Amorfnost
U fizici kondenzovanih materija i nauci o materijalima, amorfna (od grčkog a, „bez”, morphé, oblik, forma) ili nekristalna čvrsta supstanca je čvrsta materija kojoj nedostaje dalekosežnije uređenje, poput onog karakterističnog za kristale. U nekim starijim knjigama ovaj termin je korišten kao sinonim za staklo. U današnje vreme se „staklena čvrsta supstanca” ili „amorfna čvrsta supstanca” smatra sveobuhvatnijim konceptom, a staklo posebnijim slučajem. Staklo je amorfna čvrsta supstanca koja pokazuje staklenu tranziciju.[1] Polimeri su često amorfni. Ostale vrste amorfnih čvrstih materija uključuju gelove, tanke filmove i nanostrukturne materijale poput stakla.
Amorfni materijali imaju unutrašnju strukturu napravljenu od međusobno povezanih strukturnih blokova. Ovi blokovi mogu biti slični osnovnim strukturalnim jedinicama koje se nalaze u odgovarajućoj kristalnoj fazi istog jedinjenja.[2] Da li je materijal tečan ili čvrst, pre svega zavisi od povezanosti njegovih elementarnih blokova, tako da čvrste materije karakteriše visok stepen povezivanja, dok strukturalni blokovi u tečnostima imaju nižu povezanost.[3]
U farmaceutskoj industriji se pokazalo da amorfni lekovi imaju veću bioraspoloživost od njihovih kristalnih ekvivalenata, zbog visoke rastvorljivosti amorfne faze. Štaviše, određena jedinjenja mogu biti podložiti taloženju u svom amorfnom obliku in vivo, i mogu uzrokovati međusobno smanjenje bioraspoloživosti ako se primenjuju zajedno.[4][5]
Za čvrstu supstancu se kaže da je amorfna ako njene čestice nisu uređene kao kod kristala. Primjeri amorfnih tijela su staklo, gelovi, tanki filmovi i nanostrukturni materijali. Amorfne supstance imaju određenu uređenost čestica samo na kraćim rastojanjima, ali ne postoji uređenost u cijelom prostoru. Kod kristalnih supstanci postoji pravilnost u prostoru u rasporedu čestica, i jačine veza između čestica su jednake, zbog toga pri zagrijavanju kristala veze između čestica se raskidaju naglo na određenoj temperaturi, i kristali imaju tačno određenu temperaturu topljenja. S druge strane kod amorfnih supstanci rastojanja između čestica nisu jednake u svim dijelovima, zbog toga nisu jednake ni privlačne sile između pojedinih čestica, i zbog toga pri zagrijavanju amorfnih supstanci ne postoji nagli prelaz iz čvrstog u tečno stanje na određenoj temperaturi, već pri zagrijavanju prvo omekšavaju, a zatim se tope u određenom temperaturnom intervalu. Čestice kod amorfnih supstanci su raspoređene haotično i u čvrstom stanju, s tim što je pokretljivost čestica u tečnom stanju je znatno veća. Zbog toga se stakla nekad nazivaju prehlađenim tečnostima.
Nanostrukturni materijali[уреди | уреди извор]
Ako je veličina kristala mala onda je teško napraviti razliku između amorfnih tijela i kristala. I amorfna tijela imaju neku uređenost čestica na malim rastojanjima atomskih veličina zbog prirode hemijskih veza. Takođe u veoma malim kristalima veliki broj molekula je raspoređeno uglavnom na površini ili blizu površine, zato što efekti dejstva površine vrše distorziju pozicije čestica što smanjuje uređenost čestica. Čak i pri najnaprednijim tehnikama određivanja strukture, kao što je difrakcija X zracima i prenos elektronskim mikroskopom, postoji teškoća pri određivanju da li se radi o kristalnom ili amorfnom tijelu na dužinama koje su atomskog reda.
Amorfni tanki filmovi[уреди | уреди извор]
Amorfne faze su vazni dijelovi tankih filmova, koji su čvrsti slojevi debljine nekoliko nanometara do nekoliko desetina mikrometara koji su naneseni na supstrat. Za opisivanje mikrostrukture keramike i tankih filmova su razvijeni strukturni modeli zona kao funkcije homologne temperature Tk koja predstavlja odnos temperature taloženja i temperature topljenja.[6][7] Prema ovim modelima potreban (ali ne i dovoljan uslov) za pojavljivanje amorfne faze je da Tk mora biti manje od 0,3 tj. da temperatura taloženja mora biti niza od 30% temperature topljenja. Za veće vrijednosti, površinska difuzija izdvojenih atomskih vrsta bi omogućila formiranje kristala sa visokom uređenoscu atoma.
Što se tiče specifične primene, amorfni metalni slojevi su igrali važnu ulogu u diskusiji o superprovodljivosti amorfnih metala.[8][9] Superprevodljivost amorfnih metala, uključujući amorfne metalne tanke filmove, sada se smatra da nastaje zahvaljujući fononski-posredovanom Kuperovom uparivanju, a uloga strukturalnog poremećaja može se racionalizovati na osnovu jakog-uparivanja Eliašbergove teorije superprovodljivosti.[10] Danas se optički pokrovni slojevi koji se prave od TiO2, SiO2, Ta2O5 itd, i njihovih kombinacija, većinom se sastoje od amorfnih faza ovih komponenata. Tanki amorfni filmovi se takođe primjenjuju za razdvajanje gasa kod membranski slojevi.[11] Oni su uglavnom napravljeni od tankog sloja SiO2, čija debljina ne premašuje nekoliko nm, i koji služe kao izolator iznad provodnog kanala MOSFET-a. Takođe, hidrogenizovani amorfni silicijum tj. a-Si:H ima tehničku primjenu u solarnim ćelijama na bazi tankih filmova. Kod a-Si:H nedostatak uređenosti između atoma silicijuma se javlja zbog prisustva vodonika u vidu nekoliko procenata.
Pojavljivanje amorfnih faza je takođe vazno u proučavanju rasta tankih filmova.[12] Rast polikristalnih filmova često počinje amorfnim slojem, čija debljina može biti samo nekoliko nm. Najbolje ispitan primjer je tanki polikristalni silicijumski film gdje je početni amorfni sloj posmatran u mnogim ispitivanjima.[13] Komadi polikristala su identifikovani pomoću transmisionog elektronskog mikroskopa i uočeno je da rastu iz amorfnog sloja nakon što amorfni sloj dostigne određenu debljinu, čija precizna vrijednost zavisi od temperature izdvajanja, pritiska i raznih drugih parametara. Ovaj fenomen je interpretiran u okviru Ostvladovih pravila o stanjima koje predviđa[14] formiranje manje stabilnih faza koje tokom vremena kondenzacija prelaze u stabilnije oblike.[9][13] Eksperimentalna proučavanja ovog fenomena zahtijevaju određeno stanje površine supstrata i njegovu gustinu nakon koje se stvara tanki film.
Reference[уреди | уреди извор]
- ^ J. Zarzycki: Les verres et l'état vitreux. Paris: Masson 1982. English translation available.
- ^ Mavračić, Juraj; Mocanu, Felix C.; Deringer, Volker L.; Csányi, Gábor; Elliott, Stephen R. (2018). „Similarity Between Amorphous and Crystalline Phases: The Case of TiO₂”. J. Phys. Chem. Lett. 9 (11): 2985—2990. PMID 29763315. doi:10.1021/acs.jpclett.8b01067
.
- ^ Ojovan, Michael I.; Lee, William E. (2010). „Connectivity and glass transition in disordered oxide systems”. J. Non-Cryst. Solids. 356 (44–49): 2534—2540. Bibcode:2010JNCS..356.2534O. doi:10.1016/j.jnoncrysol.2010.05.012.
- ^ Hsieh, Yi-Ling; Ilevbare, Grace A.; Van Eerdenbrugh, Bernard; Box, Karl J.; Sanchez-Felix, Manuel Vincente; Taylor, Lynne S. (12. 5. 2012). „pH-Induced Precipitation Behavior of Weakly Basic Compounds: Determination of Extent and Duration of Supersaturation Using Potentiometric Titration and Correlation to Solid State Properties”. Pharmaceutical Research (на језику: енглески). 29 (10): 2738—2753. ISSN 0724-8741. PMID 22580905. doi:10.1007/s11095-012-0759-8.
- ^ Dengale, Swapnil Jayant; Grohganz, Holger; Rades, Thomas; Löbmann, Korbinian (maj 2016). „Recent advances in co-amorphous drug formulations”. Advanced Drug Delivery Reviews. 100: 116—125. ISSN 0169-409X. PMID 26805787. doi:10.1016/j.addr.2015.12.009.
- ^ Movchan, B. A.; Demchishin, A. V. (1969). „Study of the structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminium oxide and zirconium dioxide”. Phys. Met. Metallogr. 28: 83—90.
Russian-language version: Fiz. Metal Metalloved (1969) 28: 653-660. - ^ Thornton, John A. (1974). „Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings”. J. Vac. Sci. Technol. 11 (4): 666—670. Bibcode:1974JVST...11..666T. doi:10.1116/1.1312732.
- ^ Buckel, W.; Hilsch, R. (1956). „Supraleitung und elektrischer Widerstand neuartiger Zinn-Wismut-Legierungen”. Z. Phys. 146: 27—38. doi:10.1007/BF01326000.
- ^ а б Buckel, W. (1961). „The influence of crystal bonds on film growth”. Elektrische en Magnetische Eigenschappen van dunne Metallaagies. Leuven, Belgium.
- ^ Baggioli, Matteo; Setty, Chandan; Zaccone, Alessio (2018). „Effective theory of superconductivity in strongly coupled amorphous materials” (PDF). Physical Review B. 101: 214502. doi:10.1103/PhysRevB.101.214502.
- ^ de Vos, Renate M.; Verweij, Henk (1998). „High-Selectivity, High-Flux Silica Membranes for Gas Separation”. Science. 279 (5357): 1710—1711. Bibcode:1998Sci...279.1710D. PMID 9497287. doi:10.1126/science.279.5357.1710.
- ^ Magnuson, Martin; Andersson, Matilda; Lu, Jun; Hultman, Lars; Jansson, Ulf (2012). „Electronic structure and chemical bonding of amorphous chromium carbide thin films”. J. Phys. Condens. Matter. 24 (22): 225004. Bibcode:2012JPCM...24v5004M. PMID 22553115. arXiv:1205.0678
. doi:10.1088/0953-8984/24/22/225004.
- ^ а б Birkholz, M.; Selle, B.; Fuhs, W.; Christiansen, S.; Strunk, H. P.; Reich, R. (2001). „Amorphous-crystalline phase transition during the growth of thin films: The case of microcrystalline silicon” (PDF). Phys. Rev. B. 64 (8): 085402. Bibcode:2001PhRvB..64h5402B. doi:10.1103/PhysRevB.64.085402. Архивирано (PDF) из оригинала 31. 3. 2010. г.
- ^ Ostwald, Wilhelm (1897). „Studien über die Bildung und Umwandlung fester Körper” (PDF). Z. Phys. Chem. (на језику: German). 22: 289—330. doi:10.1515/zpch-1897-2233. Архивирано (PDF) из оригинала 8. 3. 2017. г.
Literatura[уреди | уреди извор]
- R. Zallen (1969). The Physics of Amorphous Solids. Wiley Interscience.
- S.R. Elliot (1990). The Physics of Amorphous Materials (2nd изд.). Longman.
- N. Cusack (1969). The Physics of Structurally Disordered Matter: An Introduction. IOP Publishing.
- N.H. March; R.A. Street; M.P. Tosi, ур. (1969). Amorphous Solids and the Liquid State. Springer.
- D.A. Adler; B.B. Schwartz; M.C. Steele, ур. (1969). Physical Properties of Amorphous Materials. Springer.
- A. Inoue; K. Hasimoto, ур. (1969). Amorphous and Nanocrystalline Materials. Springer.
- Klement, W.; Willens, R. H.; Duwez, POL (1960). „Non-crystalline Structure in Solidified Gold-Silicon Alloys”. Nature. 187 (4740): 869—870. Bibcode:1960Natur.187..869K. doi:10.1038/187869b0.
- Libermann H. & Graham C. (1976). „Production Of Amorphous Alloy Ribbons And Effects Of Apparatus Parameters On Ribbon Dimensions”. IEEE Transactions on Magnetics. 12 (6): 921. Bibcode:1976ITM....12..921L. doi:10.1109/TMAG.1976.1059201.
- Roya, R & Majumdara, A.K. (1981). „Thermomagnetic and transport properties of metglas 2605 SC and 2605”. Journal of Magnetism and Magnetic Materials. 25 (1): 83—89. Bibcode:1981JMMM...25...83R. doi:10.1016/0304-8853(81)90150-5.
- King, D.M.; Middleburgh, S.C.; Liu, A.C.Y.; Tahini, H.A.; Lumpkin, G.R.; Cortie, M. (januar 2014). „Formation and structure of V–Zr amorphous alloy thin films” (PDF). Acta Materialia. 83: 269—275. doi:10.1016/j.actamat.2014.10.016. hdl:10453/41214.
- Middleburgh, S.C.; Burr, P.A.; King, D.M.; Edwards, L.; Lumpkin, G.R.; Grimes, R.W. (novembar 2015). „Structural stability and fission product behaviour in U3Si”. Journal of Nuclear Materials. 466: 739—744. Bibcode:2015JNuM..466..739M. doi:10.1016/j.jnucmat.2015.04.052.
- Royall, C. Patrick; Williams, Stephen R. (2015). „The role of local structure in dynamical arrest”. Physics Reports. The role of local structure in dynamical arrest (на језику: енглески). 560: 1—75. ISSN 0370-1573. doi:10.1016/j.physrep.2014.11.004.
- Wei, Dan; Yang, Jie; Jiang, Min-Qiang; Dai, Lan-Hong; Wang, Yun-Jiang; Dyre, Jeppe C.; Douglass, Ian; Harrowell, Peter (2019). „Assessing the utility of structure in amorphous materials”. The Journal of Chemical Physics. 150 (11): 114502. ISSN 0021-9606. doi:10.1063/1.5064531.
- Duarte, M. J.; Bruna, P.; Pineda, E.; Crespo, D.; Garbarino, G.; Verbeni, R.; Zhao, K.; Wang, W. H.; Romero, A. H.; Serrano, J. (2011). "Polyamorphic transitions in Ce-based metallic glasses by synchrotron radiation". Physical Review B. 84 (22): 224116. doi:10.1103/PhysRevB.84.224116. ISSN 1098-0121.
- Liu, Chaoren; Pineda, Eloi; Crespo, Daniel (2015). "Mechanical Relaxation of Metallic Glasses: An Overview of Experimental Data and Theoretical Models". Metals. 5 (2): 1073–1111. doi:10.3390/met5021073. ISSN 2075-4701.
- Telford, Mark (mart 2004). „The case for bulk metallic glass”. Materials Today. 7 (3): 36—43. doi:10.1016/S1369-7021(04)00124-5
.
- Kumar, Golden; Neibecker, Pascal; Liu, Yan Hui; Schroers, Jan (26. 2. 2013). „Critical fictive temperature for plasticity in metallic glasses”. Nature Communications. 4 (1): 1536. Bibcode:2013NatCo...4E1536K. PMC 3586724
. PMID 23443564. doi:10.1038/ncomms2546.
- „New metallic glass material created by starving it of nuclei”. newatlas.com (на језику: енглески). Приступљено 9. 12. 2017.
Spoljašnje veze[уреди | уреди извор]
- Journal of non-crystalline solids (Elsevier)
- Liquidmetal Design Guide
- "Metallic glass: a drop of the hard stuff" at New Scientist
- Glass-Like Metal Performs Better Under Stress Physical Review Focus, June 9, 2005
- New Computational Method Developed By Carnegie Mellon University Physicist Could Speed Design and Testing of Metallic Glass (2004) (the alloy database developed by Marek Mihalkovic, Michael Widom, and others)