Пређи на садржај

Naivna teorija skupova — разлика између измена

С Википедије, слободне енциклопедије
Садржај обрисан Садржај додат
мНема описа измене
.
Ред 30: Ред 30:


Neki smatraju da [[Georg Kantor]]ova teorija skupova zapravo nije bila umešana u skupovno-teoretske paradokse (pogledajte -{''Frápolli''}- 1991). Jedna od poteškoća da se to sa sigurnošću utvrdi je što Kantor nije pružio aksiomatizaciju svog sistema. Do 1899. godine, Kantor je bio svestan nekih paradoksa proizašlih iz neograničenog tumačenja njegove teorije, na primer, [[Cantor's paradox|Kantorovog paradoksa]]<ref name="Letter_to_Hilbert">Letter from Cantor to [[David Hilbert]] on September 26, 1897, {{harvnb|Meschkowski|Nilson|1991|pp=388}}.</ref> i [[Burali-Forti paradox|Barali-Fortijevog]] paradoksa,<ref>Letter from Cantor to [[Richard Dedekind]] on August 3, 1899, {{harvnb|Meschkowski|Nilson|1991|pp=408}}.</ref> i nije smatrao da su oni diskreditovali njegovu teoriju.<ref name="Letters_to_Dedekind">Letters from Cantor to [[Richard Dedekind]] on August 3, 1899 and on August 30, 1899, {{harvnb|Zermelo|1932|pp=448 }}(System aller denkbaren Klassen) and {{harvnb|Meschkowski|Nilson|1991|pp=407}}. (There is no set of all sets.)</ref> Kantorov paradoks može se izvesti iz gornje (pogrešne) pretpostavke - da se svako svojstvo {{math|''P''(''x'')}} može koristiti za formiranje skupa - uzimajući da je {{math|''P''(''x'') ''x''}} [[Кардиналан број|kardinalni broj]]. Frege je eksplicitno aksiomatizovao teoriju u kojoj se može interpretirati formalizovana verzija naivne teorije skupova, i upravo je na tu formalnu teoriju [[Bertrand Rasel]] referirao kada je izneo svoj paradoks, a ne nužno Kantorovu teoriju.
Neki smatraju da [[Georg Kantor]]ova teorija skupova zapravo nije bila umešana u skupovno-teoretske paradokse (pogledajte -{''Frápolli''}- 1991). Jedna od poteškoća da se to sa sigurnošću utvrdi je što Kantor nije pružio aksiomatizaciju svog sistema. Do 1899. godine, Kantor je bio svestan nekih paradoksa proizašlih iz neograničenog tumačenja njegove teorije, na primer, [[Cantor's paradox|Kantorovog paradoksa]]<ref name="Letter_to_Hilbert">Letter from Cantor to [[David Hilbert]] on September 26, 1897, {{harvnb|Meschkowski|Nilson|1991|pp=388}}.</ref> i [[Burali-Forti paradox|Barali-Fortijevog]] paradoksa,<ref>Letter from Cantor to [[Richard Dedekind]] on August 3, 1899, {{harvnb|Meschkowski|Nilson|1991|pp=408}}.</ref> i nije smatrao da su oni diskreditovali njegovu teoriju.<ref name="Letters_to_Dedekind">Letters from Cantor to [[Richard Dedekind]] on August 3, 1899 and on August 30, 1899, {{harvnb|Zermelo|1932|pp=448 }}(System aller denkbaren Klassen) and {{harvnb|Meschkowski|Nilson|1991|pp=407}}. (There is no set of all sets.)</ref> Kantorov paradoks može se izvesti iz gornje (pogrešne) pretpostavke - da se svako svojstvo {{math|''P''(''x'')}} može koristiti za formiranje skupa - uzimajući da je {{math|''P''(''x'') ''x''}} [[Кардиналан број|kardinalni broj]]. Frege je eksplicitno aksiomatizovao teoriju u kojoj se može interpretirati formalizovana verzija naivne teorije skupova, i upravo je na tu formalnu teoriju [[Bertrand Rasel]] referirao kada je izneo svoj paradoks, a ne nužno Kantorovu teoriju.
{{rut}}
=== Aksiomatske teorije ===
Axiomatic set theory was developed in response to these early attempts to understand sets, with the goal of determining precisely what operations were allowed and when.

===Consistency===
A naive set theory is not ''necessarily'' inconsistent, if it correctly specifies the sets allowed to be considered. This can be done by the means of definitions, which are implicit axioms. It is possible to state all the axioms explicitly, as in the case of Halmos' ''Naive Set Theory'', which is actually an informal presentation of the usual axiomatic [[Zermelo–Fraenkel set theory]]. It is "naive" in that the language and notations are those of ordinary informal mathematics, and in that it does not deal with consistency or completeness of the axiom system.

Likewise, an axiomatic set theory is not necessarily consistent: not necessarily free of paradoxes. It follows from [[Gödel's incompleteness theorems]] that a sufficiently complicated [[first order logic]] system (which includes most common axiomatic set theories) cannot be proved consistent from within the theory itself &ndash; even if it actually is consistent. However, the common axiomatic systems are generally believed to be consistent; by their axioms they do exclude ''some'' paradoxes, like [[Russell's paradox]]. Based on [[Gödel's incompleteness theorems|Gödel's theorem]], it is just not known &ndash; and never can be &ndash; if there are ''no'' paradoxes at all in these theories or in any first-order set theory.

The term ''naive set theory'' is still today also used in some literature to refer to the set theories studied by Frege and Cantor, rather than to the informal counterparts of modern axiomatic set theory.

===Utility===
The choice between an axiomatic approach and other approaches is largely a matter of convenience. In everyday mathematics the best choice may be informal use of axiomatic set theory. References to particular axioms typically then occur only when demanded by tradition, e.g. the [[axiom of choice]] is often mentioned when used. Likewise, formal proofs occur only when warranted by exceptional circumstances. This informal usage of axiomatic set theory can have (depending on notation) precisely the ''appearance'' of naive set theory as outlined below. It is considerably easier to read and write (in the formulation of most statements, proofs, and lines of discussion) and is less error-prone than a strictly formal approach.

== Skupovi, članstvo i jednakost ==
In naive set theory, a '''set''' is described as a well-defined collection of objects. These objects are called the '''elements''' or '''members''' of the set. Objects can be anything: numbers, people, other sets, etc. For instance, 4 is a member of the set of all even [[integer]]s. Clearly, the set of even numbers is infinitely large; there is no requirement that a set be finite.

[[File:Passage with the set definition of Georg Cantor.png|thumb|upright=1.15|Passage with the original set definition of Georg Cantor]]
The definition of sets goes back to [[Georg Cantor]]. He wrote in his 1915 article:<ref> ''[https://web.archive.org/web/20141020034245/http://gdz.sub.uni-goettingen.de/index.php?id=pdf&no_cache=1&IDDOC=36218 Beiträge zur Begründung der transfiniten Mengenlehre]''</ref>

<blockquote>“Unter einer 'Menge' verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen Objekten unserer Anschauung oder unseres Denkens (welche die 'Elemente' von M genannt werden) zu einem Ganzen.” – Georg Cantor</blockquote>
<blockquote>“A set is a gathering together into a whole of definite, distinct objects of our perception or of our thought—which are called elements of the set.” – Georg Cantor</blockquote>


== Reference ==
== Reference ==
Ред 38: Ред 60:
* [[Nicolas Bourbaki|Bourbaki, N.]], ''Elements of the History of Mathematics'', John Meldrum (trans.), Springer-Verlag, Berlin, Germany, 1994.
* [[Nicolas Bourbaki|Bourbaki, N.]], ''Elements of the History of Mathematics'', John Meldrum (trans.), Springer-Verlag, Berlin, Germany, 1994.
*{{citation|first=Georg|last=Cantor|author-link=Georg Cantor|title=Ueber eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen|journal=[[Journal für die reine und angewandte Mathematik|J. Reine Angew. Math.]]|volume=77|year=1874|pages=258–262|url=http://www.digizeitschriften.de/main/dms/img/?PPN=GDZPPN002155583|postscript=, See also [http://bolyai.cs.elte.hu/~badam/matbsc/11o/cantor1874.pdf pdf version: ]|doi=10.1515/crll.1874.77.258}}
*{{citation|first=Georg|last=Cantor|author-link=Georg Cantor|title=Ueber eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen|journal=[[Journal für die reine und angewandte Mathematik|J. Reine Angew. Math.]]|volume=77|year=1874|pages=258–262|url=http://www.digizeitschriften.de/main/dms/img/?PPN=GDZPPN002155583|postscript=, See also [http://bolyai.cs.elte.hu/~badam/matbsc/11o/cantor1874.pdf pdf version: ]|doi=10.1515/crll.1874.77.258}}
* [[Keith J. Devlin|Devlin, K.J.]], ''The Joy of Sets: Fundamentals of Contemporary Set Theory'', 2nd edition, Springer-Verlag, New York, NY, 1993.
* María J. Frápolli|Frápolli, María J., 1991, "Is Cantorian set theory an iterative conception of set?". ''Modern Logic'', v. 1 n. 4, 1991, 302–318.
* María J. Frápolli|Frápolli, María J., 1991, "Is Cantorian set theory an iterative conception of set?". ''Modern Logic'', v. 1 n. 4, 1991, 302–318.
* {{citation|first=Gottlob|last=Frege|authorlink=Gotlob Frege|title=Grundgesetze der Arithmetik|volume=1|year=1893|location=Jena 1893.}}
* {{citation|first=Gottlob|last=Frege|authorlink=Gotlob Frege|title=Grundgesetze der Arithmetik|volume=1|year=1893|location=Jena 1893.}}
Ред 48: Ред 69:
* {{citation|first=Giuseppe|last=Peano|authorlink=Giuseppe Peano|title=Arithmetices Principies nova Methoda exposita|year=1889|location=Turin 1889.}}
* {{citation|first=Giuseppe|last=Peano|authorlink=Giuseppe Peano|title=Arithmetices Principies nova Methoda exposita|year=1889|location=Turin 1889.}}
* {{citation|last=Zermelo|authorlink=Ernst Zermelo|first=Ernst|title=Georg Cantor: Gesammelte Abhandlungen mathematischen und philosophischen Inhalts. Mit erläuternden Anmerkungen sowie mit Ergänzungen aus dem Briefwechsel Cantor-Dedekind. Edited by the author.|publisher=Springer|location=Berlin|year=1932}}
* {{citation|last=Zermelo|authorlink=Ernst Zermelo|first=Ernst|title=Georg Cantor: Gesammelte Abhandlungen mathematischen und philosophischen Inhalts. Mit erläuternden Anmerkungen sowie mit Ergänzungen aus dem Briefwechsel Cantor-Dedekind. Edited by the author.|publisher=Springer|location=Berlin|year=1932}}
* {{Citation |last=Kunen |first=Kenneth |author-link=Kenneth Kunen |year=1980 |title=[[Set Theory: An Introduction to Independence Proofs]] |publisher=North-Holland |isbn=0-444-85401-0}}
* {{Citation |last=Johnson |first=Philip |year=1972 |title=A History of Set Theory |url=https://archive.org/details/mathematicalcirc0000eves_x3z6 |url-access=registration |publisher=Prindle, Weber & Schmidt |isbn=0-87150-154-6}}
* {{Citation |last=Devlin |first=Keith |author-link=Keith Devlin |year=1993 |title=The Joy of Sets: Fundamentals of Contemporary Set Theory |doi = 10.1007/978-1-4612-0903-4 |url=https://books.google.com/books?id=ISBN0387940944 |edition=2nd |publisher=Springer Verlag |isbn=0-387-94094-4}}
* {{Citation |last=Ferreirós |first=Jose |year=2001 |title=Labyrinth of Thought: A History of Set Theory and Its Role in Modern Mathematics |url=https://books.google.com/books?id=DITy0nsYQQoC|location=Berlin |publisher=Springer |isbn=978-3-7643-5749-8}}
* {{Citation |last=Monk |first=J. Donald |year=1969 |title=Introduction to Set Theory |url=https://archive.org/details/introductiontose0000monk/page/n5/mode/2up |url-access=registration |publisher=McGraw-Hill Book Company |isbn=978-0-898-74006-6}}
* {{Citation |last=Potter |first=Michael |year=2004 |title=Set Theory and Its Philosophy: A Critical Introduction |url=https://books.google.com/books?id=FxRoPuPbGgUC|publisher=[[Oxford University Press]] |isbn=978-0-191-55643-2}}
* {{Citation |last1=Smullyan |first1=Raymond M. |author-link=Raymond Smullyan |last2=Fitting |first2=Melvin |year=2010 |title=Set Theory and the Continuum Problem |publisher=[[Dover Publications]] |isbn=978-0-486-47484-7}}
* {{Citation |last=Tiles |first=Mary |author-link=Mary Tiles |year=2004|title=The Philosophy of Set Theory: An Historical Introduction to Cantor's Paradise |url=https://books.google.com/books?id=02ASV8VB4gYC |publisher=[[Dover Publications]] |isbn=978-0-486-43520-6}}
* {{cite web |first=Walter B. |last=Rudin |author-link=Walter Rudin |date=April 6, 1990 |title=Set Theory: An Offspring of Analysis |work=Marden Lecture in Mathematics |location=[[University of Wisconsin-Milwaukee]] |url=https://www.youtube.com/watch?v=hBcWRZMP6xs&list=PLvAAmIFroksMKHv5O4lwpJJzfmUL0cQ7A&index=3 | archive-url=https://ghostarchive.org/varchive/youtube/20211031/hBcWRZMP6xs| archive-date=2021-10-31 | url-status=live|via=[[YouTube]] }}

{{refend}}
{{refend}}


Ред 54: Ред 85:
* -{[http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/Beginnings_of_set_theory.html Beginnings of set theory] page at St. Andrews}-
* -{[http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/Beginnings_of_set_theory.html Beginnings of set theory] page at St. Andrews}-
* -{[http://jeff560.tripod.com/s.html Earliest Known Uses of Some of the Words of Mathematics (S)]}-
* -{[http://jeff560.tripod.com/s.html Earliest Known Uses of Some of the Words of Mathematics (S)]}-
* Daniel Cunningham, [http://www.iep.utm.edu/set-theo/ Set Theory] article in the ''[[Internet Encyclopedia of Philosophy]]''.
* Jose Ferreiros, [https://plato.stanford.edu/entries/settheory-early/ "The Early Development of Set Theory"] article in the ''[Stanford Encyclopedia of Philosophy]''.
* [[Matthew Foreman|Foreman, Matthew]], [[Akihiro Kanamori]], eds. ''[http://handbook.assafrinot.com/ Handbook of Set Theory]''. 3 vols., 2010. Each chapter surveys some aspect of contemporary research in set theory. Does not cover established elementary set theory, on which see Devlin (1993).
* {{Springer |title=Axiomatic set theory |id=p/a014310}}
* {{Springer |title=Set theory |id=p/s084750}}
* [[Arthur Schoenflies|Schoenflies, Arthur]] (1898). [https://archive.org/stream/encyklomath101encyrich#page/n229 Mengenlehre] in [[Klein's encyclopedia]].
* {{Library resources about |onlinebooks=yes |lcheading=Set theory |label=set theory}}


{{Authority control-lat}}
{{Authority control-lat}}

Верзија на датум 26. јун 2023. у 09:15

Naivna teorija skupova je teorija skupova u kojoj su skupovi uvedeni koristeći tzv. samoevidentni koncept skupova kao kolekcija objekata smatranih celinom.[1] Ona predstavlja početnu fazu u izgradnji teorije skupova, i obuhvata vreme kad je njen osnivač Georg Kantor objavio radove o teoriji skupova 1871. godine do pojave prvih paradoksa. On se pri izradi nije služio aksiomima, ali su sve teoreme koje je dobio izvodive iz tri aksioma: ekstenzionalnosti, komprehenzije i izbora.[2]

U toj teoriji skup je primitivan pojam koji se kao takav ne defini]e. Podrazumeva se da čilac već ima izgrađenu intuiciju o pojmu skupa, odnosno da je skup kolekcija objekata koji zajedno čine celinu. Veliki deo teorije skupova Kantor je izgradio na ovakvom nedefiniranom i vrlo nejasnom pojmu skupa. Konsekventno, kad je teorija postala priznata, pojavili su se paradoksi. Pojave paradoksa (koji su se pojavili Raselovim otkrićem paradoksa) i nerešivih problema u naivnoj teoriji izbjegavane su uvođenjem teorije tipova, teorije klasa i dr. Slabe osnove pokazale su potrebu za aksiomima i Ernst Zermelo je 1908. godine predložio aksiomatizaciju teorije, dokazavši da se može dobro urediti svaki skup. Uvođenjem aksioma teorija se razvila, te se nastala aksiomatska teorija skupova.[2][3][4]

Skupovi su od velike važnosti u matematici; u modernim formalnim tretmanima većina matematičkih objekata (brojevi, odnosi, funkcije, itd.) su definisani u smislu skupova. Naivna teorija skupova je dovoljna za mnoge svrhe, a ujedno služi i kao odskočna daska ka formalnijim tretmanima.

Metod

Naïvna teorija u smislu „naivne teorije skupova” je neformalizovana teorija, odnosno teorija koja koristi prirodni jezik za opisivanje skupova i operacija na skupovima. Reči i, ili, ako ... onda, ne, za neke, za svaki se tretiraju kao u običnoj matematici. Kao pogodnost, upotreba naivne teorije skupova i njen formalizam preovlađuju čak i u višoj matematici - uključujući i formalnije postavke same teorije skupova.

Prvi razvoj teorije skupova bila je naivna teorija skupova. Nju je kreirao krajem 19. veka Georg Kantor kao deo njegove studije beskonačnih skupova,[5] a razvio ju je Gotlob Frege u svom radu Begriffsschrift.

Naivna teorija skupova se može odnositi na nekoliko vrlo različitih pojmova. To može biti

Paradoksi

Pretpostavka da se bilo koje svojstvo može koristiti za formiranje skupa, bez ograničenja, dovodi do paradoksa. Jedan čest primer je Raselov paradoks: ne postoji skup koji se sastoji od „svih skupova koji ne sadrže sebe”. Stoga dosledni sistemi naivne teorije skupova moraju da sadrže i neka ograničenja u principima koji se mogu koristiti za formiranje skupova.

Kantorova teorija

Neki smatraju da Georg Kantorova teorija skupova zapravo nije bila umešana u skupovno-teoretske paradokse (pogledajte Frápolli 1991). Jedna od poteškoća da se to sa sigurnošću utvrdi je što Kantor nije pružio aksiomatizaciju svog sistema. Do 1899. godine, Kantor je bio svestan nekih paradoksa proizašlih iz neograničenog tumačenja njegove teorije, na primer, Kantorovog paradoksa[8] i Barali-Fortijevog paradoksa,[9] i nije smatrao da su oni diskreditovali njegovu teoriju.[10] Kantorov paradoks može se izvesti iz gornje (pogrešne) pretpostavke - da se svako svojstvo P(x) može koristiti za formiranje skupa - uzimajući da je P(x) x kardinalni broj. Frege je eksplicitno aksiomatizovao teoriju u kojoj se može interpretirati formalizovana verzija naivne teorije skupova, i upravo je na tu formalnu teoriju Bertrand Rasel referirao kada je izneo svoj paradoks, a ne nužno Kantorovu teoriju.

Aksiomatske teorije

Axiomatic set theory was developed in response to these early attempts to understand sets, with the goal of determining precisely what operations were allowed and when.

Consistency

A naive set theory is not necessarily inconsistent, if it correctly specifies the sets allowed to be considered. This can be done by the means of definitions, which are implicit axioms. It is possible to state all the axioms explicitly, as in the case of Halmos' Naive Set Theory, which is actually an informal presentation of the usual axiomatic Zermelo–Fraenkel set theory. It is "naive" in that the language and notations are those of ordinary informal mathematics, and in that it does not deal with consistency or completeness of the axiom system.

Likewise, an axiomatic set theory is not necessarily consistent: not necessarily free of paradoxes. It follows from Gödel's incompleteness theorems that a sufficiently complicated first order logic system (which includes most common axiomatic set theories) cannot be proved consistent from within the theory itself – even if it actually is consistent. However, the common axiomatic systems are generally believed to be consistent; by their axioms they do exclude some paradoxes, like Russell's paradox. Based on Gödel's theorem, it is just not known – and never can be – if there are no paradoxes at all in these theories or in any first-order set theory.

The term naive set theory is still today also used in some literature to refer to the set theories studied by Frege and Cantor, rather than to the informal counterparts of modern axiomatic set theory.

Utility

The choice between an axiomatic approach and other approaches is largely a matter of convenience. In everyday mathematics the best choice may be informal use of axiomatic set theory. References to particular axioms typically then occur only when demanded by tradition, e.g. the axiom of choice is often mentioned when used. Likewise, formal proofs occur only when warranted by exceptional circumstances. This informal usage of axiomatic set theory can have (depending on notation) precisely the appearance of naive set theory as outlined below. It is considerably easier to read and write (in the formulation of most statements, proofs, and lines of discussion) and is less error-prone than a strictly formal approach.

Skupovi, članstvo i jednakost

In naive set theory, a set is described as a well-defined collection of objects. These objects are called the elements or members of the set. Objects can be anything: numbers, people, other sets, etc. For instance, 4 is a member of the set of all even integers. Clearly, the set of even numbers is infinitely large; there is no requirement that a set be finite.

Passage with the original set definition of Georg Cantor

The definition of sets goes back to Georg Cantor. He wrote in his 1915 article:[11]

“Unter einer 'Menge' verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen Objekten unserer Anschauung oder unseres Denkens (welche die 'Elemente' von M genannt werden) zu einem Ganzen.” – Georg Cantor

“A set is a gathering together into a whole of definite, distinct objects of our perception or of our thought—which are called elements of the set.” – Georg Cantor

Reference

  1. ^ Jeff Miller writes that naïve set theory (as opposed to axiomatic set theory) was used occasionally in the 1940s and became an established term in the 1950s. It appears in Hermann Weyl's review of P. A. Schilpp (Ed). (1946). “The Philosophy of Bertrand Russell” American Mathematical Monthly, 53(4), p. 210 and in a review by Laszlo Kalmar. (1946). “The Paradox of Kleene and Rosser”. Journal of Symbolic Logic, 11(4), p. 136. (JSTOR). [1] The term was later popularized in a book by Paul Halmos (1960). Naïve Set Theory.
  2. ^ а б Prirodoslovno matematički fakultet u Zagrebu Архивирано на сајту Wayback Machine (24. јул 2019) Mladen Vuković: Teorija skupova; Zagreb: Sveučilište u Zagrebu, siječanj 2015. str . 2-3
  3. ^ Paradoks i kontradikcija nisu istoznačnice. Paradoks predstavlja tvrdnju čiji je dokaz logički neupitan, ali je intuitivno sama tvrdnja vrlo upitna.
  4. ^ Mac Lane, Saunders (1971), „Categorical algebra and set-theoretic foundations”, Axiomatic Set Theory (Proc. Sympos. Pure Math., Vol. XIII, Part I, Univ. California, Los Angeles, Calif., 1967), Amer. Math. Soc., Providence, R.I., стр. 231—240, MR 0282791 . "The working mathematicians usually thought in terms of a naïve set theory (probably one more or less equivalent to ZF) ... a practical requirement [of any new foundational system] could be that this system could be used "naïvely" by mathematicians not sophisticated in foundational research" (p. 236).
  5. ^ Cantor 1874
  6. ^ Frege 1893 In Volume 2, Jena 1903. pp. 253-261 Frege discusses the antionomy in the afterword.
  7. ^ Peano 1889 Axiom 52. chap. IV produces antinomies.
  8. ^ Letter from Cantor to David Hilbert on September 26, 1897, Meschkowski & Nilson 1991, стр. 388.
  9. ^ Letter from Cantor to Richard Dedekind on August 3, 1899, Meschkowski & Nilson 1991, стр. 408.
  10. ^ Letters from Cantor to Richard Dedekind on August 3, 1899 and on August 30, 1899, Zermelo 1932, стр. 448(System aller denkbaren Klassen) and Meschkowski & Nilson 1991, стр. 407. (There is no set of all sets.)
  11. ^ Beiträge zur Begründung der transfiniten Mengenlehre

Literatura

Spoljašnje veze