Kompaktan prostor — разлика између измена

С Википедије, слободне енциклопедије
Садржај обрисан Садржај додат
.
Ред 1: Ред 1:
[[Датотека:Compact.svg|thumb|upright=1.6|Interval {{math|''A'' {{=}} (−∞, −2]}} nije kompaktan zato što nije ograničen. Interval {{math|''C'' {{=}} (2, 4)}} nije kompktan zato što nije zatvoren. Interval {{math|''B'' {{=}} [0, 1]}} je kompaktan zato što je zatvoren i ograničen.]]
[[Датотека:Compact.svg|thumb|upright=1.6|Interval {{math|''A'' {{=}} (−∞, −2]}} nije kompaktan zato što nije ograničen. Interval {{math|''C'' {{=}} (2, 4)}} nije kompktan zato što nije zatvoren. Interval {{math|''B'' {{=}} [0, 1]}} je kompaktan zato što je zatvoren i ograničen.]]


U [[mathematics|matematici]], i specifičnije [[general topology|opštoj topologiji]], '''kompaktnost''' je svojstvo koje generalizuje pojam podskupa [[Euclidean space|Euklidovog prostora]] koji je [[closed set|zatvoren]] (da sadrži sve svoje [[limit point|granične tačke]]) i [[bounded set|ograničen]] (onaj kod koga sve njegove tačke leže na datom fiksnom rastojanju jedna od druge). Primeri su [[closed interval|zatvoreni interval]], [[rectangle|četvorougao]], ili konačni set tačaka. Ovaj je pojam definisan za opštije [[topological space|topološke prostore]], nego što je Euklidov prostor na razne načine.<ref name="automatski_generisano1">{{cite book|last=Bartle |first=Robert G. |last2=Sherbert |first2=Donald R. |year=2000|title=Introduction to Real Analysis |url= |edition=3rd |location=New York |publisher=J. Wiley |id=|accessdate=}}</ref><ref name="Fitzpatrick">{{cite book|last=Fitzpatrick |first=Patrick M. |year=2006|title=Advanced Calculus |url= |edition=2nd |location=Belmont, CA |publisher=Thomson Brooks/Cole |isbn=978-0-534-37603-1 |accessdate=}}</ref>
U [[mathematics|matematici]], i specifičnije [[general topology|opštoj topologiji]], '''kompaktnost''' je svojstvo koje generalizuje pojam podskupa [[Euclidean space|Euklidovog prostora]]<ref>{{cite encyclopedia |title=Compactness |department=mathematics |encyclopedia=[[Encyclopaedia Britannica]] |language=en |url=https://www.britannica.com/science/compactness |access-date=2019-11-25 |via=britannica.com}}</ref> koji je [[closed set|zatvoren]] (da sadrži sve svoje [[limit point|granične tačke]]) i [[bounded set|ograničen]] (onaj kod koga sve njegove tačke leže na datom fiksnom rastojanju jedna od druge). Primeri su [[closed interval|zatvoreni interval]], [[rectangle|četvorougao]], ili konačni set tačaka. Ovaj je pojam definisan za opštije [[topological space|topološke prostore]], nego što je Euklidov prostor na razne načine.<ref name="automatski_generisano1">{{cite book|last=Bartle |first=Robert G. |last2=Sherbert |first2=Donald R. |year=2000|title=Introduction to Real Analysis |url= |edition=3rd |location=New York |publisher=J. Wiley |id=|accessdate=}}</ref><ref name="Fitzpatrick">{{cite book|last=Fitzpatrick |first=Patrick M. |year=2006|title=Advanced Calculus |url= |edition=2nd |location=Belmont, CA |publisher=Thomson Brooks/Cole |isbn=978-0-534-37603-1 |accessdate=}}</ref>


Jedna takva generalizacija je da je topološki prostor [[sequentially compact|''sekvencijalno'' kompaktan]] ako svaki [[infinite sequence|infinitivni niz]] tačaka uzet kao uzorak prostora ima beskonačni [[podniz]] koji konvergira u istu tačku prostora. [[Bolcano-Vajerštrasova teorema]] navodi da je podskup Euklidovog prostora kompaktan u ovom sekvencijalnom smislu ako i samo ako je zatvoren i ograničen.<ref name="Fitzpatrick" /> Stoga, ako se izabere beskonačan broj tačaka u ''zatvorenom'' [[unit interval|jediničnom intervalu]] {{math|[0, 1]}} neke od tih tačaka će biti proizvoljno blizo nekim realnom broju u tom prostoru. Na primer, neki od brojeva {{nowrap|1/2, 4/5, 1/3, 5/6, 1/4, 6/7, &hellip;}} se akumuliraju do 0 (drugi se akumuliraju do 1). Isti skup tačaka se ne bi akumulirao do bilo koje tačke ''otvorenog'' jediničnog intervala {{math|(0, 1)}}; tako da otvoreni jedinični interval nije kompaktan. Sam Euklidov prostor nije kompaktan, jer nije ograničen. Na primer, niz tačaka {{nowrap|0, 1, 2, 3, …}} nije niz koji konvergira u bilo koji realni broj.<ref name="automatski_generisano1" />
Jedna takva generalizacija je da je topološki prostor [[sequentially compact|''sekvencijalno'' kompaktan]] ako svaki [[infinite sequence|infinitivni niz]] tačaka uzet kao uzorak prostora ima beskonačni [[podniz]] koji konvergira u istu tačku prostora.<ref>{{cite book |last=Engelking |first=Ryszard |year=1977 |title=General Topology |publisher=PWN |place=Warsaw, PL |pages=266 |oclc= |url= }}</ref> [[Bolcano-Vajerštrasova teorema]] navodi da je podskup Euklidovog prostora kompaktan u ovom sekvencijalnom smislu ako i samo ako je zatvoren i ograničen.<ref name="Fitzpatrick" /> Stoga, ako se izabere beskonačan broj tačaka u ''zatvorenom'' [[unit interval|jediničnom intervalu]] {{math|[0, 1]}} neke od tih tačaka će biti proizvoljno blizo nekim realnom broju u tom prostoru. Na primer, neki od brojeva {{nowrap|1/2, 4/5, 1/3, 5/6, 1/4, 6/7, &hellip;}} se akumuliraju do 0 (drugi se akumuliraju do 1). Isti skup tačaka se ne bi akumulirao do bilo koje tačke ''otvorenog'' jediničnog intervala {{math|(0, 1)}}; tako da otvoreni jedinični interval nije kompaktan. Sam Euklidov prostor nije kompaktan, jer nije ograničen. Na primer, niz tačaka {{nowrap|0, 1, 2, 3, …}} nije niz koji konvergira u bilo koji realni broj.<ref name="automatski_generisano1" />


Osim zatvorenih i ograničenih podskupova Euklidovog prostora, tipični primeri kompaktnih prostora obuhvataju prostore koji se ne sastoje od geometrijskih tačaka već od [[function space|funkcija]]. Termin ''kompaktan'' je uveo u matematiku [[Maurice Fréchet|Moris Freše]] 1904. godine kao destilaciju ovog koncepta. Kompaktnost u ovoj generalnijoj situaciji igra ekstremno važnu ulogu u [[mathematical analysis|matematičkoj analizi]], zato što se mnoge klasične i važne teoreme analize 19. veka, kao što je [[extreme value theorem|teorema ekstremne vrednosti]], lako generalizuju u ovoj situaciji. Tipičnu primenu pruža [[Arzelà–Ascoli theorem|Arcela-Askolijeva teorema]] ili [[Peano existence theorem|Peanova teorema postojanja]], prema kojoj je moguće izvesti zaključak o postojanju funkcije s nekim traženim svojstvima kao ograničavajući slučaj date elementarnije konstrukcije.
Osim zatvorenih i ograničenih podskupova Euklidovog prostora, tipični primeri kompaktnih prostora obuhvataju prostore koji se ne sastoje od geometrijskih tačaka već od [[function space|funkcija]]. Termin ''kompaktan'' je uveo u matematiku [[Maurice Fréchet|Moris Freše]] 1904. godine kao destilaciju ovog koncepta. Kompaktnost u ovoj generalnijoj situaciji igra ekstremno važnu ulogu u [[mathematical analysis|matematičkoj analizi]], zato što se mnoge klasične i važne teoreme analize 19. veka, kao što je [[extreme value theorem|teorema ekstremne vrednosti]],<ref>{{cite book |first=M. H. |last=Protter |author-link=Murray H. Protter |first2=C. B. |last2=Morrey |author-link2=Charles B. Morrey Jr. |title=A First Course in Real Analysis |location=New York |publisher=Springer |year=1977 |isbn=0-387-90215-5 |pages=71–73 |chapter=The Boundedness and Extreme–Value Theorems |chapter-url=https://books.google.com/books?id=NgX3BwAAQBAJ&pg=PA71 }}
</ref> lako generalizuju u ovoj situaciji. Tipičnu primenu pruža [[Arzelà–Ascoli theorem|Arcela-Askolijeva teorema]]<ref>{{citation|first=Cesare|last=Arzelà|author-link=Cesare Arzelà|title=Sulle funzioni di linee|journal=Mem. Accad. Sci. Ist. Bologna Cl. Sci. Fis. Mat.|volume=5|issue=5|pages=55–74|year=1895}}.</ref><ref>{{citation|first=Cesare|last=Arzelà|author-link=Cesare Arzelà|title=Un'osservazione intorno alle serie di funzioni|journal=Rend. Dell' Accad. R. Delle Sci. dell'Istituto di Bologna|pages=142–159|year=1882–1883}}.</ref><ref>{{citation|first=G.|last=Ascoli|author-link=Giulio Ascoli|title=Le curve limite di una varietà data di curve|journal=Atti della R. Accad. Dei Lincei Memorie della Cl. Sci. Fis. Mat. Nat.|volume=18|issue=3|pages=521–586|year=1883–1884}}.</ref> ili [[Peano existence theorem|Peanova teorema postojanja]],<ref>{{cite journal |first=G. |last=Peano |title=Sull'integrabilità delle equazioni differenziali del primo ordine |journal=Atti Accad. Sci. Torino |volume=21 |year=1886 |pages=437–445 |url=https://archive.org/stream/attidellaraccade21real#page/436/mode/2up/search/peano }}</ref><ref>{{cite journal |first=G. |last=Peano |title=Demonstration de l'intégrabilité des équations différentielles ordinaires |journal=[[Mathematische Annalen]] |volume=37 |issue=2 |year=1890 |pages=182–228 |doi=10.1007/BF01200235 |s2cid=120698124 }}</ref> prema kojoj je moguće izvesti zaključak o postojanju funkcije s nekim traženim svojstvima kao ograničavajući slučaj date elementarnije konstrukcije. Nakon njegovog početnog uvođenja, različiti ekvivalentni pojmovi kompaktnosti, uključujući [[Sequentially compact space|sekvencijalnu kompaktnost]] i [[limit point compact|kompaktnost granične tačke]], razvijeni su u opštim [[metric space|metričkim prostorima]].<ref name=":0">{{cite web |title=Sequential compactness |series=MT&nbsp;4522 course lectures |volume=L22 |website=www-groups.mcs.st-andrews.ac.uk |url=http://www-groups.mcs.st-andrews.ac.uk/~john/MT4522/Lectures/L22.html |access-date=2019-11-25}}</ref>

== Istorijski razvoj ==
{{rut}}
In the 19th century, several disparate mathematical properties were understood that would later be seen as consequences of compactness. On the one hand, [[Bernard Bolzano]] ([[#CITEREFBolzano1817|1817]]) had been aware that any bounded sequence of points (in the line or plane, for instance) has a subsequence that must eventually get arbitrarily close to some other point, called a [[Limit point of a sequence|limit point]]. Bolzano's proof relied on the [[method of bisection]]: the sequence was placed into an interval that was then divided into two equal parts, and a part containing infinitely many terms of the sequence was selected. The process could then be repeated by dividing the resulting smaller interval into smaller and smaller parts — until it closes down on the desired limit point. The full significance of [[Bolzano–Weierstrass theorem|Bolzano's theorem]], and its method of proof, would not emerge until almost 50 years later when it was rediscovered by [[Karl Weierstrass]].<ref>{{harvnb|Kline|1990|pp=952–953}}; {{harvnb|Boyer|Merzbach|1991|p=561}}</ref>

In the 1880s, it became clear that results similar to the Bolzano–Weierstrass theorem could be formulated for [[function spaces|spaces of functions]] rather than just numbers or geometrical points. The idea of regarding functions as themselves points of a generalized space dates back to the investigations of [[Giulio Ascoli]] and [[Cesare Arzelà]].<ref>{{harvnb|Kline|1990|loc=Chapter 46, §2}}</ref> The culmination of their investigations, the [[Arzelà–Ascoli theorem]], was a generalization of the Bolzano–Weierstrass theorem to families of [[continuous function]]s, the precise conclusion of which was that it was possible to extract a [[uniform convergence|uniformly convergent]] sequence of functions from a suitable family of functions. The uniform limit of this sequence then played precisely the same role as Bolzano's "limit point". Towards the beginning of the twentieth century, results similar to that of Arzelà and Ascoli began to accumulate in the area of [[integral equation]]s, as investigated by [[David Hilbert]] and [[Erhard Schmidt]]. For a certain class of [[Green's functions]] coming from solutions of integral equations, Schmidt had shown that a property analogous to the Arzelà–Ascoli theorem held in the sense of [[mean convergence]] — or convergence in what would later be dubbed a [[Hilbert space]]. This ultimately led to the notion of a [[compact operator]] as an offshoot of the general notion of a compact space. It was [[Maurice René Fréchet|Maurice Fréchet]] who, in [[#CITEREFFréchet1906|1906]], had distilled the essence of the Bolzano–Weierstrass property and coined the term ''compactness'' to refer to this general phenomenon (he used the term already in his 1904 paper<ref>Frechet, M. 1904. Generalisation d'un theorem de Weierstrass. Analyse Mathematique.</ref> which led to the famous 1906 thesis).


== Reference ==
== Reference ==
{{reflist|30em}}
{{reflist|}}


== Literatura ==
== Literatura ==
Ред 30: Ред 37:
* {{Citation | last=Steen | first=Lynn Arthur |author-link=Lynn Arthur Steen | last2=Seebach | first2=J. Arthur Jr. |author2-link=J. Arthur Seebach, Jr. | title=[[Counterexamples in Topology]] | origyear=1978 | publisher=Springer-Verlag | location=Berlin, New York | edition=Dover Publications reprint of 1978 |isbn=978-0-486-68735-3 | mr=507446 |year=1995}}
* {{Citation | last=Steen | first=Lynn Arthur |author-link=Lynn Arthur Steen | last2=Seebach | first2=J. Arthur Jr. |author2-link=J. Arthur Seebach, Jr. | title=[[Counterexamples in Topology]] | origyear=1978 | publisher=Springer-Verlag | location=Berlin, New York | edition=Dover Publications reprint of 1978 |isbn=978-0-486-68735-3 | mr=507446 |year=1995}}
* {{Citation|last=Willard|first=Stephen|title=General Topology|publisher=Dover publications|year=1970|isbn=978-0-486-43479-7|pages=}}
* {{Citation|last=Willard|first=Stephen|title=General Topology|publisher=Dover publications|year=1970|isbn=978-0-486-43479-7|pages=}}
* {{cite book |first=Robert A. |last=Adams |title=Calculus : A Complete Course |location=Reading |publisher=Addison-Wesley |year=1995 |isbn=0-201-82823-5 |pages=706–707 }}
* {{Cite book|url=https://archive.org/details/1979RudinW|title=Principles of Mathematical Analysis|last=Rudin|first=Walter|publisher=McGraw Hill|year=1976|isbn=0-07-054235-X|location=New York|pages=89–90}}
* {{Citation | last1=Bourbaki | first1=Nicolas | author1-link=Nicolas Bourbaki | title=General topology. Chapters 5&ndash;10 | publisher=[[Springer-Verlag]] | location=Berlin, New York | series=Elements of Mathematics | isbn=978-3-540-64563-4 | mr=1726872 | year=1998}}.
* {{citation|first=Jean|last=Dieudonné|author-link=Jean Dieudonné|title=Foundations of modern analysis|isbn=978-0-12-215507-9|publisher=Academic Press|year=1988}}
* {{citation|first1=Jérôme|last1=Droniou|first2=Robert|last2=Eymard|title=Uniform-in-time convergence of numerical methods for non-linear degenerate parabolic equations|journal=Numer. Math.|volume=132|issue=4|pages=721–766|year=2016|doi=10.1007/s00211-015-0733-6|arxiv=2003.09067|s2cid=5287603}}.
* {{citation|first1=Nelson|last1=Dunford|first2=Jacob T.|last2=Schwartz|title=Linear operators, volume 1|publisher=Wiley-Interscience|year=1958}}.
* {{citation|first=Maurice|last=Fréchet|author-link=Maurice Fréchet|title=Sur quelques points du calcul fonctionnel|journal=Rend. Circ. Mat. Palermo|volume=22|pages=1–74|year=1906|doi=10.1007/BF03018603|hdl=10338.dmlcz/100655|s2cid=123251660|url=https://zenodo.org/record/1428464}}.
* [http://www.encyclopediaofmath.org/index.php?title=Arzel%C3%A0-Ascoli_theorem&oldid=34445 ''Arzelà-Ascoli theorem'' at Encyclopaedia of Mathematics]
* {{citation|first1=J. L.|last1=Kelley|title=General topology|isbn=978-0-387-90125-1|year=1991|publisher=Springer-Verlag}}
* {{citation|first1=J. L.|last1=Kelley|first2=I.|last2=Namioka|author2-link= Isaac Namioka |title=Linear Topological Spaces|publisher=Springer-Verlag|year=1982|isbn=978-0-387-90169-5}}
* {{citation|first=Walter|last=Rudin|author-link=Walter Rudin|title=Principles of mathematical analysis|isbn=978-0-07-054235-8|year=1976|publisher=McGraw-Hill}}
* {{cite journal |first=W. F. |last=Osgood |title=Beweis der Existenz einer Lösung der Differentialgleichung dy/dx = f(x, y) ohne Hinzunahme der Cauchy-Lipschitzchen Bedingung |journal=Monatshefte für Mathematik |volume=9 |year=1898 |pages=331–345 |doi=10.1007/BF01707876 |s2cid=122312261 |url=https://zenodo.org/record/2150462 }}
* {{cite book |last1=Coddington | first1=Earl A. | last2=Levinson | first2=Norman | title=Theory of Ordinary Differential Equations |url=https://archive.org/details/theoryofordinary00codd |url-access=registration | publisher=[[McGraw-Hill]] | location=New York | year=1955 }}
* {{cite book |last1=Murray |first1=Francis J. |last2=Miller |first2=Kenneth S. |title=Existence Theorems for Ordinary Differential Equations |publisher=Krieger |location=New York |edition=Reprint |year=1976 |orig-year=1954 }}
* {{cite book |last=Teschl |first=Gerald |author-link=Gerald Teschl |title=Ordinary Differential Equations and Dynamical Systems |publisher=[[American Mathematical Society]] |location=[[Providence, Rhode Island|Providence]] |year=2012 |isbn=978-0-8218-8328-0 |url=https://www.mat.univie.ac.at/~gerald/ftp/book-ode/ }}
{{refend}}
{{refend}}



Верзија на датум 27. јун 2023. у 00:11

Interval A = (−∞, −2] nije kompaktan zato što nije ograničen. Interval C = (2, 4) nije kompktan zato što nije zatvoren. Interval B = [0, 1] je kompaktan zato što je zatvoren i ograničen.

U matematici, i specifičnije opštoj topologiji, kompaktnost je svojstvo koje generalizuje pojam podskupa Euklidovog prostora[1] koji je zatvoren (da sadrži sve svoje granične tačke) i ograničen (onaj kod koga sve njegove tačke leže na datom fiksnom rastojanju jedna od druge). Primeri su zatvoreni interval, četvorougao, ili konačni set tačaka. Ovaj je pojam definisan za opštije topološke prostore, nego što je Euklidov prostor na razne načine.[2][3]

Jedna takva generalizacija je da je topološki prostor sekvencijalno kompaktan ako svaki infinitivni niz tačaka uzet kao uzorak prostora ima beskonačni podniz koji konvergira u istu tačku prostora.[4] Bolcano-Vajerštrasova teorema navodi da je podskup Euklidovog prostora kompaktan u ovom sekvencijalnom smislu ako i samo ako je zatvoren i ograničen.[3] Stoga, ako se izabere beskonačan broj tačaka u zatvorenom jediničnom intervalu [0, 1] neke od tih tačaka će biti proizvoljno blizo nekim realnom broju u tom prostoru. Na primer, neki od brojeva 1/2, 4/5, 1/3, 5/6, 1/4, 6/7, … se akumuliraju do 0 (drugi se akumuliraju do 1). Isti skup tačaka se ne bi akumulirao do bilo koje tačke otvorenog jediničnog intervala (0, 1); tako da otvoreni jedinični interval nije kompaktan. Sam Euklidov prostor nije kompaktan, jer nije ograničen. Na primer, niz tačaka 0, 1, 2, 3, … nije niz koji konvergira u bilo koji realni broj.[2]

Osim zatvorenih i ograničenih podskupova Euklidovog prostora, tipični primeri kompaktnih prostora obuhvataju prostore koji se ne sastoje od geometrijskih tačaka već od funkcija. Termin kompaktan je uveo u matematiku Moris Freše 1904. godine kao destilaciju ovog koncepta. Kompaktnost u ovoj generalnijoj situaciji igra ekstremno važnu ulogu u matematičkoj analizi, zato što se mnoge klasične i važne teoreme analize 19. veka, kao što je teorema ekstremne vrednosti,[5] lako generalizuju u ovoj situaciji. Tipičnu primenu pruža Arcela-Askolijeva teorema[6][7][8] ili Peanova teorema postojanja,[9][10] prema kojoj je moguće izvesti zaključak o postojanju funkcije s nekim traženim svojstvima kao ograničavajući slučaj date elementarnije konstrukcije. Nakon njegovog početnog uvođenja, različiti ekvivalentni pojmovi kompaktnosti, uključujući sekvencijalnu kompaktnost i kompaktnost granične tačke, razvijeni su u opštim metričkim prostorima.[11]

Istorijski razvoj

In the 19th century, several disparate mathematical properties were understood that would later be seen as consequences of compactness. On the one hand, Bernard Bolzano (1817) had been aware that any bounded sequence of points (in the line or plane, for instance) has a subsequence that must eventually get arbitrarily close to some other point, called a limit point. Bolzano's proof relied on the method of bisection: the sequence was placed into an interval that was then divided into two equal parts, and a part containing infinitely many terms of the sequence was selected. The process could then be repeated by dividing the resulting smaller interval into smaller and smaller parts — until it closes down on the desired limit point. The full significance of Bolzano's theorem, and its method of proof, would not emerge until almost 50 years later when it was rediscovered by Karl Weierstrass.[12]

In the 1880s, it became clear that results similar to the Bolzano–Weierstrass theorem could be formulated for spaces of functions rather than just numbers or geometrical points. The idea of regarding functions as themselves points of a generalized space dates back to the investigations of Giulio Ascoli and Cesare Arzelà.[13] The culmination of their investigations, the Arzelà–Ascoli theorem, was a generalization of the Bolzano–Weierstrass theorem to families of continuous functions, the precise conclusion of which was that it was possible to extract a uniformly convergent sequence of functions from a suitable family of functions. The uniform limit of this sequence then played precisely the same role as Bolzano's "limit point". Towards the beginning of the twentieth century, results similar to that of Arzelà and Ascoli began to accumulate in the area of integral equations, as investigated by David Hilbert and Erhard Schmidt. For a certain class of Green's functions coming from solutions of integral equations, Schmidt had shown that a property analogous to the Arzelà–Ascoli theorem held in the sense of mean convergence — or convergence in what would later be dubbed a Hilbert space. This ultimately led to the notion of a compact operator as an offshoot of the general notion of a compact space. It was Maurice Fréchet who, in 1906, had distilled the essence of the Bolzano–Weierstrass property and coined the term compactness to refer to this general phenomenon (he used the term already in his 1904 paper[14] which led to the famous 1906 thesis).

Reference

  1. ^ „Compactness”. Encyclopaedia Britannica. mathematics (на језику: енглески). Приступљено 2019-11-25 — преко britannica.com. 
  2. ^ а б Bartle, Robert G.; Sherbert, Donald R. (2000). Introduction to Real Analysis (3rd изд.). New York: J. Wiley. 
  3. ^ а б Fitzpatrick, Patrick M. (2006). Advanced Calculus (2nd изд.). Belmont, CA: Thomson Brooks/Cole. ISBN 978-0-534-37603-1. 
  4. ^ Engelking, Ryszard (1977). General Topology. Warsaw, PL: PWN. стр. 266. 
  5. ^ Protter, M. H.; Morrey, C. B. (1977). „The Boundedness and Extreme–Value Theorems”. A First Course in Real Analysis. New York: Springer. стр. 71—73. ISBN 0-387-90215-5. 
  6. ^ Arzelà, Cesare (1895), „Sulle funzioni di linee”, Mem. Accad. Sci. Ist. Bologna Cl. Sci. Fis. Mat., 5 (5): 55—74 .
  7. ^ Arzelà, Cesare (1882—1883), „Un'osservazione intorno alle serie di funzioni”, Rend. Dell' Accad. R. Delle Sci. dell'Istituto di Bologna: 142—159 .
  8. ^ Ascoli, G. (1883—1884), „Le curve limite di una varietà data di curve”, Atti della R. Accad. Dei Lincei Memorie della Cl. Sci. Fis. Mat. Nat., 18 (3): 521—586 .
  9. ^ Peano, G. (1886). „Sull'integrabilità delle equazioni differenziali del primo ordine”. Atti Accad. Sci. Torino. 21: 437—445. 
  10. ^ Peano, G. (1890). „Demonstration de l'intégrabilité des équations différentielles ordinaires”. Mathematische Annalen. 37 (2): 182—228. S2CID 120698124. doi:10.1007/BF01200235. 
  11. ^ „Sequential compactness”. www-groups.mcs.st-andrews.ac.uk. MT 4522 course lectures. Приступљено 2019-11-25. 
  12. ^ Kline 1990, стр. 952–953; Boyer & Merzbach 1991, стр. 561
  13. ^ Kline 1990, Chapter 46, §2
  14. ^ Frechet, M. 1904. Generalisation d'un theorem de Weierstrass. Analyse Mathematique.

Literatura

Spoljašnje veze