Пређи на садржај

Дистрибутивност — разлика између измена

С Википедије, слободне енциклопедије
Садржај обрисан Садржај додат
.
Ред 1: Ред 1:
{{Short description|Својство које укључује две математичке операције}}
{{Правила трансформације}}
{{Правила трансформације}}
'''Дистрибутивност''' је алгебарска особина понашања оператора сабирања и множења над алгебарском структуром <math>(K,\oplus,\cdot)</math>. Конкретно када се производ два елемента скупа -{K}- може представити ако збир производа једног од њих са још два елемента који у збиру дају другог, каже се да закон дистрибуције важи за дату алгебарску структуру. Множење може бити лево и десно те отуда два различита услова:<br /><br />
# <math>a \cdot (b \oplus c) = a \cdot b \oplus a \cdot c</math> (дистрибутивност слева)
# <math>(b \oplus c) \cdot a = b \cdot a \oplus c \cdot a</math> (дистрибутивност здесна)


'''Дистрибутивност''' је алгебарска особина понашања оператора сабирања и множења над алгебарском структуром <math>(K,\oplus,\cdot)</math>. Конкретно када се производ два елемента скупа -{K}- може представити ако збир производа једног од њих са још два елемента који у збиру дају другог, каже се да закон дистрибуције важи за дату алгебарску структуру. Множење може бити лево и десно те отуда два различита услова:
: <math>a \cdot (b \oplus c) = a \cdot b \oplus a \cdot c</math> (дистрибутивност слева)
: <math>(b \oplus c) \cdot a = b \cdot a \oplus c \cdot a</math> (дистрибутивност здесна)


Ако су задовољени само први или само други услов, каже се да се „лево односно десно множење лепо понаша према сабирању“. Уколико су оба испуњена, каже се да се „операција множења лепо понаша према сабирању“ тј. да је дистрибутивна.
Ако су задовољени само први или само други услов, каже се да се „лево односно десно множење лепо понаша према сабирању“. Уколико су оба испуњена, каже се да се „операција множења лепо понаша према сабирању“ тј. да је дистрибутивна.


== Литература ==
== Дефиниција ==
{{rut}}
* {{cite book|author=Ayres, Frank|title=Schaum's Outline of Modern Abstract Algebra|location=|publisher=McGraw-Hill|edition=1st|year=1965|isbn=978-0-07-002655-1|pages=}}
Given a [[Set (mathematics)|set]] <math>S</math> and two [[binary operator]]s <math>\,*\,</math> and <math>\,+\,</math> on <math>S,</math>

the operation <math>\,*\,</math> is {{em|left-distributive}} over (or with respect to) <math>\,+\,</math> if, [[given any]] elements <math>x, y, \text{ and } z</math> of <math>S,</math>
<math display=block>x * (y + z) = (x * y) + (x * z),</math>
the operation <math>\,*\,</math> is {{em|right-distributive}} over <math>\,+\,</math> if, given any elements <math>x, y, \text{ and } z</math> of <math>S,</math>
<math display=block>(y + z) * x = (y * x) + (z * x),</math> and
the operation <math>\,*\,</math> is {{em|distributive}} over <math>\,+\,</math> if it is left- and right-distributive.<ref>[http://mathonline.wikidot.com/distributivity-of-binary-operations Distributivity of Binary Operations] from Mathonline</ref>

When <math>\,*\,</math> is [[commutative]], the three conditions above are [[Logical equivalence|logically equivalent]].

== Значење ==

The operators used for examples in this section are those of the usual [[addition]] <math>\,+\,</math> and [[multiplication]] <math>\,\cdot.\,</math>

If the operation denoted <math>\cdot</math> is not commutative, there is a distinction between left-distributivity and right-distributivity:

<math display="block">a \cdot \left( b \pm c \right) = a \cdot b \pm a \cdot c \qquad \text{ (left-distributive) }</math>
<math display="block">(a \pm b) \cdot c = a \cdot c \pm b \cdot c \qquad \text{ (right-distributive) }.</math>

In either case, the distributive property can be described in words as:

To multiply a [[Summation|sum]] (or [[Difference (mathematics)|difference]]) by a factor, each summand (or [[minuend]] and [[subtrahend]]) is multiplied by this factor and the resulting products are added (or subtracted).

If the operation outside the parentheses (in this case, the multiplication) is commutative, then left-distributivity implies right-distributivity and vice versa, and one talks simply of {{em|distributivity}}.

One example of an operation that is "only" right-distributive is division, which is not commutative:
<math display="block">(a \pm b) \div c = a \div c \pm b \div c.</math>
In this case, left-distributivity does not apply:
<math display="block">a \div(b \pm c) \neq a \div b \pm a \div c</math>

The distributive laws are among the axioms for [[Ring (mathematics)|rings]] (like the ring of [[integer]]s) and [[Field (mathematics)|fields]] (like the field of [[rational number]]s). Here multiplication is distributive over addition, but addition is not distributive over multiplication. Examples of structures with two operations that are each distributive over the other are [[Boolean algebras]]{{sfn|Davey|Priestley|1990|pp=109, 131, 144}} such as the [[algebra of sets]] or the [[switching algebra]].<ref>Stoll, Robert R.; ''Set Theory and Logic'', Mineola, N.Y.: Dover Publications (1979) {{ISBN|0-486-63829-4}}. [https://books.google.com/books?id=3-nrPB7BQKMC&pg=PA16#v=onepage&q&f=false "The Algebra of Sets"].</ref><ref>Courant, Richard, Herbert Robbins, Ian Stewart, ''What is mathematics?: An Elementary Approach to Ideas and Methods'', Oxford University Press US, 1996. {{ISBN|978-0-19-510519-3}}. [https://books.google.com/books?id=UfdossHPlkgC&pg=PA17-IA8&dq=%22algebra+of+sets%22&hl=en&ei=k8-RTdXoF4K2tgfM-p1v&sa=X&oi=book_result&ct=result&resnum=3&ved=0CDYQ6AEwAg#v=onepage&q=%22algebra%20of%20sets%22&f=false "SUPPLEMENT TO CHAPTER II THE ALGEBRA OF SETS"].</ref>

== Примери ==

=== Реални бројеви ===

In the following examples, the use of the distributive law on the set of real numbers <math>\R</math> is illustrated. When multiplication is mentioned in elementary mathematics, it usually refers to this kind of multiplication. From the point of view of algebra, the real numbers form a [[field (mathematics)|field]], which ensures the validity of the distributive law.

{{glossary}}
{{term|First example (mental and written multiplication)}}{{defn|During mental arithmetic, distributivity is often used unconsciously:
<math display="block">6 \cdot 16 = 6 \cdot (10 + 6) = 6\cdot 10 + 6 \cdot 6 = 60 + 36 = 96</math>

Thus, to calculate <math>6 \cdot 16</math> in one's head, one first multiplies <math>6 \cdot 10</math> and <math>6 \cdot 6</math> and add the intermediate results. Written multiplication is also based on the distributive law.
}}
{{term|Second example (with variables)}}{{defn|
<math display="block">3 a^2 b \cdot (4 a - 5 b) = 3 a^2 b \cdot 4a - 3 a^2 b \cdot 5 b = 12 a^3 b - 15 a^2 b^2</math>
}}
{{term|Third example (with two sums)}}{{defn|
<math display="block">\begin{align}
(a + b) \cdot (a - b) & = a \cdot (a - b) + b \cdot (a - b) = a^2 - ab + ba - b^2 = a^2 - b^2 \\
& = (a + b) \cdot a - (a + b) \cdot b = a^2 + ba - ab - b^2 = a^2 - b^2 \\
\end{align}</math>

Here the distributive law was applied twice, and it does not matter which bracket is first multiplied out.
}}
{{term|Fourth example}}{{defn|Here the distributive law is applied the other way around compared to the previous examples. Consider
<math display="block">12 a^3 b^2 - 30 a^4 b c + 18 a^2 b^3 c^2 \,.</math>

Since the factor <math>6 a^2 b</math> occurs in all summands, it can be factored out. That is, due to the distributive law one obtains
<math display="block">12 a^3 b^2 - 30 a^4 b c + 18 a^2 b^3 c^2 = 6 a^2 b \left(2 a b - 5 a^2 c + 3 b^2 c^2\right).</math>
}}
{{glossary end}}

=== Матрице ===

The distributive law is valid for [[matrix multiplication]]. More precisely,
<math display="block">(A + B) \cdot C = A \cdot C + B \cdot C</math>
for all <math>l \times m</math>-matrices <math>A, B</math> and <math>m \times n</math>-matrices <math>C,</math> as well as
<math display="block">A \cdot (B + C) = A \cdot B + A \cdot C</math>
for all <math>l \times m</math>-matrices <math>A</math> and <math>m \times n</math>-matrices <math>B, C.</math>
Because the commutative property does not hold for matrix multiplication, the second law does not follow from the first law. In this case, they are two different laws.

=== Други примери ===

* [[Ordinal arithmetic#Multiplication|Multiplication]] of [[ordinal number]]s, in contrast, is only left-distributive, not right-distributive.
* The [[cross product]] is left- and right-distributive over [[vector addition]], though not commutative.
* The [[Union (set theory)|union]] of sets is distributive over [[Intersection (set theory)|intersection]], and intersection is distributive over union.
* [[Logical disjunction]] ("or") is distributive over [[logical conjunction]] ("and"), and vice versa.
* For [[real number]]s (and for any [[totally ordered set]]), the maximum operation is distributive over the minimum operation, and vice versa: <math display="block">\max(a, \min(b, c)) = \min(\max(a, b), \max(a, c)) \quad \text{ and } \quad \min(a, \max(b, c)) = \max(\min(a, b), \min(a, c)).</math>
* For [[integer]]s, the [[greatest common divisor]] is distributive over the [[least common multiple]], and vice versa: <math display="block">\gcd(a, \operatorname{lcm}(b, c)) = \operatorname{lcm}(\gcd(a, b), \gcd(a, c)) \quad \text{ and } \quad \operatorname{lcm}(a, \gcd(b, c)) = \gcd(\operatorname{lcm}(a, b), \operatorname{lcm}(a, c)).</math>
* For real numbers, addition distributes over the maximum operation, and also over the minimum operation: <math display="block">a + \max(b, c) = \max(a + b, a + c) \quad \text{ and } \quad a + \min(b, c) = \min(a + b, a + c).</math>
* For [[Binomial (polynomial)|binomial]] multiplication, distribution is sometimes referred to as the [[FOIL Method]]<ref>Kim Steward (2011) [http://www.wtamu.edu/academic/anns/mps/math/mathlab/beg_algebra/beg_alg_tut28_multpoly.htm Multiplying Polynomials] from Virtual Math Lab at [[West Texas A&M University]]</ref> (First terms <math>a c,</math> Outer <math>a d,</math> Inner <math>b c,</math> and Last <math>b d</math>) such as: <math>(a + b) \cdot (c + d) = a c + a d + b c + b d.</math>
* In all [[semirings]], including the [[complex number]]s, the [[quaternion]]s, [[polynomial]]s, and [[matrix (mathematics)|matrices]], multiplication distributes over addition: <math>u (v + w) = u v + u w, (u + v)w = u w + v w.</math>
* In all [[Algebra over a field|algebras over a field]], including the [[octonion]]s and other [[non-associative algebra]]s, multiplication distributes over addition.<ref>{{ cite book | last=Albert | first=A. Adrian | author-link=Abraham Adrian Albert | year=2003 | orig-year=1939 | title=Structure of algebras | publisher=[[American Mathematical Society]] | series=American Mathematical Society Colloquium Publ. | volume=24 | edition=Corrected reprint of the revised 1961 | location=New York | isbn=0-8218-1024-3 | url=https://books.google.com/books?isbn=0821810243 | zbl=0023.19901 }}</ref><ref>{{ cite journal | last=Albert | first=A. Adrian | author-link=Abraham Adrian Albert | year=1948a | title=Power-associative rings | jstor=1990399 | zbl=0033.15402 | mr=0027750 | journal=[[Transactions of the American Mathematical Society]] | issn=0002-9947 | volume=64 | pages=552–593 | doi=10.2307/1990399 | doi-access=free }}</ref>

== Пропозициона логика ==

=== Rule of replacement ===

In standard truth-functional propositional logic, {{em|distribution}}<ref>[[Elliott Mendelson]] (1964) ''Introduction to Mathematical Logic'', page 21, D. Van Nostrand Company</ref><ref>[[Alfred Tarski]] (1941) ''Introduction to Logic'', page 52, [[Oxford University Press]]</ref> in logical proofs uses two valid [[Rule of replacement|rules of replacement]]<ref>{{cite book |last=Copi |first=Irving M. |last2=Cohen |first2=Carl |title=Introduction to Logic |publisher=Prentice Hall |year=2005}}</ref><ref>{{cite book |title=A Concise Introduction to Logic 4th edition |url=https://archive.org/details/studyguidetoacco00burc |url-access=registration |last=Hurley |first=Patrick |year=1991 |publisher=Wadsworth Publishing }}</ref> to expand individual occurrences of certain [[logical connective]]s, within some [[Logical formula|formula]],<ref>{{cite web|last1=Cogwheel|title=What is the difference between logical and conditional /operator/|url=https://stackoverflow.com/questions/3154132/what-is-the-difference-between-logical-and-conditional-and-or-in-c|website=Stack Overflow|access-date=9 April 2015}}</ref> into separate applications of those connectives across subformulas of the given formula. The rules are
<math display="block">(P \land (Q \lor R)) \Leftrightarrow ((P \land Q) \lor (P \land R)) \qquad \text{ and } \qquad (P \lor (Q \land R)) \Leftrightarrow ((P \lor Q) \land (P \lor R))</math>
where "<math>\Leftrightarrow</math>", also written <math>\,\equiv,\,</math> is a [[metalogic]]al [[Symbol (formal)|symbol]] representing "can be replaced in a proof with" or "is [[Logical equivalence|logically equivalent]] to".

=== Truth functional connectives ===

{{em|Distributivity}} is a property of some logical connectives of truth-functional [[propositional logic]]. The following logical equivalences demonstrate that distributivity is a property of particular connectives. The following are truth-functional [[Tautology (logic)|tautologies]].
<math display="block">\begin{alignat}{13}
&(P &&\;\land &&(Q \lor R)) &&\;\Leftrightarrow\;&& ((P \land Q) &&\;\lor (P \land R)) && \quad\text{ Distribution of } && \text{ conjunction } && \text{ over } && \text{ disjunction } \\
&(P &&\;\lor &&(Q \land R)) &&\;\Leftrightarrow\;&& ((P \lor Q) &&\;\land (P \lor R)) && \quad\text{ Distribution of } && \text{ disjunction } && \text{ over } && \text{ conjunction } \\
&(P &&\;\land &&(Q \land R)) &&\;\Leftrightarrow\;&& ((P \land Q) &&\;\land (P \land R)) && \quad\text{ Distribution of } && \text{ conjunction } && \text{ over } && \text{ conjunction } \\
&(P &&\;\lor &&(Q \lor R)) &&\;\Leftrightarrow\;&& ((P \lor Q) &&\;\lor (P \lor R)) && \quad\text{ Distribution of } && \text{ disjunction } && \text{ over } && \text{ disjunction } \\
&(P &&\to &&(Q \to R)) &&\;\Leftrightarrow\;&& ((P \to Q) &&\to (P \to R)) && \quad\text{ Distribution of } && \text{ implication } && \text{ } && \text{ } \\
&(P &&\to &&(Q \leftrightarrow R)) &&\;\Leftrightarrow\;&& ((P \to Q) &&\leftrightarrow (P \to R)) && \quad\text{ Distribution of } && \text{ implication } && \text{ over } && \text{ equivalence } \\
&(P &&\to &&(Q \land R)) &&\;\Leftrightarrow\;&& ((P \to Q) &&\;\land (P \to R)) && \quad\text{ Distribution of } && \text{ implication } && \text{ over } && \text{ conjunction } \\
&(P &&\;\lor &&(Q \leftrightarrow R)) &&\;\Leftrightarrow\;&& ((P \lor Q) &&\leftrightarrow (P \lor R)) && \quad\text{ Distribution of } && \text{ disjunction } && \text{ over } && \text{ equivalence } \\
\end{alignat}</math>

;Двострука дистрибуција:
<math display="block">\begin{alignat}{13}
&((P \land Q) &&\;\lor (R \land S)) &&\;\Leftrightarrow\;&& (((P \lor R) \land (P \lor S)) &&\;\land ((Q \lor R) \land (Q \lor S))) && \\
&((P \lor Q) &&\;\land (R \lor S)) &&\;\Leftrightarrow\;&& (((P \land R) \lor (P \land S)) &&\;\lor ((Q \land R) \lor (Q \land S))) && \\
\end{alignat}</math>


== Види још ==
== Види још ==
Ред 15: Ред 128:
* [[Комутативност]]
* [[Комутативност]]


== Референце ==
{{клица-математика}}
{{reflist|}}

== Литература ==
{{refbegin|30em}}
* {{cite book|author=Ayres, Frank|title=Schaum's Outline of Modern Abstract Algebra|location=|publisher=McGraw-Hill|edition=1st|year=1965|isbn=9780070026551|pages=}}
* {{Cite book| first=Sheldon | last=Axler | title=Linear Algebra Done Right, 2e | publisher=Springer | year=1997 | isbn=0-387-98258-2}}
* {{Cite book |last1=Copi |first1=Irving M. |last2=Cohen |first2=Carl |title=Introduction to Logic |publisher=Prentice Hall |year=2005 |edition=12th |isbn=9780131898349 }}
* {{Cite book|first=Joseph|last=Gallian|title=Contemporary Abstract Algebra |edition=6e|year=2006|isbn=0-618-51471-6|publisher=Houghton Mifflin }}
* {{Cite book| first=Frederick | last=Goodman | title=Algebra: Abstract and Concrete, Stressing Symmetry |edition=2e | publisher=Prentice Hall | year=2003 | isbn=0-13-067342-0}}
* {{cite book |first1=Patrick J. |last1=Hurley |first2=Lori |last2=Watson |title=A Concise Introduction to Logic |url=https://books.google.com/books?id=l-W5DQAAQBAJ&pg=PA675 |date=2016 |publisher=Cengage Learning |isbn=978-1-337-51478-1 |edition=12th}}
* {{cite web |url=http://www.ethnomath.org/resources/lumpkin1997.pdf |last=Lumpkin |first=B. |year=1997 |title=The Mathematical Legacy Of Ancient Egypt — A Response To Robert Palter |archive-url=https://web.archive.org/web/20070713072942/http://www.ethnomath.org/resources/lumpkin1997.pdf |archive-date=13 July 2007 |type=Unpublished manuscript}}
* {{cite book |first1=Robins R. |last1=Gay |first2=Charles C. D. |last2=Shute |year=1987 |title=The Rhind Mathematical Papyrus: An Ancient Egyptian Text |publisher=British Museum |isbn=0-7141-0944-4}}
* {{springer|title=Commutativity|id=p/c023420|ref=none}}
* Krowne, Aaron, {{PlanetMath|title=Commutative|urlname=Commutative}}, Accessed 8 August 2007.
* {{MathWorld|title=Commute|urlname=Commute}}, Accessed 8 August 2007.
* {{cite web |url=http://planetmath.org/?op=getuser&id=2760 |title=Yark |ref={{harvid|Yark}}}} {{PlanetMath|title=Examples of non-commutative operations|urlname=ExampleOfCommutative}}, Accessed 8 August 2007
* {{cite web |last1=O'Conner |first1=J.J. |last2=Robertson |first2=E.F. |url=http://www-history.mcs.st-andrews.ac.uk/HistTopics/Real_numbers_1.html |title=History of real numbers |work=MacTutor |access-date=8 August 2007 }}
* {{cite web |last1=Cabillón |first1=Julio |last2=Miller |first2=Jeff |url=http://jeff560.tripod.com/c.html |title=Earliest Known Uses Of Mathematical Terms |access-date=22 November 2008}}
* {{cite web |last1=O'Conner |first1=J.J. |last2=Robertson |first2=E.F. |url=http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Servois.html |title=biography of François Servois |work=MacTutor |access-date=8 August 2007 }}
* Brown, Frank Markham (2003), ''Boolean Reasoning: The Logic of Boolean Equations'', 1st edition, Kluwer Academic Publishers, Norwell, MA. 2nd edition, Dover Publications, Mineola, NY.
* [[Chen Chung Chang|Chang, C.C.]] and [[Howard Jerome Keisler|Keisler, H.J.]] (1973), ''Model Theory'', North-Holland, Amsterdam, Netherlands.
* Kohavi, Zvi (1978), ''Switching and Finite Automata Theory'', 1st edition, McGraw–Hill, 1970. 2nd edition, McGraw–Hill, 1978.
* [[Robert R. Korfhage|Korfhage, Robert R.]] (1974), ''Discrete Computational Structures'', Academic Press, New York, NY.
* [[Joachim Lambek|Lambek, J.]] and Scott, P.J. (1986), ''Introduction to Higher Order Categorical Logic'', Cambridge University Press, Cambridge, UK.
* Mendelson, Elliot (1964), ''Introduction to Mathematical Logic'', D. Van Nostrand Company.
* {{Cite book|last=Hofstadter |first=Douglas |author-link=Douglas Hofstadter |title=[[Gödel, Escher, Bach|Gödel, Escher, Bach: An Eternal Golden Braid]] |year=1979 |publisher=[[Basic Books]] |isbn=978-0-465-02656-2 }}
* [[Kevin C. Klement|Klement, Kevin C.]] (2006), "Propositional Logic", in James Fieser and Bradley Dowden (eds.), ''[[Internet Encyclopedia of Philosophy]]'', [http://www.iep.utm.edu/p/prop-log.htm Eprint].
* [http://www.qedeq.org/current/doc/math/qedeq_formal_logic_v1_en.pdf Formal Predicate Calculus], contains a systematic formal development along the lines of [[Propositional calculus#Alternative calculus|Alternative calculus]]
* ''[http://www.fecundity.com/logic/ forall x: an introduction to formal logic]'', by [[P.D. Magnus]], covers formal semantics and [[proof theory]] for sentential logic.
* {{citation|last=Fraleigh|first=John B.|title=A First Course in Abstract Algebra|edition=2nd|publisher=Addison-Wesley|place=Reading|year=1976|isbn=0-201-01984-1}}
* {{citation|last=Hall Jr.|first= Marshall|title=The Theory of Groups|publisher=Macmillan|place=New York|year=1959}}
* {{citation|last1=Hardy|first1=Darel W.|last2=Walker|first2=Carol L.|title=Applied Algebra: Codes, Ciphers and Discrete Algorithms|publisher=Prentice-Hall|place=Upper Saddle River, NJ|year=2002|isbn=0-13-067464-8}}
* {{citation|last=Rotman|first=Joseph J.|title=The Theory of Groups: An Introduction|publisher=Allyn and Bacon|place=Boston|year=1973|edition=2nd}}
* Attila Nagy (2001). ''Special Classes of Semigroups''. [[Springer Science+Business Media|Springer]]. {{isbn|978-0-7923-6890-8}}
* {{citation | first=John M. | last=Howie | author-link=John Mackintosh Howie | title=Fundamentals of Semigroup Theory | series=London Mathematical Society Monographs. New Series | volume=12 | year=1995 | publisher=Clarendon Press | location=Oxford | isbn=0-19-851194-9 | zbl=0835.20077 }}
* {{citation | last=Jacobson | first=Nathan | author-link=Nathan Jacobson | title=Lectures in Abstract Algebra | volume=I | publisher=D. Van Nostrand Company | year=1951 | isbn=0-387-90122-1}}
* {{Citation|last=Jacobson |first=Nathan |author-link=Nathan Jacobson |year=2009 |title=Basic algebra |edition=2nd |volume=1 |publisher=Dover |isbn=978-0-486-47189-1 }}
* {{citation | zbl=0945.20036 | last1=Kilp | first1=Mati | last2=Knauer | first2=Ulrich | last3=Mikhalev | first3=Alexander V. | title=Monoids, acts and categories. With applications to wreath products and graphs. A handbook for students and researchers| series=de Gruyter Expositions in Mathematics | volume=29 | location=Berlin | publisher=Walter de Gruyter | year=2000 | isbn=3-11-015248-7 }}
* {{citation | last=Lothaire | first=M. | author-link=M. Lothaire | others=Perrin, D.; Reutenauer, C.; Berstel, J.; Pin, J. E.; Pirillo, G.; Foata, D.; Sakarovitch, J.; Simon, I.; Schützenberger, M. P.; Choffrut, C.; Cori, R.; Lyndon, Roger; Rota, Gian-Carlo. Foreword by Roger Lyndon | editor1-first=M | editor1-last=Lothaire | title=Combinatorics on words | edition=2nd | series=Encyclopedia of Mathematics and Its Applications | volume=17 | publisher=[[Cambridge University Press]] | year=1997 | doi = 10.1017/CBO9780511566097 | isbn=0-521-59924-5 | mr = 1475463 | zbl=0874.20040 }}
* {{Citation | last1=Enderton | first1=Herbert |author1-link=Herbert Enderton| title=A Mathematical Introduction to Logic | publisher=Academic Press | location=Boston, MA | edition=2nd | isbn=978-0-12-238452-3 | year=2001}}
* {{citation|last=Gamut|first=L.T.F|author-link=L. T. F. Gamut|title=Logic, Language and Meaning|publisher=University of Chicago Press|year=1991|volume=1|pages=54&ndash;64|contribution=Chapter 2|oclc=21372380}}
* {{Citation|author=Rautenberg, W.|author-link=Wolfgang Rautenberg|doi=10.1007/978-1-4419-1221-3|title=A Concise Introduction to Mathematical Logic|publisher=[[Springer Science+Business Media]] |location=[[New York City|New York]]|edition=3rd|isbn=978-1-4419-1220-6|year=2010}}.
* {{cite book|first=Lloyd|last=Humberstone|title=The Connectives|year=2011|publisher=MIT Press|isbn=978-0-262-01654-4}}
* {{ cite journal | last=Albert | first=A. Adrian | author-link=Abraham Adrian Albert | year=1948b | title=On right alternative algebras | jstor=1969457 | journal=[[Annals of Mathematics]] | volume=50 | pages=318–328 | doi=10.2307/1969457 }}
* {{ cite book | last1=Bremner | first1=Murray | last2=Murakami | first2=Lúcia | last3=Shestakov | first3=Ivan | year=2013 | orig-year=2006 | chapter=Chapter 86: Nonassociative Algebras | editor-last=Hogben | editor-first=Leslie | title=Handbook of Linear Algebra | edition=2nd | publisher=[[CRC Press]] | isbn=978-1-498-78560-0 | url=https://books.google.com/books?isbn=9781498785600 | chapter-url=https://www.math.uci.edu/~brusso/BremnerEtAl35pp.pdf | chapter-format=PDF }}
* {{ cite book | editor-last=Herstein | editor-first=I. N. | editor-link=Israel Nathan Herstein | year=2011 | orig-year=1965 | title=Some Aspects of Ring Theory: Lectures given at a Summer School of the Centro Internazionale Matematico Estivo (C.I.M.E.) held in Varenna (Como), Italy, August 23-31, 1965 | volume=37 | series=C.I.M.E. Summer Schools | edition=reprint | publisher=[[Springer-Verlag]] | isbn=3-6421-1036-3 | url=https://books.google.com/books?isbn=3642110363 }}
* {{ cite book | last=Jacobson | first=Nathan | author-link=Nathan Jacobson | year=1968 | title=Structure and representations of Jordan algebras | publisher=[[American Mathematical Society]] | location=Providence, R.I. | series=American Mathematical Society Colloquium Publications, Vol. XXXIX | mr=0251099 | isbn=978-0-821-84640-7 | url=https://books.google.com/books?isbn=9780821846407 }}
* {{ cite book | last1=Knus | first1=Max-Albert | last2=Merkurjev | first2=Alexander | author2-link=Alexander Merkurjev | last3=Rost | first3=Markus | author3-link=Markus Rost | last4=Tignol | first4=Jean-Pierre | year=1998 | title=The book of involutions | others=With a preface by J. Tits | zbl=0955.16001 | series=Colloquium Publications | publisher=[[American Mathematical Society]] | volume=44 | location=Providence, RI | isbn=0-8218-0904-0 | url=https://books.google.com/books?isbn=0821809040 }}
* {{ cite book | last=Koecher | first=Max | year=1999 | title=The Minnesota notes on Jordan algebras and their applications | editor1-first=Aloys | editor1-last=Krieg | editor2-first=Sebastian | editor2-last=Walcher | zbl=1072.17513 | series=Lecture Notes in Mathematics | volume=1710 | location=Berlin | publisher=[[Springer-Verlag]] | isbn=3-540-66360-6 | url=https://books.google.com/books?isbn=3540663606 }}
* {{ cite journal | last=Kokoris | first=Louis A. | year=1955 | title=Power-associative rings of characteristic two | publisher=[[American Mathematical Society]] | journal=[[Proceedings of the American Mathematical Society]] | volume=6 | issue=5 | pages=705–710 | doi=10.2307/2032920 | doi-access=free }}
* {{ cite journal | last=Kurosh | first=A.G. | year=1947 | title=Non-associative algebras and free products of algebras | journal=Mat. Sbornik | volume=20 | issue=62 | mr=20986 | zbl=0041.16803 }}
* {{ cite book | last1=McCrimmon | first1=Kevin | year=2004 | title=A taste of Jordan algebras | publisher=[[Springer-Verlag]] | location=Berlin, New York | series=Universitext | isbn=978-0-387-95447-9 | url=https://books.google.com/books?isbn=9780387954479 | doi=10.1007/b97489 | id=[http://www.math.virginia.edu/Faculty/McCrimmon/ Errata] | mr=2014924 | zbl=1044.17001 }}
* {{ cite journal | last=Mikheev | first=I.M. | year=1976 | title=Right nilpotency in right alternative rings | journal=[[Siberian Mathematical Journal]] | volume=17 | issue=1 | pages=178–180 | doi=10.1007/BF00969304 }}
* {{ cite book | last=Okubo | first=Susumu | year=2005 | orig-year=1995 | title=Introduction to Octonion and Other Non-Associative Algebras in Physics | publisher=[[Cambridge University Press]] | isbn=0-521-01792-0 | url=https://books.google.com/books?isbn=0521017920 | doi=10.1017/CBO9780511524479 | zbl=0841.17001 | series=Montroll Memorial Lecture Series in Mathematical Physics | volume=2 }}
* {{ cite book | last=Rosenfeld | first=Boris | year=1997 | title=Geometry of Lie groups | zbl=0867.53002 | series=Mathematics and its Applications | location=Dordrecht | volume=393 | publisher=Kluwer Academic Publishers | isbn=0-7923-4390-5 | url=https://books.google.com/books?isbn=0792343905 }}
* {{ cite book | last=Rowen | first=Louis Halle | year=2008 | title=Graduate Algebra: Noncommutative View | series=Graduate studies in mathematics | publisher=[[American Mathematical Society]] | isbn=0-8218-8408-5 | url=https://books.google.com/books?isbn=0821884085 }}
* {{ cite book | last=Schafer | first=Richard D. |author-link=Richard D. Schafer| year=1995 | orig-year=1966 | title=An Introduction to Nonassociative Algebras | publisher=Dover | isbn=0-486-68813-5 | url=https://books.google.com/books?isbn=0486688135 | zbl=0145.25601 }}
* {{ cite book | last1=Zhevlakov | first1=Konstantin A. | last2=Slin'ko | first2=Arkadii M. | last3=Shestakov | first3=Ivan P. | last4=Shirshov | first4=Anatoly I. | author-link4=Anatoly Shirshov | translator-last=Smith | translator-first=Harry F. | year=1982 | orig-year=1978 | title=Rings that are nearly associative |isbn=0-12-779850-1 | url=https://www.researchgate.net/publication/260600596_Rings_that_are_nearly_associative }}
{{refend}}


== Спољашње везе ==
{{Commons category-lat|Distributive property}}
* [http://www.cut-the-knot.org/Curriculum/Arithmetic/DistributiveLaw.shtml A demonstration of the Distributive Law] for integer arithmetic (from [[cut-the-knot]])
* {{springer|title=Boolean algebra|id=p/b016920}}
* [[Stanford Encyclopedia of Philosophy]]: "[http://plato.stanford.edu/entries/boolalg-math/ The Mathematics of Boolean Algebra]," by J. Donald Monk.
* McCune W., 1997. ''[http://www.cs.unm.edu/~mccune/papers/robbins/ Robbins Algebras Are Boolean]'' JAR 19(3), 263—276
* [http://demonstrations.wolfram.com/BooleanAlgebra/ "Boolean Algebra"] by [[Eric W. Weisstein]], [[Wolfram Demonstrations Project]], 2007.
* Burris, Stanley N.; Sankappanavar, H. P., 1981. ''[http://www.thoralf.uwaterloo.ca/htdocs/ualg.html A Course in Universal Algebra.]'' Springer-Verlag. {{ISBN|3-540-90578-2}}.
{{нормативна контрола}}
{{нормативна контрола}}



Верзија на датум 17. јул 2022. у 18:13

Дистрибутивност је алгебарска особина понашања оператора сабирања и множења над алгебарском структуром . Конкретно када се производ два елемента скупа K може представити ако збир производа једног од њих са још два елемента који у збиру дају другог, каже се да закон дистрибуције важи за дату алгебарску структуру. Множење може бити лево и десно те отуда два различита услова:

(дистрибутивност слева)
(дистрибутивност здесна)

Ако су задовољени само први или само други услов, каже се да се „лево односно десно множење лепо понаша према сабирању“. Уколико су оба испуњена, каже се да се „операција множења лепо понаша према сабирању“ тј. да је дистрибутивна.

Дефиниција

Given a set and two binary operators and on

the operation is left-distributive over (or with respect to) if, given any elements of

the operation is right-distributive over if, given any elements of
and the operation is distributive over if it is left- and right-distributive.[1]

When is commutative, the three conditions above are logically equivalent.

Значење

The operators used for examples in this section are those of the usual addition and multiplication

If the operation denoted is not commutative, there is a distinction between left-distributivity and right-distributivity:

In either case, the distributive property can be described in words as:

To multiply a sum (or difference) by a factor, each summand (or minuend and subtrahend) is multiplied by this factor and the resulting products are added (or subtracted).

If the operation outside the parentheses (in this case, the multiplication) is commutative, then left-distributivity implies right-distributivity and vice versa, and one talks simply of distributivity.

One example of an operation that is "only" right-distributive is division, which is not commutative:

In this case, left-distributivity does not apply:

The distributive laws are among the axioms for rings (like the ring of integers) and fields (like the field of rational numbers). Here multiplication is distributive over addition, but addition is not distributive over multiplication. Examples of structures with two operations that are each distributive over the other are Boolean algebras[2] such as the algebra of sets or the switching algebra.[3][4]

Примери

Реални бројеви

In the following examples, the use of the distributive law on the set of real numbers is illustrated. When multiplication is mentioned in elementary mathematics, it usually refers to this kind of multiplication. From the point of view of algebra, the real numbers form a field, which ensures the validity of the distributive law.

First example (mental and written multiplication)
During mental arithmetic, distributivity is often used unconsciously:
Thus, to calculate in one's head, one first multiplies and and add the intermediate results. Written multiplication is also based on the distributive law.
Second example (with variables)
Third example (with two sums)
Here the distributive law was applied twice, and it does not matter which bracket is first multiplied out.
Fourth example
Here the distributive law is applied the other way around compared to the previous examples. Consider
Since the factor occurs in all summands, it can be factored out. That is, due to the distributive law one obtains

Матрице

The distributive law is valid for matrix multiplication. More precisely,

for all -matrices and -matrices as well as
for all -matrices and -matrices Because the commutative property does not hold for matrix multiplication, the second law does not follow from the first law. In this case, they are two different laws.

Други примери

  • Multiplication of ordinal numbers, in contrast, is only left-distributive, not right-distributive.
  • The cross product is left- and right-distributive over vector addition, though not commutative.
  • The union of sets is distributive over intersection, and intersection is distributive over union.
  • Logical disjunction ("or") is distributive over logical conjunction ("and"), and vice versa.
  • For real numbers (and for any totally ordered set), the maximum operation is distributive over the minimum operation, and vice versa:
  • For integers, the greatest common divisor is distributive over the least common multiple, and vice versa:
  • For real numbers, addition distributes over the maximum operation, and also over the minimum operation:
  • For binomial multiplication, distribution is sometimes referred to as the FOIL Method[5] (First terms Outer Inner and Last ) such as:
  • In all semirings, including the complex numbers, the quaternions, polynomials, and matrices, multiplication distributes over addition:
  • In all algebras over a field, including the octonions and other non-associative algebras, multiplication distributes over addition.[6][7]

Пропозициона логика

Rule of replacement

In standard truth-functional propositional logic, distribution[8][9] in logical proofs uses two valid rules of replacement[10][11] to expand individual occurrences of certain logical connectives, within some formula,[12] into separate applications of those connectives across subformulas of the given formula. The rules are

where "", also written is a metalogical symbol representing "can be replaced in a proof with" or "is logically equivalent to".

Truth functional connectives

Distributivity is a property of some logical connectives of truth-functional propositional logic. The following logical equivalences demonstrate that distributivity is a property of particular connectives. The following are truth-functional tautologies.

Двострука дистрибуција

Види још

Референце

  1. ^ Distributivity of Binary Operations from Mathonline
  2. ^ Davey & Priestley 1990, стр. 109, 131, 144.
  3. ^ Stoll, Robert R.; Set Theory and Logic, Mineola, N.Y.: Dover Publications (1979) ISBN 0-486-63829-4. "The Algebra of Sets".
  4. ^ Courant, Richard, Herbert Robbins, Ian Stewart, What is mathematics?: An Elementary Approach to Ideas and Methods, Oxford University Press US, 1996. ISBN 978-0-19-510519-3. "SUPPLEMENT TO CHAPTER II THE ALGEBRA OF SETS".
  5. ^ Kim Steward (2011) Multiplying Polynomials from Virtual Math Lab at West Texas A&M University
  6. ^ Albert, A. Adrian (2003) [1939]. Structure of algebras. American Mathematical Society Colloquium Publ. 24 (Corrected reprint of the revised 1961 изд.). New York: American Mathematical Society. ISBN 0-8218-1024-3. Zbl 0023.19901. 
  7. ^ Albert, A. Adrian (1948a). „Power-associative rings”. Transactions of the American Mathematical Society. 64: 552—593. ISSN 0002-9947. JSTOR 1990399. MR 0027750. Zbl 0033.15402. doi:10.2307/1990399Слободан приступ. 
  8. ^ Elliott Mendelson (1964) Introduction to Mathematical Logic, page 21, D. Van Nostrand Company
  9. ^ Alfred Tarski (1941) Introduction to Logic, page 52, Oxford University Press
  10. ^ Copi, Irving M.; Cohen, Carl (2005). Introduction to Logic. Prentice Hall. 
  11. ^ Hurley, Patrick (1991). A Concise Introduction to Logic 4th editionНеопходна слободна регистрација. Wadsworth Publishing. 
  12. ^ Cogwheel. „What is the difference between logical and conditional /operator/”. Stack Overflow. Приступљено 9. 4. 2015. 

Литература

Спољашње везе