phy-astr.gsu.edu/hbase/astro/planck.html | title = Big Bang models back to Planck time | publisher = [[Georgia State University]] | date=19. 6. 2005}}</ref> Ova jedinica je nazvana po [[Max Planck|Maksu Planku]], koji je prvi predložio njeno postojanje.


Plankovo vreme je definisano kao:<ref>[http://physics.nist.gov/cgi-bin/cuu/Value?plkt CODATA Value: Planck Time] – The [[NIST]] Reference on Constants, Units, and Uncertainty.</ref>
Plankovo vreme je definisano kao:<ref>[http://physics.nist.gov/cgi-bin/cuu/Value?plkt CODATA Value: Planck Time] – The [[NIST]] Reference on Constants, Units, and Uncertainty.</ref>
:<math>t_\mathrm{P} \equiv \sqrt{\frac{\hbar G}{c^5}}</math>
:<math>t_\mathrm{P} \equiv \sqrt{\frac{\hbar G}{c^5}}</math>
gde je: {{math|<var>ħ</var>}} = {{frac|<var>h</var>|2<var>{{pi}}</var>}} [[Планкова константа|redukovana Plankova konstant]] (ponekad se {{mvar|h}} koristi umesto {{mvar|ħ}} u definiciji<ref name="gsu_hbase" />), {{mvar|G}} = [[gravitaciona konstanta]], и {{mvar|c}} = [[brzina svetlosti]] u [[vakuum]]u. Koristeći poznate vrednosti konstanti, približna ekvivalentna vrednost u smislu [[Међународни систем јединица|SI]] jedinice, [[sekund]]e, je <math> 1 \ t_\mathrm{P} \approx 5.391\,245(60) \times 10^{-44}\ \mathrm{s},</math> pri čemu cifre u zagradi označavaju [[Standard error (statistics)|standardnu grešku]] aproksimirane vrednosti.


== Uvod ==
gde je:
{{rut}}
:{{math|<var>ħ</var>}} = {{frac|<var>h</var>|2<var>{{pi}}</var>}} [[Планкова константа|redukovana Plankova konstant]] (ponekad se {{mvar|h}} koristi umesto {{mvar|ħ}} u definiciji<ref name="gsu_hbase" />)
Any system of measurement may be assigned a mutually independent set of base quantities and associated [[Base unit (measurement)|base units]], from which all other quantities and units may be derived. In the [[International System of Units]], for example, the [[SI base quantity|SI base quantities]] include length with the associated unit of the [[metre]]. In the system of Planck units, a similar set of base quantities and associated units may be selected, in terms of which other quantities and coherent units may be expressed.<ref name=":2" /><ref name="Gravitation">{{Cite book |last1=Misner |first1=Charles W. |title=Gravitation |title-link=Gravitation (book) |last2=Thorne |first2=Kip S. |last3=Wheeler |first3=John A. |date=1973 |isbn=0-7167-0334-3 |location=New York |oclc=585119 |author-link=Charles W. Misner |author-link2=Kip Thorne |author-link3=John Archibald Wheeler}}</ref>{{Rp|page=1215}} The Planck unit of length has become known as the Planck length, and the Planck unit of time is known as the Planck time, but this nomenclature has not been established as extending to all quantities.
:{{mvar|G}} = [[gravitaciona konstanta]]
:{{mvar|c}} = [[brzina svetlosti]] u [[vakuum]]u


All Planck units are derived from the dimensional universal physical constants that define the system, and in a convention in which these units are omitted (i.e. treated as having the dimensionless value 1), these constants are then eliminated from equations of physics in which they appear. For example, [[Newton's law of universal gravitation]],
Koristeći poznate vrednosti konstanti, približna ekvivalentna vrednost u smislu [[Међународни систем јединица|SI]] jedinice, [[sekund]]e, je

:<math> 1 \ t_\mathrm{P} \approx 5.391\,245(60) \times 10^{-44}\ \mathrm{s},</math>
:<math>F = G \frac{m_1 m_2}{r^2} = \left( \frac{F_\text{P} l_\text{P}^2}{m_\text{P}^2} \right)\frac{m_1 m_2}{r^2},</math>
pri čemu cifre u zagradi označavaju [[Standard error (statistics)|standardnu grešku]] aproksimirane vrednosti.

can be expressed as:

:<math>\frac{F}{F_\text{P}} = \frac{\left(\dfrac{m_1}{m_\text{P}}\right) \left(\dfrac{m_2}{m_\text{P}}\right)}{\left(\dfrac{r}{l_\text{P}}\right)^2}.</math>

Both equations are [[dimensional analysis|dimensionally consistent]] and equally valid in ''any'' system of quantities, but the second equation, with ''G'' absent, is relating only [[dimensionless quantities]] since any ratio of two like-dimensioned quantities is a dimensionless quantity. If, by a shorthand convention, it is understood that each physical quantity is the corresponding ratio with a coherent Planck unit (or "expressed in Planck units"), the ratios above may be expressed simply with the symbols of physical quantity, without being scaled explicitly by their corresponding unit:

:<math>F' = \frac{m_1' m_2'}{r'^2}.</math>

This last equation (without ''G'') is valid with ''F''{{′}}, ''m''<sub>1</sub>′, ''m''<sub>2</sub>′, and ''r''{{′}} being the dimensionless ratio quantities ''corresponding&nbsp;to'' the standard quantities, written e.g. {{nowrap|''F''{{′}} ≘ ''F''}} or {{nowrap|1=''F''{{′}} = ''F''/''F''{{sub|P}}}}, but not as a direct equality of quantities. This may seem to be "setting the constants ''c'', ''G'', etc., to 1" if the correspondence of the quantities is thought of as equality. For this reason, Planck or other natural units should be employed with care. Referring to "{{nowrap|1=''G'' = ''c'' {{=}} 1}}", [[Paul S. Wesson]] wrote that, "Mathematically it is an acceptable trick which saves labour. Physically it represents a loss of information and can lead to confusion."<ref>{{cite journal |last1=Wesson |first1=P. S. |author-link=Paul S. Wesson |year=1980 |title=The application of dimensional analysis to cosmology |journal=[[Space Science Reviews]] |volume=27 |issue=2 |page=117 |bibcode=1980SSRv...27..109W |doi=10.1007/bf00212237 |s2cid=120784299}}</ref>


== Istorija ==
== Istorija ==


The concept of [[natural units]] was introduced in 1874, when [[George Johnstone Stoney]], noting that electric charge is quantized, derived units of length, time, and mass, now named [[Stoney units]] in his honor. Stoney chose his units so that ''G'', ''c'', and the [[elementary charge|electron charge]] ''e'' would be numerically equal to 1.<ref>{{Cite journal |last=Barrow |first=J. D. |author-link=John D. Barrow |date=1983-03-01 |title=Natural Units Before Planck |url=https://ui.adsabs.harvard.edu/abs/1983QJRAS..24...24B |journal=Quarterly Journal of the Royal Astronomical Society |volume=24 |pages=24 |bibcode=1983QJRAS..24...24B |issn=0035-8738 |access-date=16 April 2022 |archive-date=20 January 2022 |archive-url=https://web.archive.org/web/20220120030835/https://ui.adsabs.harvard.edu/abs/1983QJRAS..24...24B |url-status=live }}</ref> In 1899, one year before the advent of quantum theory, [[Max Planck]] introduced what became later known as the Planck constant.<ref name="planck-1899">{{cite journal |last=Planck |first=Max |author-link=Max Planck |year=1899 |title=Über irreversible Strahlungsvorgänge |journal=Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin |volume=5 |pages=440–480 |url=https://www.biodiversitylibrary.org/item/93034#page/498/mode/1up |language=de |access-date=23 May 2020 |archive-date=17 November 2020 |archive-url=https://web.archive.org/web/20201117200137/https://www.biodiversitylibrary.org/item/93034#page/498/mode/1up |url-status=live }} pp.&nbsp;478–80 contain the first appearance of the Planck base units, and of the [[Planck constant]], which Planck denoted by ''b''. ''a'' and ''f'' in this paper correspond to the [[Boltzmann constant|''k'']] and [[gravitation constant|''G'']] in this article.</ref><ref name="TOM">{{cite conference
Plankovo vreme (takođe poznato kao Plankova sekunda) prvi put je predložio [[Maks Plank]]<ref>M. Planck. Naturlische Masseinheiten. Der Koniglich Preussischen Akademie Der Wissenschaften, p. 479, 1899</ref> 1899. godine. On je predložio da postoje izvesne osnovne prirodne jedinice za [[dužina|dužinu]], [[masa|masu]], [[vreme]] i [[energija|energiju]]. Plank ih je izveo [[Dimensional analysis|dimenzionom analizom]] koristeći samo ono što je smatrao najfundamentalnijim univerzalnim konstantama: brzinu svetlosti, Njutnovu gravitacionu konstantu i Plankovu konstantu. Mnogi fizičari smatraju da je Plankovo vreme najkraći mogući merljivi vremenski interval; međutim, ovo je još uvek predmet rasprave.
| last = Tomilin
| first = K. A.
| date = 1999
| title = Natural Systems of Units. To the Centenary Anniversary of the Planck System
| url = http://old.ihst.ru/personal/tomilin/papers/tomil.pdf
| conference = Proceedings Of The XXII Workshop On High Energy Physics And Field Theory
| conference-url = https://inspirehep.net/literature/1766318
| pages = 287–296
| access-date = 31 December 2019
| archive-date = 12 December 2020
| archive-url = https://web.archive.org/web/20201212041222/http://old.ihst.ru/personal/tomilin/papers/tomil.pdf
| url-status = dead
}}</ref> At the end of the paper, he proposed the base units that were later named in his honor. The Planck units are based on the quantum of [[Action (physics)|action]], now usually known as the Planck constant, which appeared in the [[Wien approximation]] for [[black-body radiation]]. Planck underlined the universality of the new unit system, writing:<ref name="planck-1899" />

{{blockquote|{{lang|de|... die Möglichkeit gegeben ist, Einheiten für Länge, Masse, Zeit und Temperatur aufzustellen, welche, unabhängig von speciellen Körpern oder Substanzen, ihre Bedeutung für alle Zeiten und für alle, auch ausserirdische und aussermenschliche Culturen nothwendig behalten und welche daher als »natürliche Maasseinheiten« bezeichnet werden können.}}
<br/>
... it is possible to set up units for length, mass, time and temperature, which are independent of special bodies or substances, necessarily retaining their meaning for all times and for all civilizations, including extraterrestrial and non-human ones, which can be called "natural units of measure".}}

Planck considered only the units based on the universal constants <math>G</math>, <math>h</math>, <math>c</math>, and <math>k_{\rm B}</math> to arrive at natural units for [[length]], [[time]], [[mass]], and [[temperature]].<ref name="TOM" /> His definitions differ from the modern ones by a factor of <math>\sqrt{2 \pi}</math>, because the modern definitions use <math>\hbar</math> rather than <math>h</math>.<ref name="planck-1899" /><ref name="TOM" />

{| class="wikitable" style="margin:1em auto 1em auto; background:#fff;"
|+Table 1: Modern values for Planck's original choice of quantities
|-
! Name
! Dimension
! Expression
! Value ([[International System of Units|SI]] units)
|- style="text-align:left;"
| Planck length
| [[length]] (L)
| <math>l_\text{P} = \sqrt{\frac{\hbar G}{c^3}}</math>
| {{physconst|lP}}
|-
| Planck mass
| [[mass]] (M)
| <math>m_\text{P} = \sqrt{\frac{\hbar c}{G}}</math>
| {{physconst|mP}}
|-
| Planck time
| [[time]] (T)
| <math>t_\text{P} = \sqrt{\frac{\hbar G}{c^5}}</math>
| {{physconst|tP}}
|-
| Planck temperature
| [[temperature]] (Θ)
| <math>T_\text{P} = \sqrt{\frac{\hbar c^5}{G k_\text{B}^2}}</math>
| {{physconst|TP}}
|}

Unlike the case with the [[International System of Units]], there is no official entity that establishes a definition of a Planck unit system. Some authors define the base Planck units to be those of mass, length and time, regarding an additional unit for temperature to be redundant.{{NoteTag|For example, both [[Frank Wilczek]] and [[Barton Zwiebach]] do so,<ref name=":2">{{cite journal
| last = Wilczek
| first = Frank
| author-link = Frank Wilczek
| date = 2005
| title = On Absolute Units, I: Choices
| journal = [[Physics Today]]
| volume = 58
| issue = 10
| pages = 12–13
| doi = 10.1063/1.2138392
| publisher = [[American Institute of Physics]]
| bibcode = 2005PhT....58j..12W
}}</ref><ref name=":0">{{cite book |last=Zwiebach |first=Barton |title=A First Course in String Theory |publisher=Cambridge University Press |year=2004 |isbn=978-0-521-83143-7 |oclc=58568857 |author-link=Barton Zwiebach}}</ref>{{Rp|page=54}} as does the textbook ''[[Gravitation (book)|Gravitation]]''.<ref name="Gravitation"/>{{rp|1215}}}} Other tabulations add, in addition to a unit for temperature, a unit for electric charge, so that either the [[Coulomb constant]] <math>k_e</math><ref>{{cite book
| last1 = Deza
| first1 = Michel Marie
| last2 = Deza
| first2 = Elena
| author2-link = Elena Deza
| date = 2016
| title = Encyclopedia of Distances
| url = https://books.google.com/books?id=q_7FBAAAQBAJ&pg=PA602
| publisher = [[Springer Science+Business Media|Springer]]
| page = 602
| isbn = 978-3662528433
| access-date = 9 September 2020
| archive-date = 6 March 2021
| archive-url = https://web.archive.org/web/20210306212728/https://books.google.com/books?id=q_7FBAAAQBAJ&pg=PA602
| url-status = live
}}</ref><ref name="physics_hypertextbook">{{cite web
| url = https://physics.info/planck/#mechanics
| title = Blackbody Radiation
| last = Elert
| first = Glenn
| website = The Physics Hypertextbook
| access-date = 2021-02-22
| archive-date = 3 March 2021
| archive-url = https://web.archive.org/web/20210303061957/https://physics.info/planck/#mechanics
| url-status = live
}}</ref> or the [[vacuum permittivity]] <math>\epsilon_0</math><ref name="PAV">{{cite book|last=Pavšic|first=Matej|title=The Landscape of Theoretical Physics: A Global View|volume=119|year=2001|publisher=Kluwer Academic|location=Dordrecht|isbn=978-0-7923-7006-2|pages=347–352|url=https://www.springer.com/gp/book/9781402003516#otherversion=9780792370062|series=Fundamental Theories of Physics|doi=10.1007/0-306-47136-1|arxiv=gr-qc/0610061|access-date=31 December 2019|archive-date=5 September 2021|archive-url=https://web.archive.org/web/20210905013239/https://www.springer.com/gp/book/9781402003516#otherversion=9780792370062|url-status=live}}</ref> is normalized to 1. Thus, depending on the author's choice, this charge unit is given by

:<math>q_\text{P} = \sqrt{4\pi\epsilon_0 \hbar c} \approx 1.875546 \times 10^{-18} \text{ C} \approx 11.7 \ e</math>

for <math> k_\text{e} = 1</math>, or

:<math>q_\text{P} = \sqrt{\epsilon_0 \hbar c} \approx 5.290818 \times 10^{-19} \text{ C} \approx 3.3 \ e.</math>

for <math> \varepsilon_0 = 1</math>.{{NoteTag|Choosing to normalize the [[Coulomb constant]] <math>k_e</math> to 1 establishes an exact correspondence between [[Coulomb's law|electric force]] and [[gravity]]: the electric attraction between two opposite Planck charges will match exactly the gravitational attraction between two Planck masses at any given distance.}} Some of these tabulations also replace mass with energy when doing so.<ref>{{cite book
| last = Zeidler
| first = Eberhard
| date = 2006
| title = Quantum Field Theory I: Basics in Mathematics and Physics
| url = https://cds.cern.ch/record/988238/files/978-3-540-34764-4_BookBackMatter.pdf
| publisher = [[Springer Science+Business Media|Springer]]
| page = 953
| isbn = 978-3540347620
| access-date = 31 May 2020
| archive-date = 19 June 2020
| archive-url = https://web.archive.org/web/20200619210529/https://cds.cern.ch/record/988238/files/978-3-540-34764-4_BookBackMatter.pdf
| url-status = live
}}</ref>


== Fizički značaj ==
== Fizički značaj ==
Ред 34: Ред 155:
* [[Kvantni časovnik]]
* [[Kvantni časovnik]]
{{div col end}}
{{div col end}}

== Napomene ==
{{NoteFoot}}


== Reference ==
== Reference ==
Ред 59: Ред 183:


{{Authority control-lat}}
{{Authority control-lat}}
{{Portal bar-lat|Fizika}}


[[Категорија:Физичке константе]]
[[Категорија:Физичке константе]]

Верзија на датум 25. мај 2023. у 23:13

U kvantnoj mehanici, Plankovo vreme (tP) je jedinica vremena u sistemu prirodnih jedinica poznatih kao Plankove jedinice. Plankova vremenska jedinica je vreme potrebno za putovanje svetlosti na udaljenost od 1 Plankove dužine u vakuumu, što je vremenski interval od približno 5.39 × 10 −44 s.[1] Ova jedinica je nazvana po Maksu Planku, koji je prvi predložio njeno postojanje.

Plankovo vreme je definisano kao:[2]

gde je: ħ = h2π redukovana Plankova konstant (ponekad se h koristi umesto ħ u definiciji[1]), G = gravitaciona konstanta, и c = brzina svetlosti u vakuumu. Koristeći poznate vrednosti konstanti, približna ekvivalentna vrednost u smislu SI jedinice, sekunde, je pri čemu cifre u zagradi označavaju standardnu grešku aproksimirane vrednosti.

Uvod

Any system of measurement may be assigned a mutually independent set of base quantities and associated base units, from which all other quantities and units may be derived. In the International System of Units, for example, the SI base quantities include length with the associated unit of the metre. In the system of Planck units, a similar set of base quantities and associated units may be selected, in terms of which other quantities and coherent units may be expressed.[3][4] The Planck unit of length has become known as the Planck length, and the Planck unit of time is known as the Planck time, but this nomenclature has not been established as extending to all quantities.

All Planck units are derived from the dimensional universal physical constants that define the system, and in a convention in which these units are omitted (i.e. treated as having the dimensionless value 1), these constants are then eliminated from equations of physics in which they appear. For example, Newton's law of universal gravitation,

can be expressed as:

Both equations are dimensionally consistent and equally valid in any system of quantities, but the second equation, with G absent, is relating only dimensionless quantities since any ratio of two like-dimensioned quantities is a dimensionless quantity. If, by a shorthand convention, it is understood that each physical quantity is the corresponding ratio with a coherent Planck unit (or "expressed in Planck units"), the ratios above may be expressed simply with the symbols of physical quantity, without being scaled explicitly by their corresponding unit:

This last equation (without G) is valid with F, m1′, m2′, and r being the dimensionless ratio quantities corresponding to the standard quantities, written e.g. FF or F = F/FP, but not as a direct equality of quantities. This may seem to be "setting the constants c, G, etc., to 1" if the correspondence of the quantities is thought of as equality. For this reason, Planck or other natural units should be employed with care. Referring to "G = c = 1", Paul S. Wesson wrote that, "Mathematically it is an acceptable trick which saves labour. Physically it represents a loss of information and can lead to confusion."[5]

Istorija

The concept of natural units was introduced in 1874, when George Johnstone Stoney, noting that electric charge is quantized, derived units of length, time, and mass, now named Stoney units in his honor. Stoney chose his units so that G, c, and the electron charge e would be numerically equal to 1.[6] In 1899, one year before the advent of quantum theory, Max Planck introduced what became later known as the Planck constant.[7][8] At the end of the paper, he proposed the base units that were later named in his honor. The Planck units are based on the quantum of action, now usually known as the Planck constant, which appeared in the Wien approximation for black-body radiation. Planck underlined the universality of the new unit system, writing:[7]

... die Möglichkeit gegeben ist, Einheiten für Länge, Masse, Zeit und Temperatur aufzustellen, welche, unabhängig von speciellen Körpern oder Substanzen, ihre Bedeutung für alle Zeiten und für alle, auch ausserirdische und aussermenschliche Culturen nothwendig behalten und welche daher als »natürliche Maasseinheiten« bezeichnet werden können.


... it is possible to set up units for length, mass, time and temperature, which are independent of special bodies or substances, necessarily retaining their meaning for all times and for all civilizations, including extraterrestrial and non-human ones, which can be called "natural units of measure".

Planck considered only the units based on the universal constants , , , and to arrive at natural units for length, time, mass, and temperature.[8] His definitions differ from the modern ones by a factor of , because the modern definitions use rather than .[7][8]

Table 1: Modern values for Planck's original choice of quantities
Name Dimension Expression Value (SI units)
Planck length length (L) 1,616255(18)×10−35 m[9]
Planck mass mass (M) 2,176434(24)×10−8 kg[10]
Planck time time (T) 5,391247(60)×10−44 s[11]
Planck temperature temperature (Θ) 1,416784(16)×1032 K[12]

Unlike the case with the International System of Units, there is no official entity that establishes a definition of a Planck unit system. Some authors define the base Planck units to be those of mass, length and time, regarding an additional unit for temperature to be redundant.[note 1] Other tabulations add, in addition to a unit for temperature, a unit for electric charge, so that either the Coulomb constant [14][15] or the vacuum permittivity [16] is normalized to 1. Thus, depending on the author's choice, this charge unit is given by

for , or

for .[note 2] Some of these tabulations also replace mass with energy when doing so.[17]

Fizički značaj

Plankovo vreme je jedinstvena kombinacija gravitacione konstante G, specijalno-relativističke konstante c, i kvantne konstante ħ, kojom je proizvedena konstanta sa dimenzijom vremena. Pošto Plankovo vreme proističe iz dimenzione analize, koja ignoriše konstantne faktore, nema razloga da se veruje da tačno jedna jedinica Planckovog vremena ima neki poseban fizički značaj. Naprotiv, Plankovo vreme predstavlja grubu vremensku skalu na kojoj je verovatno da će kvantni gravitacioni efekti postati značajni. To esencijalno znači da, iako manje jedinice vremena mogu postojati, one su toliko male da je njihov uticaj na naše postojanje zanemarljiv. Priroda tih efekata, kao i tačna vremenska skala na kojoj će se pojaviti, bi trebalo da budu izvedeni iz teorije kvantne gravitacije.

Recipročna vrednost Plankovog vremena, koja je Plankova frekvencija, može se interpretirati kao gornja granica frekvencije talasa. Ovo sledi iz tumačenja Plankove dužine kao minimalne dužine, a time i donje granice na talasnoj dužini.

Svi naučni eksperimenti i ljudska iskustva se dešavaju tokom vremenskih skala koje su mnogo redova veličine duže od Plankovog vremena,[18] čineći događaje koji se dešavaju na Plankovoj skali nedetektivim putem trenutnih naučnih saznanja. Prema podacima iz novembra 2016. godine, najmanja neizvesnost vremenskog intervala u direktnim merenjima je reda 850 zeptosekundi (8,50 × 10−19 sekundi).[19]

Vidi još

Napomene

  1. ^ For example, both Frank Wilczek and Barton Zwiebach do so,[3][13] as does the textbook Gravitation.[4]:1215
  2. ^ Choosing to normalize the Coulomb constant to 1 establishes an exact correspondence between electric force and gravity: the electric attraction between two opposite Planck charges will match exactly the gravitational attraction between two Planck masses at any given distance.

Reference

  1. ^ а б „Big Bang models back to Planck time”. Georgia State University. 19. 6. 2005. 
  2. ^ CODATA Value: Planck Time – The NIST Reference on Constants, Units, and Uncertainty.
  3. ^ а б Wilczek, Frank (2005). „On Absolute Units, I: Choices”. Physics Today. American Institute of Physics. 58 (10): 12—13. Bibcode:2005PhT....58j..12W. doi:10.1063/1.2138392. 
  4. ^ а б Misner, Charles W.; Thorne, Kip S.; Wheeler, John A. (1973). Gravitation. New York. ISBN 0-7167-0334-3. OCLC 585119. 
  5. ^ Wesson, P. S. (1980). „The application of dimensional analysis to cosmology”. Space Science Reviews. 27 (2): 117. Bibcode:1980SSRv...27..109W. S2CID 120784299. doi:10.1007/bf00212237. 
  6. ^ Barrow, J. D. (1983-03-01). „Natural Units Before Planck”. Quarterly Journal of the Royal Astronomical Society. 24: 24. Bibcode:1983QJRAS..24...24B. ISSN 0035-8738. Архивирано из оригинала 20. 1. 2022. г. Приступљено 16. 4. 2022. 
  7. ^ а б в Planck, Max (1899). „Über irreversible Strahlungsvorgänge”. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin (на језику: немачки). 5: 440—480. Архивирано из оригинала 17. 11. 2020. г. Приступљено 23. 5. 2020.  pp. 478–80 contain the first appearance of the Planck base units, and of the Planck constant, which Planck denoted by b. a and f in this paper correspond to the k and G in this article.
  8. ^ а б в Tomilin, K. A. (1999). Natural Systems of Units. To the Centenary Anniversary of the Planck System (PDF). Proceedings Of The XXII Workshop On High Energy Physics And Field Theory. стр. 287—296. Архивирано из оригинала (PDF) 12. 12. 2020. г. Приступљено 31. 12. 2019. 
  9. ^ „2018 CODATA Value: Planck length”. The NIST Reference on Constants, Units, and Uncertainty. NIST. 20. 5. 2019. Приступљено 2019-05-20. 
  10. ^ „2018 CODATA Value: Planck mass”. The NIST Reference on Constants, Units, and Uncertainty. NIST. 20. 5. 2019. Приступљено 2019-05-20. 
  11. ^ „2018 CODATA Value: Planck time”. The NIST Reference on Constants, Units, and Uncertainty. NIST. 20. 5. 2019. Приступљено 2019-05-20. 
  12. ^ „2018 CODATA Value: Planck temperature”. The NIST Reference on Constants, Units, and Uncertainty. NIST. 20. 5. 2019. Приступљено 2019-05-20. 
  13. ^ Zwiebach, Barton (2004). A First Course in String Theory. Cambridge University Press. ISBN 978-0-521-83143-7. OCLC 58568857. 
  14. ^ Deza, Michel Marie; Deza, Elena (2016). Encyclopedia of Distances. Springer. стр. 602. ISBN 978-3662528433. Архивирано из оригинала 6. 3. 2021. г. Приступљено 9. 9. 2020. 
  15. ^ Elert, Glenn. „Blackbody Radiation”. The Physics Hypertextbook. Архивирано из оригинала 3. 3. 2021. г. Приступљено 2021-02-22. 
  16. ^ Pavšic, Matej (2001). The Landscape of Theoretical Physics: A Global View. Fundamental Theories of Physics. 119. Dordrecht: Kluwer Academic. стр. 347—352. ISBN 978-0-7923-7006-2. arXiv:gr-qc/0610061Слободан приступ. doi:10.1007/0-306-47136-1. Архивирано из оригинала 5. 9. 2021. г. Приступљено 31. 12. 2019. 
  17. ^ Zeidler, Eberhard (2006). Quantum Field Theory I: Basics in Mathematics and Physics (PDF). Springer. стр. 953. ISBN 978-3540347620. Архивирано (PDF) из оригинала 19. 6. 2020. г. Приступљено 31. 5. 2020. 
  18. ^ „First Second of the Big Bang”. How The Universe Works 3. 2014. Discovery Science. 
  19. ^ „Scientists have measured the smallest fragment of time ever”. 12. 5. 2010. Приступљено 19. 4. 2012. 

Literatura

Spoljašnje veze