Поље алгебарских бројева — разлика између измена

С Википедије, слободне енциклопедије
Садржај обрисан Садржај додат
Нова страница: У апстрактној алгебри '''поље алгебарских бројева''' се означава са '''''F'…
 
.
Ред 1: Ред 1:
{{short description|Коначан степен (а тиме и алгебарско) проширење поља рационалних бројева}}

У [[апстрактна алгебра|апстрактној алгебри]] '''поље алгебарских бројева''' се означава са '''''F''''' и представља коначно проширење [[Поље (математика)|поља]] [[Рационални бројеви|рационалних бројева]] ''Q'', то јест, поље које садржи поље рационалних бројева и има коначну [[Димензија векторског простора|димензију]], када се посматра као [[векторски простор]] над ''Q''. Ова поља су врло важна у [[Теорија бројева|теорији бројева]] и представљају центар студија која се баве теоријом алгебарских бројева.
У [[апстрактна алгебра|апстрактној алгебри]] '''поље алгебарских бројева''' се означава са '''''F''''' и представља коначно проширење [[Поље (математика)|поља]] [[Рационални бројеви|рационалних бројева]] ''Q'', то јест, поље које садржи поље рационалних бројева и има коначну [[Димензија векторског простора|димензију]], када се посматра као [[векторски простор]] над ''Q''. Ова поља су врло важна у [[Теорија бројева|теорији бројева]] и представљају центар студија која се баве теоријом алгебарских бројева.


Појам се ослања на сам концепт [[Поље (математика)|поља у математици]], које представља [[Алгебарска структура|алгебарску структуру]] сачињену од [[Скуп|скупа елемената]] и две операције дефинисане на том скупу. Те операције се називају [[сабирање]] и [[множење]] и да би чиниле поље морају имати [[Дистрибутивност|својство дистрибутивности]].
Појам се ослања на сам концепт [[Поље (математика)|поља у математици]], које представља [[Алгебарска структура|алгебарску структуру]] сачињену од [[Скуп|скупа елемената]] и две операције дефинисане на том скупу. Те операције се називају [[сабирање]] и [[множење]] и да би чиниле поље морају имати [[Дистрибутивност|својство дистрибутивности]].


Концепт поља је увео [[Јулијус Вилхелм Рихард Дедекинд|Дедекинд]], који је користио немачку реч ''-{Körper}-'' (тело) за овај појам.<ref>-{J J O'Connor and E F Robertson, [http://www-history.mcs.st-andrews.ac.uk/HistTopics/Ring_theory.html ''The development of Ring Theory''], September 2004.}-</ref>
Концепт поља је увео [[Јулијус Вилхелм Рихард Дедекинд|Дедекинд]], који је користио немачку реч ''-{Körper}-'' (тело) за овај појам.<ref>-{J J O'Connor and E F Robertson, [http://www-history.mcs.st-andrews.ac.uk/HistTopics/Ring_theory.html ''The development of Ring Theory''], September 2004.}-</ref> Најједноставнији пример је управо поље [[Рационални бројеви|рационалних бројева]] ''Q''. Поље [[реалан број|реалних бројева]] ''R'' и поље [[комплексан број|комплексних бројева]] ''C'' су такође примери поља алгебарских бројева.

== Дефиниција ==
{{рут}}
=== Предуслови ===

{{Main|Field (mathematics)|l1=Field|Vector space}}
The notion of algebraic number field relies on the concept of a [[field (mathematics)|field]]. A field consists of a [[set (mathematics)|set]] of elements together with two operations, namely [[addition]], and [[multiplication]], and some distributivity assumptions. A prominent example of a field is the field of [[rational number]]s, commonly denoted {{nowrap|<math>\mathbb{Q}</math>,}} together with its usual operations of addition and multiplication.

Another notion needed to define algebraic number fields is [[vector space]]s. To the extent needed here, vector spaces can be thought of as consisting of sequences (or [[tuple]]s)
:(''x''<sub>1</sub>, ''x''<sub>2</sub>, …)
whose entries are elements of a fixed field, such as the field {{nowrap|<math>\mathbb{Q}</math>.}} Any two such sequences can be added by adding the entries one per one. Furthermore, any sequence can be multiplied by a single element ''c'' of the fixed field. These two operations known as [[vector addition]] and [[scalar multiplication]] satisfy a number of properties that serve to define vector spaces abstractly. Vector spaces are allowed to be "infinite-dimensional", that is to say that the sequences constituting the vector spaces are of infinite length. If, however, the vector space consists of ''finite'' sequences
:(''x''<sub>1</sub>, ''x''<sub>2</sub>, …, ''x''<sub>''n''</sub>),
the vector space is said to be of finite [[Hamel dimension|dimension]], ''n''.

===<span id="degreeofanumberfield"></span> Дефиниција ===

An '''algebraic number field''' (or simply '''number field''') is a finite-[[degree of a field extension|degree]] [[field extension]] of the field of rational numbers. Here '''degree''' means the dimension of the field as a vector space over {{nowrap|<math>\mathbb{Q}</math>.}}


== Примери ==
== Примери ==


* The smallest and most basic number field is the field {{nowrap|<math>\mathbb{Q}</math>}} of rational numbers. Many properties of general number fields are modeled after the properties of {{nowrap|<math>\mathbb{Q}</math>.}}
* Најједноставнији пример је управо поље [[Рационални бројеви|рационалних бројева]] ''Q''.
* The [[Gaussian rational]]s, denoted <math>\mathbb{Q}(i)</math> (read as "<math>\mathbb{Q}</math> [[Adjunction (field theory)|adjoined]] <math>i</math>"), form the first nontrivial example of a number field. Its elements are expressions of the form
* Поље [[реалан број|реалних бројева]] ''R'' и поље [[комплексан број|комплексних бројева]] ''C'' су такође примери поља алгебарских бројева.
*::<math>a + bi</math>
*: where both ''a'' and ''b'' are rational numbers and ''i'' is the [[imaginary unit]]. Such expressions may be added, subtracted, and multiplied according to the usual rules of arithmetic and then simplified using the identity
*::<math>i^2 = -1</math>.
*: Explicitly,
*:: <math>\begin{matrix}
(a + bi) + (c + di) &=& (a + c) + (b + d)i \\
(a + bi)\cdot (c + di) &=& (ac - bd) + (ad + bc)i
\end{matrix}</math>
*: Non-zero Gaussian rational numbers are [[invertible]], which can be seen from the identity
*::<math>(a+bi)\left(\frac{a}{a^2+b^2}-\frac{b}{a^2+b^2}i\right)=\frac{(a+bi)(a-bi)}{a^2+b^2}=1.</math>
*: It follows that the Gaussian rationals form a number field which is two-dimensional as a vector space over {{nowrap|<math>\mathbb{Q}</math>.}}
* More generally, for any [[square-free]] integer {{nowrap|<math>d</math>,}} the [[quadratic field]] <math>\mathbb{Q} (\sqrt{d})</math> is a number field obtained by adjoining the square root of <math>d</math> to the field of rational numbers. Arithmetic operations in this field are defined in analogy with the case of Gaussian rational numbers, {{nowrap|<math>d = -1</math>.}}
* [[Cyclotomic field]]
*:: <math>\mathbb{Q}(\zeta_n)</math>, where <math>\zeta_n = \exp{2\pi i /n}</math>
*: is a number field obtained from <math>\mathbb{Q}</math> by adjoining a primitive <math>n</math>th root of unity <math>\zeta_n</math>. This field contains all complex ''n''th roots of unity and its dimension over <math>\mathbb{Q}</math> is equal to <math>\varphi(n)</math>, where <math>\varphi</math> is the [[Euler totient function]].


== Види још ==
== Види још ==
Ред 18: Ред 52:


== Референце ==
== Референце ==
{{reflist}}
{{reflist|}}

== Литература ==
{{refbegin|30em}}
* {{Citation | last1=Cohn | first1=Harvey | title=A Classical Invitation to Algebraic Numbers and Class Fields | publisher=[[Springer-Verlag]] | location=New York | series=Universitext | year=1988}}
* {{Citation | last1=Janusz | first1=Gerald J. | title=Algebraic Number Fields | publisher=[[American Mathematical Society]] | location=Providence, R.I. | edition=2nd | isbn=978-0-8218-0429-2 | year=1996}}
* Helmut Hasse, ''Number Theory'', Springer ''Classics in Mathematics'' Series (2002)
* [[Serge Lang]], ''Algebraic Number Theory'', second edition, Springer, 2000
* Richard A. Mollin, ''Algebraic Number Theory'', CRC, 1999
* Ram Murty, ''Problems in Algebraic Number Theory'', Second Edition, Springer, 2005
* {{Citation
| last=Narkiewicz
| first=Władysław
| title=Elementary and analytic theory of algebraic numbers
| edition=3
| year=2004
| publisher=[[Springer-Verlag]]
| location=Berlin
| series=Springer Monographs in Mathematics
| isbn=978-3-540-21902-6
| mr=2078267
}}
* {{Citation | last1=Neukirch | first1=Jürgen | author1-link=Jürgen Neukirch | title=Algebraic number theory | publisher=[[Springer-Verlag]] | location=Berlin, New York | series=Grundlehren der Mathematischen Wissenschaften | isbn=978-3-540-65399-8 | mr=1697859 | year=1999 | volume=322 | zbl=0956.11021 }}
*{{Citation | last1=Neukirch | first1=Jürgen | author1-link=Jürgen Neukirch | last2=Schmidt | first2=Alexander | last3=Wingberg | first3=Kay | title=Cohomology of Number Fields | publisher=[[Springer-Verlag]] | location=Berlin, New York | series=Grundlehren der Mathematischen Wissenschaften | isbn=978-3-540-66671-4 | mr=1737196 | year=2000 | volume=323 | zbl=1136.11001 }}
* [[André Weil]], ''Basic Number Theory'', third edition, Springer, 1995
* {{Springer|title = Kummer extension|id = k/k055960}}
* [[Bryan John Birch|Bryan Birch]], "Cyclotomic fields and Kummer extensions", in [[J.W.S. Cassels]] and [[A. Frohlich]] (edd), ''Algebraic number theory'', [[Academic Press]], 1973. Chap.III, pp.&nbsp;85–93.
* {{cite book | last=Ishida | first=Makoto | title=The genus fields of algebraic number fields | series=Lecture Notes in Mathematics | volume=555 | publisher=[[Springer-Verlag]] | year=1976 | isbn=3-540-08000-7 | zbl=0353.12001 }}
* {{cite book | first=Gerald | last=Janusz | title=Algebraic Number Fields | year=1973 | publisher=Academic Press | isbn=0-12-380250-4 | series=Pure and Applied Mathematics | volume=55 | zbl=0307.12001 }}
* {{cite book | last=Lemmermeyer | first= Franz | title=Reciprocity laws. From Euler to Eisenstein | series= Springer Monographs in Mathematics | publisher=[[Springer-Verlag]] | location=Berlin | year= 2000 | isbn= 3-540-66957-4 | url=https://books.google.com/books?id=EwjpPeK6GpEC | mr=1761696 | zbl=0949.11002 }}
* {{Citation|title=Introduction to Field Theory| last=Adamson|first=I. T.|isbn=978-0-486-46266-0|year=2007|publisher=Dover Publications}}
* {{Citation | last1=Allenby | first1=R. B. J. T. | title=Rings, Fields and Groups | publisher=Butterworth-Heinemann | isbn=978-0-340-54440-2 | year=1991}}
* {{Citation | last1=Artin | first1=Michael | author1-link=Michael Artin | title=Algebra | publisher=[[Prentice Hall]] | isbn=978-0-13-004763-2 | year=1991}}, especially Chapter 13
* {{Citation|last1=Artin|first1=Emil|last2=Schreier|first2=Otto|author1-link=Emil Artin|author2-link=Otto Schreier|title=Eine Kennzeichnung der reell abgeschlossenen Körper|journal=Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg|issn=0025-5858| volume=5|pages=225–231|year=1927|language=de|doi=10.1007/BF02952522|jfm=53.0144.01|s2cid=121547404}}
* {{Citation| last=Ax |first=James|author-link=James Ax|year=1968|title=The elementary theory of finite fields|journal=Ann. of Math. |series= 2|volume=88|issue=2|pages=239–271|doi=10.2307/1970573|jstor=1970573}}
* {{Citation|last=Baez|first=John C.|author-link=John C. Baez|title=The octonions|journal=[[Bulletin of the American Mathematical Society]] |volume=39|issue=2|year=2002|pages=145–205|doi=10.1090/S0273-0979-01-00934-X|arxiv=math/0105155|s2cid=586512}}
* {{Citation| last=Banaschewski|first=Bernhard|title=Algebraic closure without choice.|year=1992|journal=Z. Math. Logik Grundlagen Math.|volume=38|issue=4|pages=383–385|zbl=0739.03027|doi=10.1002/malq.19920380136}}
* {{Citation|last1=Beachy|first1=John. A|last2=Blair|first2=William D.|title=Abstract Algebra|edition=3|publisher=Waveland Press|isbn=1-57766-443-4|year=2006}}
* {{Citation | last1=Blyth | first1=T. S. | last2=Robertson | first2=E. F. |author2-link=Edmund F. Robertson| title=Groups, rings and fields: Algebra through practice| publisher=[[Cambridge University Press]] | year=1985}}. See especially Book 3 ({{ISBN|0-521-27288-2}}) and Book 6 ({{ISBN|0-521-27291-2}}).
* {{Citation|last1=Borceux|first=Francis|last2=Janelidze|first2=George|title=Galois theories|
isbn=0-521-80309-8|year=2001|publisher=Cambridge University Press|zbl=0978.12004}}
* {{Citation|last1=Bourbaki|first1=Nicolas|author-link=Nicolas Bourbaki|title=Elements of the history of mathematics|publisher=Springer|year=1994|isbn=3-540-19376-6|mr=1290116|doi=10.1007/978-3-642-61693-8}}
* {{Citation|title=Algebra II. Chapters 4–7|last=Bourbaki|first=Nicolas|author-link=Nicolas Bourbaki|isbn=0-387-19375-8|year=1988|publisher=Springer}}
* {{Citation|last=Cassels|first=J. W. S.|author-link=J. W. S. Cassels|title=Local fields|series=London Mathematical Society Student Texts|volume=3|publisher=Cambridge University Press|year=1986|isbn=0-521-30484-9|mr=861410|doi=10.1017/CBO9781139171885}}
* {{Citation|title=Elements of Abstract Algebra|last=Clark|first=A.|isbn=978-0-486-64725-8|series=Dover Books on Mathematics Series|year=1984|publisher=Dover |url=https://books.google.com/books?id=bj1kOY8gOfcC }}
* {{Citation
|first1=John Horton
|last1=Conway
|author-link1=John Horton Conway
|title=On Numbers and Games
|publisher=[[Academic Press]]
|year=1976
|title-link=On Numbers and Games
}}
* {{Citation|last=Corry|first=Leo|author-link=Leo Corry|title=Modern algebra and the rise of mathematical structures|edition=2nd|isbn=3-7643-7002-5|year=2004|publisher=Birkhäuser|zbl=1044.01008}}
* {{Citation|last1=Dirichlet|first1=Peter Gustav Lejeune|author-link=Peter Gustav Lejeune Dirichlet|editor-last=Dedekind|editor-first=Richard|editor-link=Richard Dedekind|year=1871|edition=2nd|language=de|volume=1|location=Braunschweig, Germany|publisher=Friedrich Vieweg und Sohn|title=Vorlesungen über Zahlentheorie (Lectures on Number Theory)|url=https://books.google.com/books?id=SRJTAAAAcAAJ&pg=PA424}}
* {{Citation| last=Eisenbud|first=David|author-link=David Eisenbud | title=Commutative algebra with a view toward algebraic geometry | location=New York | publisher=[[Springer-Verlag]] | series=[[Graduate Texts in Mathematics]] | volume=150 | year=1995 | mr=1322960 | isbn=0-387-94268-8 | doi=10.1007/978-1-4612-5350-1}}
* {{Citation|last=Escofier|first=J. P.|isbn=978-1-4613-0191-2|title=Galois Theory|publisher=Springer|year=2012}}
* {{ citation | last1 = Fraleigh | first1 = John B. | year = 1976 | isbn = 0-201-01984-1 | title = A First Course In Abstract Algebra | edition = 2nd | publisher = [[Addison-Wesley]] | location = Reading }}
* {{Citation | last1= Fricke | first1= Robert|author1-link=Robert Fricke | last2= Weber | first2= Heinrich Martin | author2-link= Heinrich Martin Weber | title= Lehrbuch der Algebra | language=de|url= http://resolver.sub.uni-goettingen.de/purl?PPN234788267 | publisher= Vieweg | year= 1924 | jfm= 50.0042.03}}
* {{Citation|title=''p''-adic numbers|
last=Gouvêa|first=Fernando Q.|author-link=Fernando Q. Gouvêa|edition=2nd|year=1997|publisher=Springer|series=Universitext}}
* {{Citation|title=A Guide to Groups, Rings, and Fields|
last=Gouvêa|first=Fernando Q.|author-link=Fernando Q. Gouvêa|isbn=978-0-88385-355-9|year=2012|publisher=Mathematical Association of America}}
* {{springer|title=Field|id=p/f040090}}
* {{Citation|last1=Hensel|first1=Kurt|author1-link=Kurt Hensel|title=Über eine neue Begründung der Theorie der algebraischen Zahlen|journal=Journal für die Reine und Angewandte Mathematik|
issn=0075-4102|volume=128|pages=1–32|year=1904|language=de|jfm=35.0227.01|url=https://eudml.org/doc/149187}}
* {{Citation| last=Jacobson| first=Nathan| author-link=Nathan Jacobson| year=2009| title=Basic algebra| edition=2nd| volume = 1 | publisher=Dover| isbn = 978-0-486-47189-1}}
* {{Citation|mr=0679774|first1=Uwe|last1=Jannsen|first2=Kay|last2=Wingberg|title=Die Struktur der absoluten Galoisgruppe 𝔭-adischer Zahlkörper. [The structure of the absolute Galois group of 𝔭-adic number fields]|journal=Invent. Math.|volume=70|year=1982|issue=1|pages=71–98|url=http://epub.uni-regensburg.de/26689/|doi=10.1007/bf01393199|bibcode=1982InMat..70...71J|s2cid=119378923}}
* {{Citation|last=Kleiner|first=Israel|editor1-first=Israel|editor1-last=Kleiner|author-link=Israel Kleiner (mathematician)|title=A history of abstract algebra|publisher=Birkhäuser|year=2007|isbn=978-0-8176-4684-4|mr=2347309|doi=10.1007/978-0-8176-4685-1}}
* {{Citation|last=Kiernan|first=B. Melvin|title=The development of Galois theory from Lagrange to Artin|journal=Archive for History of Exact Sciences
|volume=8|year=1971|number=1–2|pages=40–154|mr=1554154|doi=10.1007/BF00327219|s2cid=121442989}}
* {{Citation|last1=Kuhlmann|first=Salma|title=Ordered exponential fields|series=Fields Institute Monographs|volume=12|publisher=American Mathematical Society|year=2000|isbn=0-8218-0943-1|mr=1760173}}
* {{Citation|first=Serge|last=Lang|author-link=Serge Lang|title=Algebra|series=Graduate Texts in Mathematics|volume=211|edition=3rd|publisher=Springer|year=2002|isbn=0-387-95385-X|doi=10.1007/978-1-4613-0041-0}}
* {{Citation|first1=Rudolf|last1=Lidl|first2=Harald|last2=Niederreiter|author2-link=Harald Niederreiter|title=Finite fields| edition=2nd|year=2008|isbn=978-0-521-06567-2|publisher=Cambridge University Press|zbl=1139.11053}}
* {{Citation|last=Lorenz|first=Falko|title=Algebra, Volume II: Fields with Structures, Algebras and Advanced Topics|year=2008|isbn=978-0-387-72487-4|publisher=Springer}}
* {{Citation|last1=Marker|first1=David|last2=Messmer|first2=Margit|last3=Pillay|first3=Anand|title=Model theory of fields|series=Lecture Notes in Logic|volume=5|edition=2nd|publisher=Association for Symbolic Logic|year=2006|isbn=978-1-56881-282-3|mr=2215060|citeseerx=10.1.1.36.8448|url-access=registration|url=https://archive.org/details/modeltheoryoffie0000mark}}
* {{ citation | last1 = McCoy | first1 = Neal H. | title = Introduction To Modern Algebra, Revised Edition | location = Boston | publisher = [[Allyn and Bacon]] | year = 1968 | lccn = 68015225 }}
* {{Citation|last1=Mines|first1=Ray|last2=Richman|first2=Fred|last3=Ruitenburg|first3=Wim|title=A course in constructive algebra|series=Universitext|publisher=Springer|year=1988|isbn=0-387-96640-4|mr=919949|doi=10.1007/978-1-4419-8640-5}}
* {{citation
| last = Moore | first = E. Hastings | author-link = E. H. Moore
| doi = 10.1090/S0002-9904-1893-00178-X
| issue = 3
| journal = [[Bulletin of the American Mathematical Society]]
| mr = 1557275
| pages = 73–78
| title = A doubly-infinite system of simple groups
| volume = 3
| year = 1893| doi-access = free
}}
* {{Citation|last=Prestel|first=Alexander|title=Lectures on formally real fields
|series=Lecture Notes in Mathematics |volume=1093|publisher=Springer|year=1984|isbn=3-540-13885-4|mr=769847|doi=10.1007/BFb0101548}}
* {{Citation|last=Ribenboim|first=Paulo|author-link=Paulo Ribenboim|title=The theory of classical valuations|series=Springer Monographs in Mathematics|publisher=Springer|year=1999|isbn=0-387-98525-5|mr=1677964| doi=10.1007/978-1-4612-0551-7}}
* {{Citation|last=Scholze|first=Peter|author-link=Peter Scholze|chapter=Perfectoid spaces and their Applications|year=2014|chapter-url=http://www.math.uni-bonn.de/people/scholze/ICM.pdf|title=Proceedings of the International Congress of Mathematicians 2014|url=http://www.icm2014.org/en/vod/proceedings.html|isbn=978-89-6105-804-9}}
* {{Citation|last=Schoutens|first=Hans|isbn=978-3-642-13367-1|title=The Use of Ultraproducts in Commutative Algebra|year=2002|publisher=Springer|series=Lecture Notes in Mathematics|volume=1999}}
* {{Citation|last=Serre|first=Jean-Pierre|author-link=Jean-Pierre Serre|title=A course in arithmetic. Translation of ''Cours d'arithmetique''|edition=2nd|orig-year=1978|series=Graduate Text in Mathematics|volume=7|publisher=Springer|zbl=0432.10001|isbn=9780387900407|year=1996|url-access=registration|url=https://archive.org/details/courseinarithmet00serr}}
* {{Citation|last=Serre|first=Jean-Pierre|author-link=Jean-Pierre Serre|title=Local fields|series=Graduate Texts in Mathematics|volume=67|publisher=Springer|year=1979|isbn=0-387-90424-7|mr=554237}}
* {{Citation|first=Jean-Pierre|last=Serre|author-link=Jean-Pierre Serre|title=Topics in Galois theory|isbn=0-86720-210-6|year=1992|publisher=Jones and Bartlett Publishers|zbl=0746.12001}}
* {{Citation | last1=Serre | first1=Jean-Pierre | author1-link= Jean-Pierre Serre | title=Galois cohomology | publisher=[[Springer-Verlag]] | location=Berlin, New York | series=Springer Monographs in Mathematics | isbn=978-3-540-42192-4 | mr=1867431 | year=2002 | zbl=1004.12003 | others=Translated from the French by [[Patrick Ion]]}}
* {{Citation|last=Sharpe|first=David|title=Rings and factorization|isbn=0-521-33718-6|year=1987|publisher=Cambridge University Press|zbl=0674.13008|url-access=registration|url=https://archive.org/details/ringsfactorizati0000shar}}
* {{Citation
| last1=Steinitz | first1=Ernst | author1-link=Ernst Steinitz
| title=Algebraische Theorie der Körper |trans-title=Algebraic Theory of Fields
| url=http://resolver.sub.uni-goettingen.de/purl?GDZPPN002167042
| year=1910
| journal=[[Journal für die reine und angewandte Mathematik]]
| issn=0075-4102 | volume=1910 | issue=137 | pages=167–309
| jfm=41.0445.03 | doi=10.1515/crll.1910.137.167
| s2cid=120807300 }}
* {{ Citation | last1 = Tits | first1 = Jacques | author-link=Jacques Tits | chapter = Sur les analogues algébriques des groupes semi-simples complexes | title = Colloque d'algèbre supérieure, tenu à Bruxelles du 19 au 22 décembre 1956, Centre Belge de Recherches Mathématiques Établissements Ceuterick, Louvain | publisher = Librairie Gauthier-Villars | place = Paris | year = 1957 | pages = 261–289 }}
* {{Citation|title=Galois Theory of Linear Differential Equations|first1=M.|last1=van der Put|first2=M. F.|last2=Singer|year=2003|publisher=Springer|series=Grundlehren der mathematischen Wissenschaften|volume=328|url=http://www4.ncsu.edu/~singer/papers/dbook2.ps}}
* {{Citation|last=von Staudt|first=Karl Georg Christian|author-link=Karl Georg Christian von Staudt |url=https://books.google.com/books?id=XwEHAAAAcAAJ&pg=PA127|title=Beiträge zur Geometrie der Lage (Contributions to the Geometry of Position)|volume=2|location=Nürnberg (Germany)|publisher=Bauer and Raspe|year=1857}}
* {{Citation|last=Wallace|first=D. A. R.|year=1998|title=Groups, Rings, and Fields|series=SUMS|publisher=Springer|volume=151}}
* {{Citation|first=Seth|last=Warner|title=Topological fields|isbn=0-444-87429-1|year=1989|publisher=North-Holland|zbl=0683.12014}}
* {{citation|first=Lawrence C.|last= Washington|author-link=Lawrence C. Washington|title=Introduction to Cyclotomic Fields|series=Graduate Texts in Mathematics|volume= 83|publisher=Springer-Verlag |year= 1997|edition=2nd |isbn=0-387-94762-0 |mr=1421575|doi=10.1007/978-1-4612-1934-7}}
* {{Citation|last=Weber|first=Heinrich|author-link= Heinrich Martin Weber |title=Die allgemeinen Grundlagen der Galois'schen Gleichungstheorie|journal=Mathematische Annalen|issn=0025-5831
|volume=43|issue=4|pages=521–549|year=1893|language=de|doi=10.1007/BF01446451|jfm=25.0137.01|s2cid=120528969|url=https://eudml.org/doc/157689}}

{{refend}}


== Спољашње везе ==
== Спољашње везе ==
{{Commons category|Algebraic number field}}
* [http://www.apronus.com/provenmath/fields.htm Поља - дефиниција и основна својства.]
* [http://www.apronus.com/provenmath/fields.htm Поља - дефиниција и основна својства.]
* [http://www.math.uconn.edu/~kconrad/blurbs/gradnumthy/unittheorem.pdf Dirichlet’s unit theorem], Keith Conrad

{{Authority control}}
{{Портал бар|Математика}}


{{Портал|Математика}}
[[Категорија:Алгебра]]
[[Категорија:Алгебра]]
[[Категорија:Апстрактна алгебра]]
[[Категорија:Апстрактна алгебра]]

Верзија на датум 20. децембар 2021. у 00:23

У апстрактној алгебри поље алгебарских бројева се означава са F и представља коначно проширење поља рационалних бројева Q, то јест, поље које садржи поље рационалних бројева и има коначну димензију, када се посматра као векторски простор над Q. Ова поља су врло важна у теорији бројева и представљају центар студија која се баве теоријом алгебарских бројева.

Појам се ослања на сам концепт поља у математици, које представља алгебарску структуру сачињену од скупа елемената и две операције дефинисане на том скупу. Те операције се називају сабирање и множење и да би чиниле поље морају имати својство дистрибутивности.

Концепт поља је увео Дедекинд, који је користио немачку реч Körper (тело) за овај појам.[1] Најједноставнији пример је управо поље рационалних бројева Q. Поље реалних бројева R и поље комплексних бројева C су такође примери поља алгебарских бројева.

Дефиниција

Предуслови

The notion of algebraic number field relies on the concept of a field. A field consists of a set of elements together with two operations, namely addition, and multiplication, and some distributivity assumptions. A prominent example of a field is the field of rational numbers, commonly denoted , together with its usual operations of addition and multiplication.

Another notion needed to define algebraic number fields is vector spaces. To the extent needed here, vector spaces can be thought of as consisting of sequences (or tuples)

(x1, x2, …)

whose entries are elements of a fixed field, such as the field . Any two such sequences can be added by adding the entries one per one. Furthermore, any sequence can be multiplied by a single element c of the fixed field. These two operations known as vector addition and scalar multiplication satisfy a number of properties that serve to define vector spaces abstractly. Vector spaces are allowed to be "infinite-dimensional", that is to say that the sequences constituting the vector spaces are of infinite length. If, however, the vector space consists of finite sequences

(x1, x2, …, xn),

the vector space is said to be of finite dimension, n.

Дефиниција

An algebraic number field (or simply number field) is a finite-degree field extension of the field of rational numbers. Here degree means the dimension of the field as a vector space over .

Примери

  • The smallest and most basic number field is the field of rational numbers. Many properties of general number fields are modeled after the properties of .
  • The Gaussian rationals, denoted (read as " adjoined "), form the first nontrivial example of a number field. Its elements are expressions of the form
    where both a and b are rational numbers and i is the imaginary unit. Such expressions may be added, subtracted, and multiplied according to the usual rules of arithmetic and then simplified using the identity
    .
    Explicitly,
    Non-zero Gaussian rational numbers are invertible, which can be seen from the identity
    It follows that the Gaussian rationals form a number field which is two-dimensional as a vector space over .
  • More generally, for any square-free integer , the quadratic field is a number field obtained by adjoining the square root of to the field of rational numbers. Arithmetic operations in this field are defined in analogy with the case of Gaussian rational numbers, .
  • Cyclotomic field
    , where
    is a number field obtained from by adjoining a primitive th root of unity . This field contains all complex nth roots of unity and its dimension over is equal to , where is the Euler totient function.

Види још

Референце

  1. ^ J J O'Connor and E F Robertson, The development of Ring Theory, September 2004.

Литература

Спољашње везе