Апстрактна алгебра

Из Википедије, слободне енциклопедије
Пермутације Рубикове коцке имају структуру групе. Група је основни концепт унутар апстрактне алгебре.

Апстрактна алгебра је грана математике, која се бави општим алгебарским структурама као што су групе, прстени, поља, модули, векторски простори, и алгебре. Данас се често користи израз алгебра умјесто апстрактна алгебра.

Израз апстрактна алгебра се данас односи на проучавање свих алгебарских структура, и разликује се од елементарне алгебре коју обично уче дјеца, а која се бави исправним правилима за манипулисање формулама и алгебарским изразима који укључују реалне и комплексне бројеве и непознате.

Савремена математика и математичка физика интензивно користе апстрактну алгебру: на примјер, теоријска физика се користи лијевим алгебрама. Области као што су алгебарска теорија бројева, алгебарска топологија, и алгебарска геометрија примјењују алгебарске методе на друге гране математике.

Двије гране математике које проучавају својства алгебарских структура посматраних у целини, су универзална алгебра и теорија категорија. Алгебарске структуре, заједно са њима повезаним хомоморфизмима дају категорије. Теорија категорија је моћан формализам за проучавање и упоређивање различитих алгебарских структура.


Спољашње везе[уреди]

Викиостава
Викимедијина остава има још мултимедијалних датотека везаних за: Апстрактна алгебра