# Списак интеграла логаритамских функција

Списак интеграла логаритамских функција:

x>0 вреди за све интеграле у овом чланку.

${\displaystyle \int \ln cx\,dx=x\ln cx-x}$
${\displaystyle \int (\ln x)^{2}\;dx=x(\ln x)^{2}-2x\ln x+2x}$
${\displaystyle \int (\ln cx)^{n}\;dx=x(\ln cx)^{n}-n\int (\ln cx)^{n-1}dx\qquad {\mbox{(for }}n\neq 1{\mbox{)}}}$
${\displaystyle \int {\frac {dx}{\ln x}}=\ln |\ln x|+\ln x+\sum _{i=2}^{\infty }{\frac {(\ln x)^{i}}{i\cdot i!}}}$
${\displaystyle \int {\frac {dx}{(\ln x)^{n}}}=-{\frac {x}{(n-1)(\ln x)^{n-1}}}+{\frac {1}{n-1}}\int {\frac {dx}{(\ln x)^{n-1}}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}}$
${\displaystyle \int x^{m}\ln x\;dx=x^{m+1}\left({\frac {\ln x}{m+1}}-{\frac {1}{(m+1)^{2}}}\right)\qquad {\mbox{(for }}m\neq 1{\mbox{)}}}$
${\displaystyle \int x^{m}(\ln x)^{n}\;dx={\frac {x^{m+1}(\ln x)^{n}}{m+1}}-{\frac {n}{m+1}}\int x^{m}(\ln x)^{n-1}dx\qquad {\mbox{(for }}m,n\neq 1{\mbox{)}}}$
${\displaystyle \int {\frac {(\ln x)^{n}\;dx}{x}}={\frac {(\ln x)^{n+1}}{n+1}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}}$
${\displaystyle \int {\frac {\ln x\,dx}{x^{m}}}=-{\frac {\ln x}{(m-1)x^{m-1}}}-{\frac {1}{(m-1)^{2}x^{m-1}}}\qquad {\mbox{(for }}m\neq 1{\mbox{)}}}$
${\displaystyle \int {\frac {(\ln x)^{n}\;dx}{x^{m}}}=-{\frac {(\ln x)^{n}}{(m-1)x^{m-1}}}+{\frac {n}{m-1}}\int {\frac {(\ln x)^{n-1}dx}{x^{m}}}\qquad {\mbox{(for }}m,n\neq 1{\mbox{)}}}$
${\displaystyle \int {\frac {x^{m}\;dx}{(\ln x)^{n}}}=-{\frac {x^{m+1}}{(n-1)(\ln x)^{n-1}}}+{\frac {m+1}{n-1}}\int {\frac {x^{m}dx}{(\ln x)^{n-1}}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}}$
${\displaystyle \int {\frac {dx}{x\ln x}}=\ln |\ln x|}$
${\displaystyle \int {\frac {dx}{x^{n}\ln x}}=\ln |\ln x|+\sum _{i=1}^{\infty }(-1)^{i}{\frac {(n-1)^{i}(\ln x)^{i}}{i\cdot i!}}}$
${\displaystyle \int {\frac {dx}{x(\ln x)^{n}}}=-{\frac {1}{(n-1)(\ln x)^{n-1}}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}}$
${\displaystyle \int \sin(\ln x)\;dx={\frac {x}{2}}(\sin(\ln x)-\cos(\ln x))}$
${\displaystyle \int \cos(\ln x)\;dx={\frac {x}{2}}(\sin(\ln x)+\cos(\ln x))}$

## Литература

• Milton Abramowitz and Irene Stegun, editors. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables.
• I.S. Gradshteyn (И. С. Градштейн), I.M. Ryzhik (И. М. Рыжик); Alan Jeffrey, Daniel Zwillinger, ур. (2007). Table of Integrals, Series, and Products. seventh edition. Academic Press. ISBN 978-0-12-373637-6.. Errata. (Several previous editions as well.)
• A.P. Prudnikov (А. П. Прудников), Yu.A. Brychkov (Ю. А. Брычков), O.I. Marichev (О. И. Маричев). Integrals and Series. First edition (Russian), volume 1–5, Nauka, 1981−1986. First edition (English, translated from the Russian by N.M. Queen), volume 1–5, Gordon & Breach Science Publishers/CRC Press, 1988–. 1992. ISBN 978-2-88124-097-3. Недостаје или је празан параметар |title= (помоћ). Second revised edition (Russian), volume 1–3, Fiziko-Matematicheskaya Literatura, 2003.
• Yu.A. Brychkov (Ю. А. Брычков). Handbook of Special Functions: Derivatives, Integrals, Series and Other Formulas. Russian edition, Fiziko-Matematicheskaya Literatura, 2006. English edition. . Chapman & Hall/CRC Press. 2008. ISBN 978-1-58488-956-4. Недостаје или је празан параметар |title= (помоћ).
• Zwillinger, Daniel (2002). CRC Standard Mathematical Tables and Formulae. 31st edition. Chapman & Hall/CRC Press. ISBN 978-1-58488-291-6.. (Many earlier editions as well.)
• Meyer Hirsch, Integral Tables, Or, A Collection of Integral Formulae (Baynes and son, London, 1823) [English translation of Integraltafeln]
• Benjamin O. Pierce A short table of integrals - revised edition (Ginn & co., Boston, 1899)